
1

Introduction to adatptive
computing systems

Sara Bouchenak
Associate Professor, University of Grenoble – LIG, France

Sara.Bouchenak@imag.fr

http://membres-liglab.imag.fr/bouchenak/teaching/

© S. Bouchenak Adaptive Computing Systems 2

Why adaptive computing systems?

� Applications need to evolve
� Scalability

� Quality-of-service

� Applications hosted in changing environment

� Mobility

� Logical mobility (mobile code and data)

� Physical mobility (mobile users and devices)

� Dynamic connection and disconnection

� Variable communication quality

© S. Bouchenak Adaptive Computing Systems 3

Objectives

� Advanced aspects of adaptive systems

� Real applications

� Prepare to

� Implement adaptive applications in an industrial
context

� Conduct research in the area of middleware and
distributed systems

© S. Bouchenak Adaptive Computing Systems 4

Agenda
Lecture, Monday, 14:00 – 17:00 Lab, Monday, 14:00 – 17:00

Introduction to adaptive computing systems

Java Management eXensions – JMX

AOP-based adaptive systems

Introduction to AspectJ

Interruption week

Non-functional aspects of computing systems (logging,
security, dependability, etc.)

Logging with AspectJ

Autonomic computing
(case studies)

Security with AspectJ

Self-adaptive systems
(case studies)

Dependability with AspectJ

-

Interruption week

Summary and future directions

Evaluation

2

© S. Bouchenak Adaptive Computing Systems 5

Additional information

� Web Page
� http://membres-liglab.imag.fr/bouchenak/

� Evaluation
� Mid-term evaluation

� Demonstration and evaluation of practical work

� Final exam

© S. Bouchenak Adaptive Computing Systems 6

Outline

� Introduction
� Motivations

� Objectives

� Organization

� Background

� Introduction to middleware

� Main adaptation techniques

� Related work

© S. Bouchenak Adaptive Computing Systems 7

Applications

� Application

� role: answer to a specific problem

� provide services to its end-users (or other applications)

� use general services provided by the underlying system

� System

� role: manage shared resources

� linked to the underlying hardware

� examples: operating system, communication system

� hide complexity of underlying hardware,
provide higher-level common services

© S. Bouchenak Adaptive Computing Systems 8

Services

� Definition

� A software system is a set of cooperating software

components

� “A service is a contractually defined behavior that can be

implemented and provided by any component for use by any

component, based solely on the contract” *

* Bieber and Carpenter, Introduction to Service-Oriented Programming, http://www.openwings.org

3

© S. Bouchenak Adaptive Computing Systems 9

Services and interfaces
� Implementation

� A service is accessible via one or multiple interfaces

� An interface describes the interaction between serice povider and

service client

� Operational point of view:

define operations and data structures for service implementation

� Contractual point of view:
define contract between service provider and service customer

© S. Bouchenak Adaptive Computing Systems 10

Interface definition

� A service involves two interfaces
� Required interface (from client side)

� Provided interface (from provider side)

provider

contract

client

conformity

required int. provided int.

© S. Bouchenak Adaptive Computing Systems 11

Interface definition (2)

� Contract specifies compatibility (i.e. conformity)
between interfaces
� Client and provider see each other as a "black-box" (encapsulation)

� Consequence: client and provider can be replaced, as long as the
contract is met

� Contract may specify aspects non-included in the
interface
� Non-functional properties, i.e. Quality-of-service (QoS) properties

© S. Bouchenak Adaptive Computing Systems 12

Interface definition (3)

� From an operational point of view

� Interface Definition Language (IDL)

� No standard

� Based on an existing language

� CORBA IDL in C++

� Java et C# define their own IDL

4

© S. Bouchenak Adaptive Computing Systems 13

Interface definition (4)

� From a contractual point of view

� Several levels of contracts

� Type specification: syntactic conformity

� Behavior (1 method assertions): semantic conformity

� Interaction between methods: synchronisation

� Non-functional aspects (performance, etc.): QoS contract

© S. Bouchenak Adaptive Computing Systems 14

Application needs: examples

� Common objective

� Maintain different QoS aspects …

� Performance

� Security

� Availability

� … in a changing environment

� Resource capacity

� Communication conditions

� Service spécification

� General principle

� A middleware for adaptation

© S. Bouchenak Adaptive Computing Systems 15

Example 1:
Service adaptation based on client

device capacity

Internet

Server

Server

Clients

Clients move to devices with lower capacity

communication throughput

memory

processing capacity

autonomy

screen size

Problem: how to continue to exploit the application?

(especially if servers’ software can not be modified)

© S. Bouchenak Adaptive Computing Systems 16

Example 2 :
Service adaptation in case of client

mobility

Server

Server

Clients
network

Server

Server

network

Allow geographical mobility of client

devices (with possible change in

environnement and QoS).

Probleme: how to continue to

exploit the application?

5

© S. Bouchenak Adaptive Computing Systems 17

Example 3 :
Service extension and evolution

Server

Server

Clients
network

Service contract New contract
Allow to extend service contract (e.g.

extended fonctions, additional non-

functional properties)

Problem: how to allow this evolution

(without service interruption)?

© S. Bouchenak Adaptive Computing Systems 18

Example 4 :
Service adaptation for fault-tolerance

Server

Server

Clients
network

Server

In case of server failure, replace it by a

new (equivalent) server

Problem: how to tolerate failures

(failure detection, server replacement),

without service interruption?

© S. Bouchenak Adaptive Computing Systems 19

Example 5 :
Service adaptation for workload changes

Server

Server

Clients
network

Tackle workload changes (e.g.

#concurrent clients)

Problem: how to maintain an

acceptable level of QoS (e.g. service

request response time) ?

© S. Bouchenak Adaptive Computing Systems 20

Outline

� Introduction

� Background
� Services and interfaces

� Application needs

� Introduction to middleware

� Main adaptation techniques

� Related work

6

© S. Bouchenak Adaptive Computing Systems 21

Middleware

communication network

operating
system

machinemachine

operating
system

communication
system

middleware middleware

applicationapplication

© S. Bouchenak Adaptive Computing Systems 22

Middleware functionalities

� Middleware has four main functions

� High-level interface or API (Application Programming

Interface) to applications

� Mask heterogeneity of underlying hardware and software

systems

� Transparency of distribution

� General/reusable services for distributed applications

© S. Bouchenak Adaptive Computing Systems 23

Middleware and distributed
programming

� Middleware aims at making distributed progamming
easier

� Software development, evolution, reusability

� Portability of applications between platforms

� Interoperability between heterogeneous applications

© S. Bouchenak Adaptive Computing Systems 24

Middleware examples

� CORBA

� Sun JVM

� Microsoft .NET

� Sun J2EE / EJB

� …

7

© S. Bouchenak Adaptive Computing Systems 25

Why adaptable middleware?

� Adaptation of middleware and applications

� Dynamic discovery of services

� Dynamic reconfiguration

� Adaptive behavior

© S. Bouchenak Adaptive Computing Systems 26

Types of middleware

� Classification criteria

� Nature of communicating entities

� Objects

� Components

� Others

� Access mode to services

� Synchronous (client-server)

� Asynchronous (event-based)

� Hybrid

� Other criteria

� Static vs. mobile entities

� Guaranteed vs. non-guaranteed QoS

No rigorous classification, different implementations

© S. Bouchenak Adaptive Computing Systems 27

A simple middleware example: RPC

� Remote procedure call (RPC), a tool to build
client-server distributed applications

process p

procedure

P(x, y, …)
P(x, y, …)

process p

P(x, y, …)

Effect of procedure call should be identical in both situations.

Impossible in case of failures.

client server

© S. Bouchenak Adaptive Computing Systems 28

A simple middleware example: RPC (2)

� Implementation of remote procedure call

send

receive

marshall parameters

send parameters

wait

receive results

unmarshall results

receive

send

receive parameters

unmarshall parameters

procedure call

marsahll results

send results

network

P(x, y, …)

P(x, y, …)Application level

Middleware level
server

stub

communication software
(sockets)

communication software
(sockets)

client

stub

client server

8

© S. Bouchenak Adaptive Computing Systems 29

Interaction patterns

Loose coupling

Events

Message

queues

� Asynchronous

Combining

synchronous -

asynchronous

� Semi-synchronous

Tight coupling

RMI, CORBA,

COM, …

� Synchronous

© S. Bouchenak Adaptive Computing Systems 30

Interaction patterns (2)

� Synchronous interaction

� Sender (client) blocks until it receives the results

� Tight coupling

A B

wait

© S. Bouchenak Adaptive Computing Systems 31

Interaction patterns (3)

� Event-reaction

A B
Communication

system

event

reaction

A B
Communication

system

send m1

receive

block

deliver m1
wait

send m2

deliver m2

receive

� Asynchrnous messages

� Asynchronous interaction

� Parallel execution of sender
(client) and receiver (server)

� Loose coupling

© S. Bouchenak Adaptive Computing Systems 32

Access to a service – Example

Requiring a service Providing a service

Service registery

1. creation

concrete service
representation

4. link
local access

point

5. access

2. register

<description, reference>

3. lookup

reference

description

9

© S. Bouchenak Adaptive Computing Systems 33

� Definition [not only for software design]

� Set of rules to provide a response to a family of

needs that are specific to a given environment

� Rules can have the form of

� element definitions,

� composition principles,

� usage rules

Design patterns

© S. Bouchenak Adaptive Computing Systems 34

� Properties

� A pattern is designed based on experience when solving a

family of problems

� A pattern captures common elements of solution

� A pattern defines design principles, not implementations

� A pattern provides help to documentation (e.g. terminology

definition, formal description, etc.)

E. Gamma et. al. Design Patterns - Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995
F. Buschmann et. al. Pattern-Oriented Software Architecture - vol. 1, Wiley 1996

D. Schmidt et. al. Pattern-Oriented Software Architecture - vol. 2, Wiley, 2000

Design patterns (2)

© S. Bouchenak Adaptive Computing Systems 35

Design patterns (3)
� Definition of a pattern

� Context:

� Situation rising a design issue

� Must be as generic as possible (but not too generic)

� Problem:

� Specifications

� Desired solution properties

� Constraints on the environment

� Solution:

� Static aspects: components, relations between components (described with

class or collaboration diagrams)

� Dynamic aspects: behavior at runtime, life cycle (described with sequence or

state diagrams)

F. Buschmann et. al. Pattern-Oriented Software Architecture - vol. 1, Wiley 1996

© S. Bouchenak Adaptive Computing Systems 36

Patterns
� Categories of patterns

� Design pattern

� Small scale,

� Recurrent structures used in a given context

� Architecture pattern

� Large scale,

� Structural organization

� Definition of subsystems and their relationships

� Idiomatic pattern

� Constructions specific to a given language

F. Buschmann et. al. Pattern-Oriented Software Architecture - vol. 1, Wiley 1996

10

© S. Bouchenak Adaptive Computing Systems 37

Examples of patterns

� Proxy

� Design pattern: representative for remote access

� Factory

� Design pattern: object creation

� Wrapper [Adapter]

� Design pattern: interface transformation

� Interceptor

� Architecture pattern: service adaptation

These patterns are largely used in middleware implementations

© S. Bouchenak Adaptive Computing Systems 38

Proxy (Representative)
� Context

� Applications as sets of distributed objects;

� Client accesses services provided by a possibly remote object (servant)

� Problem
� Define service access mechanisms that prevent

� hand-coding cserver location in client code

� having a detailed knowledge of communication protocols

� Desired properties
� efficient and dependable acces

� simple programming model for client (ideally, no difference between local
and remote service access)

� Constraints
� Distributed environment (no shared memory)

© S. Bouchenak Adaptive Computing Systems 39

Proxy (Representative) (2)
� Solutions

� Servant representative used locally at client-side (hide servant,
and communication system to client)

� Servant representative exposes same interface as servant

� Define a uniform servant structure to ease its automatic
generation

© S. Bouchenak Adaptive Computing Systems 40

Use of Proxy

Client Proxy Servant

Interface I Interface I

service request

service request

result

result

pre-processing

post-processing usually:

Remote call

11

© S. Bouchenak Adaptive Computing Systems 41

Examples of patterns

� Proxy

� Design pattern: representative for remote access

� Factory

� Design pattern: object creation

� Wrapper [Adapter]

� Design pattern: interface transformation

� Interceptor

� Architecture pattern: service adaptation

These patterns are largely used in middleware implementations

© S. Bouchenak Adaptive Computing Systems 42

Factory
� Context

� Application = set of objects in a distributed environment

� Problem

� Dynamic creation of multiple instances of a class of objects

� Desired properties

� Instances may be parameterized

� Easy evolution (no hand-coded decision)

� Constraints

� Distributed environment (no shared memory)

© S. Bouchenak Adaptive Computing Systems 43

Factory (2)
� Solutions

� Abstract Factory

� Define an interface and a generic organization for object
creation

� Effective object creation is delegated to a concrete factory
that implements creation methods

© S. Bouchenak Adaptive Computing Systems 44

Use of Factory

Client

Factory Factory

Factory
create

Object
create

return
object reference

with
parameters

request for creation

request for removal

optional

optional

Possible delegation

from abstract to

concrete factory

12

© S. Bouchenak Adaptive Computing Systems 45

Use of a Pool in a Factory
� Problem: online resource (e.g. objet) creation is expensive

� Objective: reduce costs underlying resource creation

� Technique: create a set of resources in advance and reuse them whenever
needed

create:
If pool not empty

get an instance from the pool
reinitialize the instnace

else
create a new instance

destroy:
Place instance in
the pool

Pool

managem

ent policy

© S. Bouchenak Adaptive Computing Systems 46

Examples of use of Pool

� Memory management
� Pool of memory regions (of possibly different sizes)

� Prevent the overhead of garbage-collection

� Activity management
� Pool of threads

� Prevent overhead of online thread creation

� Communication management

� Pool of connections

� Prevent cost of online communication channel creation

© S. Bouchenak Adaptive Computing Systems 47

Examples of patterns

� Proxy

� Design pattern: representative for remote access

� Factory

� Design pattern: object creation

� Wrapper [Adapter]

� Design pattern: interface transformation

� Interceptor

� Architecture pattern: service adaptation

These patterns are largely used in middleware implementations

© S. Bouchenak Adaptive Computing Systems 48

Wrapper (or Adapter)
� Context

� Clients require services

� Servants provide services

� Services defined through interfaces

� Problem

� Reuse an existing servant, while modifying its
interface/functions to satisfy client needs (or a subset of clients)

� Desired properties: efficiency, reusable and adaptable to
different needs

13

© S. Bouchenak Adaptive Computing Systems 49

Wrapper (or Adapter) (2)
� Solutions

� Wrapper isolates servant by intercepting calls to servant
interface

� Each call to servant interface is preceded by by a
prologue and followed by an epilogue in the Wrapper

� Parameters of servant interface calls and results of calls
can be modified

© S. Bouchenak Adaptive Computing Systems 50

Use of Wrapper

Client Wrapper Servant

Interface I2 Interface I1

service request

service request

result

result

pre-processing

post-processing

© S. Bouchenak Adaptive Computing Systems 51

Examples of patterns

� Proxy

� Design pattern: representative for remote access

� Factory

� Design pattern: object creation

� Wrapper [Adapter]

� Design pattern: interface transformation

� Interceptor

� Architecture pattern: service adaptation

These patterns are largely used in middleware implementations

© S. Bouchenak Adaptive Computing Systems 52

Interceptor
� Context

� Provide services

� Client-server, peer-to-peer, hierarchical

� Uni- or bi-directional, synchronous or asynchronous

� Problem

� Transform a service (add new functions)

� Add a new processing level (cf. Wrapper)

� Modify the target of the call

� Constraints

� Client and server programs must not be modified

� Services may be dynamically added or removed

14

© S. Bouchenak Adaptive Computing Systems 53

Interceptor (2)
� Solutions

� Create interposition objects (statically or dynamically)

� Interposition objets intercept service calls (and/or returns)
and insert specific processing

� Interposition objects may forward calls to other targets

© S. Bouchenak Adaptive Computing Systems 54

Use of Interceptor

Client

Interface I

service request

result

Supporting

Infrastructure

Interceptor

Servant

Interface I

create

callback

create

use service

© S. Bouchenak Adaptive Computing Systems 55

Comparison of patterns
� Wrapper vs. Proxy

� Wrapper and Proxy have a similar structure

� Proxy preserves interface ; Wrapper transforms interface

� Proxy used for remote access; Wrapper used for local access

� Wrapper vs. Interceptor

� Wrapper and Interceptor have a similar function

� Wrapper transforms interface

� Interceptor transforms function

� Proxy vs. Interceptor

� Proxy is a simple form of Interceptor

� An Interceptor may be added to a Proxy (smart proxy)

© S. Bouchenak Adaptive Computing Systems 56

Implementation of patterns

� Automatic generation

� From a declarative description

IDL proxyProxy :

IDL1

wrapper

IDL2

Wrapper :

15

© S. Bouchenak Adaptive Computing Systems 57

Implementation of patterns (2)

� Optimizations

� Eliminate indirections (performance overhead)

� Shorten indirection chains

� Code injection (insertion of generated code in application

code)

� Low-level code generation (e.g. Java bytecode)

� Reversible techniques (for adaptation)

© S. Bouchenak Adaptive Computing Systems 58

Software frameworks
� Definition

� A framework is a programme "squeleton" that can be used

(adapted) for a famility of applications

� A framework implements a model (not always explicit)

� In object-oriented languages, a framework consists in

� A set of (abstract) classes that must be adapted (via
inheritance) to different contexts

� A set of usage rules for these classes

© S. Bouchenak Adaptive Computing Systems 59

Software frameworks (2)
� Patterns and frameworks

� Two techniques for reuse

� Pattrens reuse design principles

� Frameworks reuse code implementation

� A framework usually implement one or more patterns

© S. Bouchenak Adaptive Computing Systems 60

Decomposition schemes

� Objectives

� Ease software development
� Structure reflects design approach

� Interfaces and inter-dependencies are exhibited

� Ease software evolution
� Encapsulation

� Example

� Multi-level structures
� “verticale” or “horizontal” decomposition

16

© S. Bouchenak Adaptive Computing Systems 61

� Hierarchy of “abstract machines”

� Implementation of levels < i is invisible to level i

� Example: virtual machines (multiple OS, JVM, etc.)

Decomposition in levels

Interface i i+1

i

i+1

i

upcall

i+1

i

i+1

i

Communication

protocols

© S. Bouchenak Adaptive Computing Systems 62

“Horizontal” decomposition

� Example: evolution of client-server schema
appli-

cation

data

management

(a)

client

application data

management
presentation

(b) : multi-tier

client

presen-

tation

© S. Bouchenak Adaptive Computing Systems 63

Example of a global framework

� Architecture of a micro-kernel

Hardware

Micro-kernel

Micro-kernel API
Upcall API

Application

Kernel
Server

Server

© S. Bouchenak Adaptive Computing Systems 64

Frameworks and personalities
� Motivation: reuse of generic mechanisms

� A general framework implements entities defined in an abstract model
� Criteria: genericity, modularity, adaptability

� “Personnalities” use APIs of the general framework to build concrete
implementations of the model

� Advantages: reusability, reconfiguration

� Issue: efficiency

� Exemples

Micro-kernel

Unix Other OS

Generic ORB

Java

RMI
CORBA

Component kernel

EJB CCM

17

© S. Bouchenak Adaptive Computing Systems 65

Outline

� Introduction

� Background

� Introduction to middleware
� Motivation of middleware

� Design patterns

� Frameworks

� Main adaptation techniques

� Related work

© S. Bouchenak Adaptive Computing Systems 66

Adaptation of computing systems

� What is adaptation?

� Changing the structure and/or functions of an application

� Dynamic adaptation

� Occurs at application runtime

� Without stopping application

� Why adaptation?

� To answer evolution of

� Needs

� New functionalities, new quality criteria

� Execution environment

� Resource capacity, mobility, communication conditions, failures, etc.

© S. Bouchenak Adaptive Computing Systems 67

Adaptation of computing systems (2)

� How?

� Main principle:
� Reflective system

� System provides a representation of itself

� Allows introspection, modification, reconfiguration

� Techniques

� Ad-hoc techniques (interceptors)

� Meta-object protocols (MOP)

� Aspect-oriented pogramming (AOP)

© S. Bouchenak Adaptive Computing Systems 68

Ad-hoc adaptation – Interceptors

� Examples
� Service adaptation according to client device capacity

� Service adaptation in case of mobility

� Service extension, evolution

� Service adaptation for fault tolerance

� Service adaptation for workload variation

� Internet Content Adaptation Protocol (ICAP)

18

© S. Bouchenak Adaptive Computing Systems 69

Internet

Server

Server

Clients
Problem: how to continue to use the application?
(servers’ software can not be modified)

Internet

Server

Server

Solution: interpose a (hardware or software) proxy to implement adaptation

proxy

Example 1:
Service adaptation according to client device
capacity

© S. Bouchenak Adaptive Computing Systems 70

Example 2:
Service adaptation in case of mobility

Server

Server

Clients
network

Problem: how to continue to

exploit the application?

Server

Server

network

cache

cache

cache

Solution: interpose a proxy to

behave as a cache for the client,

to improve performance

© S. Bouchenak Adaptive Computing Systems 71

Example 3:
Service extension, evolution

Server

Server

Clients
network

Service contract New contract

Problem: how to

change the contract

(without stopping

application) ?

Solution: interpose one or

multiple interceptors (at client-

and/or server-side) to extend

the service

Server

Server

network

Interceptor Interceptor

© S. Bouchenak Adaptive Computing Systems 72

Example 4:
Service adaptation for fault tolerance

Server

Server

Clients
network

Problem: handle server failures without stopping application

Server

Server

Server

network

Interceptor

Solution: use an

interceptor to detect

failures and replace server

19

© S. Bouchenak Adaptive Computing Systems 73

Example 5:
Service adaptation for workload variation

Server

Server

network

Problem: how to maintain an

acceptable level of

performance when workload

increases?

Server

Server
network

Server

Interceptor

Solution: dynamic server

provisioning and load

balancing via an

interceptor

© S. Bouchenak Adaptive Computing Systems 74

Example 6:
ICAP (Internet Content Adaptation Protocol)
protocol

� Definition

� A lightweight HTTP-like protocol used to extend transparent proxy

servers

� Motivations

� Implement functions (virus scanning, content filtering, etc.)

� Off-loading value-added services from Web servers to ICAP servers

� How it works

� interposition in an HTTP client-server system

client server

modify request
modify response

add a function

© S. Bouchenak Adaptive Computing Systems 75

ICAP protocol: modify a request

client
Web

server
ICAP
client

ICAP
server

1

2 3

4

6 5

translation
encryption
filtering

Examples

© S. Bouchenak Adaptive Computing Systems 76

ICAP protocol: modify a response

client
Web

server
ICAP
client

ICAP
server

1 2

36

5

filtering
translation
adaptation
Advertisemnt insertion

Examples

4

20

© S. Bouchenak Adaptive Computing Systems 77

ICAP protocol: interpose a function

client

Web
server

ICAP
client

ICAP
server

1

2

3

6

5

Examples

4

function transformation
adding resources
adaptation

(optional)

© S. Bouchenak Adaptive Computing Systems 78

Adaptation of computing systems

� How?

� Main principle:
� Reflective system

� System provides a representation of itself

� Allows introspection, modification, reconfiguration

� Techniques

� Ad-hoc techniques (interceptors)

� Meta-object protocols (MOP)

� Aspect-oriented pogramming (AOP)

© S. Bouchenak Adaptive Computing Systems 79

Meta-object protocol (MOP)

� An adaptable service is organized in two levels

� Base level

� Implement functions defined by specifications

� Meta-level

� Use a representation of the base level to observe or
modify its behavior

� This meta-level representation is causally connected to
the base level

© S. Bouchenak Adaptive Computing Systems 80

Meta-object protocol (2)

� Relations between levels

� Creation of the representation of an entity:
reification

� Action of the meta-level on the base level:
reflection

� This organization may be repeated recursively
� “Reflective tour” : meta-meta-level, etc.

� In practice, 2 or 3 levels

21

© S. Bouchenak Adaptive Computing Systems 81

Meta-object protocol: example

� Reification of a method call:

object Obj

meta-object

Meta_Obj

base level

meta level

Obj.meth(params)

reification

reflection

client

m=reify(meth, params)

client object Obj meta-object

Meta_Obj

Obj.meth(params)

Meta_Obj.metaMethodCall(m)

reflection

reification

Obj.meth(params)

baseMethodCall(m)

adaptable
behavior

© S. Bouchenak Adaptive Computing Systems 82

Adaptation of computing systems

� How?

� Main principle:
� Reflective system

� System provides a representation of itself

� Allows introspection, modification, reconfiguration

� Techniques

� Ad-hoc techniques (interceptors)

� Meta-object protocols (MOP)

� Aspect-oriented pogramming (AOP)

© S. Bouchenak Adaptive Computing Systems 83

Aspect-oriented programming (AOP)

� Main principle

� Separate concerns

� Idenify a basic behavior and additional “aspects” as independent as

possible

� Separately describe the basic behavior and aspects

� Integrate all elements in a unique program

� Methodology

� Individual description of each aspect

� Integration (“weaving”) of aspects, static or dynamic weaving

© S. Bouchenak Adaptive Computing Systems 84

Aspect-oriented programming (2)

� Definitions

� Join point
� point where to insert aspect code

� Pointcut
� Set of join points logically correlated

� Advice
� definition of relations basetween inserted code and base

code (e.g.before, after, etc.)

22

© S. Bouchenak Adaptive Computing Systems 85

Aspect-oriented programming:

example

� Implementing a Wrapper in AspectJ

public aspect MethodWrapping {

/* point cut definition */

pointcut Wrappable(): call(public * MyClass.*(..));

/* advice definition */
around(): Wrappable() {

<prelude> /* a sequence of code to be inserted before the call */
proceed(); /* performs the call to the original method */

<postlude> /* a sequence of code to be inserted after the call */
}

}

Result: encapsulate a call to a public method of class MyClass with

<prelude> and <postlude>

Possible usage: logging, assertion test, etc.
© S. Bouchenak Adaptive Computing Systems 86

Outline

� Introduction

� Background

� Introduction to middleware

� Main adaptation techniques

� Motivations

� Ad-hoc adaptation techniques

� Meta-object protocols (MOP)

� Aspect-oriented programming (AOP)

� Related work

© S. Bouchenak Adaptive Computing Systems 87

Related work
� SARDES research group (INRIA – LIG laboratory)

� ~20 people

� http://sardes.inrialpes.fr/

� Research topics :

� middleware, distributed systems, cloud computing, autonomic
computing

� SARDES =
� Systems Architecture for Reflective Distributed EnvironmentS

� Self-Administrable and Reconfigurable Distributed EnvironmentS

© S. Bouchenak Adaptive Computing Systems 88

Related work (2)
� Collaborations

� OW2 consortium

� Open source middleware solutions

� http://www.ow2.org/

� Industrial partners

� Bull

� Microsoft

� Orange Labs

� ST Microelectronics

� Start-ups: We Are Cloud, Scalagent, …

� International collaborations

� European projects

� …

23

© S. Bouchenak Adaptive Computing Systems 89

Agenda
Lecture, Monday, 14:00 – 17:00 Lab, Monday, 14:00 – 17:00

Introduction to adaptive computing systems

Java Management eXensions – JMX

AOP-based adaptive systems

Introduction to AspectJ

Interruption week

Non-functional aspects of computing systems (logging,
security, dependability, etc.)

Logging with AspectJ

Autonomic computing
(case studies)

Security with AspectJ

Self-adaptive systems
(case studies)

Dependability with AspectJ

-

Interruption week

Summary and future directions

Evaluation

© S. Bouchenak Adaptive Computing Systems 90

References

� Lecture partly based on the following documents:

� Sacha Krakowiak, http://sardes.inrialpes.fr/people/krakowia/

