Introduction to adatptive
computing systems

Why adaptive computing systems?

e Applications need to evolve
o Scalability
o Quality-of-service

e Applications hosted in changing environment
o Mobility
Logical mobility (mobile code and data)
Physical mobility (mobile users and devices)
o Dynamic connection and disconnection
o Variable communication quality

©S. Bouchenak Adaptive Computing Systems

[X X]
0000
Sara Bouchenak| ¢ @ @ @
Associate Professor, University of Grenoble — LIG, France | @ ® @
(X J
Sara.Bouchenak@imag.fr| @
http://membres-liglab.imag.fr/bouchenak/teaching/
[J
[J
[
[
[]
°

Objectives

e Advanced aspects of adaptive systems
e Real applications

e Prepare to

¢ Implement adaptive applications in an industrial
context

e Conduct research in the area of middleware and
distributed systems

©5. Bouchenak Adaptive Computing Systems 3

Agenda

Lecture, Monday, 14:00 — 17:00 Lab, Monday, 14:00 - 17:00

Introduction to adaptive computing systems

Java Management eXensions — JMX

AOP-based adaptive systems

Introduction to AspectJ

Non-functional aspects of computing systems (logging,
security, dependability, etc.)

Logging with AspectJ

Autonomic computing
(case studies)

‘Security with AspectJ

Self-adaptive systems
(case studies)

Dependability with AspectJ

Summary and future directions

Evaluation

Additional information
e Web Page

o http://membres-liglab.imag.fr/bouchenak/

e Evaluation
o Mid-term evaluation
Demonstration and evaluation of practical work

o Final exam

©5. Bouchenak Adaptive Computing Systems 5

Outline

e Introduction
e Motivations
e Objectives
e Organization
e Background
e Introduction to middleware
e Main adaptation techniques

o Related work

©S. Bouchenak Adaptive Computing Systems 6

Applications

e Application
o role: answer to a specific problem
o provide services to its end-users (or other applications)
o use general services provided by the underlying system

e System
o role: manage shared resources
o linked to the underlying hardware
o examples: operating system, communication system

o hide complexity of underlying hardware,
provide higher-level common services

©5. Bouchenak Adaptive Computing Systems 7

Services

e Definition

o A software system is a set of cooperating software
components

o “A service is a contractually defined behavior that can be
implemented and provided by any component for use by any
component, based solely on the contract” *

* Bieber and Carpenter, Introduction to Service-Oriented Prog ing, http://www.op i org

©S. Bouchenak Adaptive Computing Systems 8

Services and interfaces

e Implementation
o A service is accessible via one or multiple interfaces

o An interface describes the interaction between serice povider and
service client

Operational point of view:
define operations and data structures for service implementation

Contractual point of view:
define contract between service provider and service customer

©5. Bouchenak Adaptive Computing Systems 9

Interface definition

conformity

required int. provided int.

e A service involves two interfaces
» Required interface (from client side)
o Provided interface (from provider side)

©S. Bouchenak Adaptive Computing Systems 10

Interface definition (2)

e Contract specifies compatibility (i.e. conformity)
between interfaces
o Client and provider see each other as a "black-box" (encapsulation)

o Consequence: client and provider can be replaced, as long as the
contract is met

e Contract may specify aspects non-included in the

interface
o Non-functional properties, i.e. Quality-of-service (QoS) properties

©5. Bouchenak Adaptive Computing Systems 1

Interface definition (3)

e From an operational point of view
e Interface Definition Language (IDL)
No standard
Based on an existing language

« CORBA IDLin C++
= Java et C# define their own IDL

©S. Bouchenak Adaptive Computing Systems 12

Interface definition (4)

e From a contractual point of view
o Several levels of contracts
Type specification: syntactic conformity

Behavior (1 method assertions): semantic conformity
Interaction between methods: synchronisation

Non-functional aspects (performance, etc.): QoS contract

©5. Bouchenak Adaptive Computing Systems 13

Application needs: examples

e Common objective

o Maintain different QoS aspects ...
Performance
Security
Availability

e ... In a changing environment
Resource capacity
Communication conditions
Service spécification

e General principle
o A middleware for adaptation

©S. Bouchenak Adaptive Computing Systems 14

Example 1:
Service adaptation based on client
device capacity

=]

\ smm e
Clients
-~ Clients move to devices with lower capacity
Q communication throughput
memory
processing capacity
autonomy
Q screen size
Problem: how to continue to exploit the application?
Q (especially if servers’ software can not be modified)
o
©S. Bouchenak Adaptive Computing Systems. 15

Example 2 :
Service adaptation in case of client
mobility

'GL.T D

Clients q‘j' N
(Lr() '

LR
Allow geographical mobility of client —

(with p g
environnement and QoS).

Probleme: how to continue to
exploit the application?

S <

©5. Bouchenak Adaptive Computing Systems 16

Example 3 :
Service extension and evolution

Allow to extend service contract (e.g.
Service New extended fonctions, additional non-
functional properties)

Problem: how to allow this evolution
(without service interruption)?

©$. Bouchenak Adaptive Computing Systems. 17

Example 4 :
Service adaptation for fault-tolerance

e

Clients @L")

In case of server failure, replace it by a
new (equivalent) server

Problem: how to tolerate failures
(failure ion, server)

without service interruption?

©5. Bouchenak Adaptive Computing Systems 18

Example 5 :
Service adaptation for workload changes

Clients TLU

Tackle workload changes (e.g.
#concurrent clients)

Problem: how to maintain an
acceptable level of QoS (e.g. service
request response time) ?

©$. Bouchenak Adaptive Computing Systems. 19

Outline
e [ntroduction
e Background

e Services and interfaces
e Application needs

e Introduction to middleware
e Main adaptation techniques

o Related work

©S. Bouchenak Adaptive Computing Systems 20

Middleware functionalities

e Middleware has four main functions
o High-level interface or API (Application Programming
Interface) to applications

o Mask heterogeneity of underlying hardware and software
systems

e Transparency of distribution

o General/reusable services for distributed applications

©S. Bouchenak Adaptive Computing Systems 22

(X X]
0000
o000
22
Middleware :
application application
middleware middleware
communication
" system =
operating operating
system system
machine communication network machine
©S. Bouchenak Adaptive Computing Systems 21
: gyl eseo
Middleware and distributed seoe
(X
°

programming
e Middleware aims at making distributed progamming
easier

o Software development, evolution, reusability

o Portability of applications between platforms

o Interoperability between heterogeneous applications

©5. Bouchenak Adaptive Computing Systems 23

Middleware examples
e CORBA

e Sun JVM
e Microsoft .NET
e Sun J2EE / EJB

©S. Bouchenak Adaptive Computing Systems 24

Why adaptable middleware?
e Adaptation of middleware and applications
» Dynamic discovery of services
» Dynamic reconfiguration

o Adaptive behavior

©5. Bouchenak Adaptive Computing Systems 25

Types of middleware

e Classification criteria
o Nature of communicating entities
Objects
Components
Others
o Access mode to services
Synchronous (client-server)
Asynchronous (event-based)
Hybrid
o Other criteria
Static vs. mobile entities
Guaranteed vs. non-guaranteed QoS
No rigorous classification, different implementations

©S. Bouchenak Adaptive Computing Systems

A simple middleware example: RPC 2

e Remote procedure call (RPC), a tool to build
client-server distributed applications

process p process p

pPr(oxcey P(x, y

client server
Effect of procedure call should be identical in both situations.
Impossible in case of failures.

©5. Bouchenak Adaptive Computing Systems 27

A simple middleware example: RPC (2) :

e Implementation of remote procedure call

| P(x, Y, ...)

1 Application level P(X, Y, ...)
ﬂ
receive pafameters +
marshall parametefs
client ser_\d parameters . procedurefcall
stub wait Middleware level
e .
receive I:elslu"s o marsahll results
unmarshall results ot e
T
send_ —a network receive
receive ————— send <
communication software communication software
(sockets) (sockets)
client server
©S. Bouchenak Adaptive Computing Systems

server
stub

Interaction patterns

® Synchronous

B Asynchronous

B Semi-synchronous

—

© S. Bouchenak

,—H ~——— Tight coupling
] RMI, CORBA,
I COMm, ...
T\ — Loose coupling
] Events
—— ——
T M
| Message
— queues
~—— ~——
2\ -

'I 'I Combining
synchronous -
asynchronous

J/ [

Adaptive Computing Systems

29

Interaction patterns (2)

e Synchronous interaction
o Sender (client) blocks until it receives the results
o Tight coupling

©S. Bouchenak Adaptive Computing Systems 30

Interaction patterns (3)

Asynchronous interaction

« Parallel execution of sender A

(client) and receiver (server)

o Loose coupling

ICommunication

system

—

event

reaction

e Event-reaction

© S. Bouchenak

send m2

Communication B
system
‘ receive
block
send m1 \
» wait |

Ny __deliver m1 ,

\ receive
\

\ N
w__deliver m2

e Asynchrnous messages

Adaptive Computing Systems

31

Access to a service — Example

Service registery

<description, reference>

3. lookup 2. register

1. creation \

f

Requiring a service Providing a service

©S. Bouchenak Adaptive Computing Systems 32

Design patterns
Definition [not only for software design]

o Set of rules to provide a response to a family of
needs that are specific to a given environment

e Rules can have the form of
element definitions,
composition principles,
usage rules

©5. Bouchenak Adaptive Computing Systems 33

Design patterns (2)

e Properties

o A pattern is designed based on experience when solving a
family of problems

o A pattern captures common elements of solution
o A pattern defines design principles, not implementations

o A pattern provides help to documentation (e.g. terminology
definition, formal description, etc.)

©S. Bouchenak Adaptive Computing Systems 34

Design patterns (3)

Definition of a pattern
e Context:
Situation rising a design issue
Must be as generic as possible (but not too generic)

e Problem:
Specifications
Desired solution properties
Constraints on the environment

e Solution:

Static aspects: components, relations between components (described with
class or collaboration diagrams)

Dynamic aspects: behavior at runtime, life cycle (described with sequence or
state diagrams)

©5. Bouchenak Adaptive Computing Systems 35

Patterns

e (Categories of patterns
e Design pattern
Small scale,
Recurrent structures used in a given context

e Architecture pattern
Large scale,
Structural organization
Definition of subsystems and their relationships

e |diomatic pattern
Constructions specific to a given language

©S. Bouchenak Adaptive Computing Systems 36

Examples of patterns

e Proxy
« Design pattern: representative for remote access

e factory
o Design pattern: object creation

e Wrapper [Adapter]
o Design pattern: interface transformation

e Interceptor
o Architecture pattern: service adaptation

©5. Bouchenak Adaptive Computing Systems 37

Proxy (Representative)

e Context
o Applications as sets of distributed objects;
« Client accesses services provided by a possibly remote object (servant)

e Problem
« Define service access mechanisms that prevent
hand-coding cserver location in client code
having a detailed knowledge of communication protocols

o Desired properties
efficient and dependable acces
simple programming model for client (ideally, no difference between local
and remote service access)

o Constraints
Distributed environment (no shared memory)

©S. Bouchenak Adaptive Computing Systems 38

Proxy (Representative) (2)

e Solutions
o Servant representative used locally at client-side (hide servant,
and communication system to client)
o Servant representative exposes same interface as servant

o Define a uniform servant structure to ease its automatic
generation

©5. Bouchenak Adaptive Computing Systems 39

Use of Proxy

Client Proxy Servant
Interface | Interface |
©S. Bouchenak Adaptive Computing Systems 40

10

Examples of patterns

e Proxy
e Design pattern: representative for remote access

e Factory
o Design pattern: object creation

e Wrapper [Adapter]
o Design pattern: interface transformation

e Interceptor
o Architecture pattern: service adaptation

©5. Bouchenak Adaptive Computing Systems 41

Factory

e Context
o Application = set of objects in a distributed environment

e Problem
o Dynamic creation of multiple instances of a class of objects

o Desired properties
Instances may be parameterized
Easy evolution (no hand-coded decision)

o Constraints
Distributed environment (no shared memory)

©S. Bouchenak Adaptive Computing Systems 42

Factory (2)

e Solutions
o Abstract Factory

Define an interface and a generic organization for object
creation

Effective object creation is delegated to a concrete factory
that implements creation methods

©5. Bouchenak Adaptive Computing Systems 43

Use of Factory

Factory Factory

Client Factory —| \

Object «~—

©S. Bouchenak Adaptive Computing Systems 44

11

Use of a Pool in a Factory

Problem: online resource (e.g. objet) creation is expensive
e Objective: reduce costs underlying resource creation
e Technique: create a set of resources in advance and reuse them whenever

needed

create:

If pool not empty destro_y:]
get an instance from the pool Place instance in
reinitialize the instnace the pool

else
create a new instance

©5. Bouchenak Adaptive Computing Systems 45

Examples of use of Pool

e Memory management
e Pool of memory regions (of possibly different sizes)
o Prevent the overhead of garbage-collection

e Activity management
e Pool of threads
o Prevent overhead of online thread creation

e Communication management
e Pool of connections
e Prevent cost of online communication channel creation

©S. Bouchenak Adaptive Computing Systems 46

Examples of patterns

e Proxy
e Design pattern: representative for remote access

e Factory
e Design pattern: object creation

o Wrapper [Adapter]
« Design pattern: interface transformation

e Interceptor
o Architecture pattern: service adaptation

©5. Bouchenak Adaptive Computing Systems 47

Wrapper (or Adapter)

e Context
o Clients require services
e Servants provide services
o Services defined through interfaces

e Problem
» Reuse an existing servant, while modifying its
interface/functions to satisfy client needs (or a subset of clients)

o Desired properties: efficiency, reusable and adaptable to
different needs

©S. Bouchenak Adaptive Computing Systems 48

12

Wrapper (or Adapter) (2)

e Solutions

o Wrapper isolates servant by intercepting calls to servant
interface

o Each call to servant interface is preceded by by a
prologue and followed by an epilogue in the Wrapper

« Parameters of servant interface calls and results of calls
can be modified

©5. Bouchenak Adaptive Computing Systems 49

Use of Wrapper

Examples of patterns

e Proxy
e Design pattern: representative for remote access

e Factory
e Design pattern: object creation

e Wrapper [Adapter]
e Design pattern: interface transformation

o Interceptor
o Architecture pattern: service adaptation

©5. Bouchenak Adaptive Computing Systems 51

Client Wrapper Servant
Interface 12 Interface I

©Ss. Bcuchenak_ Adapliv;mpming Systems 50
°
°
°
[]
(X]

Interceptor :

e Context

o Provide services
Client-server, peer-to-peer, hierarchical
Uni- or bi-directional, synchronous or asynchronous

e Problem
o Transform a service (add new functions)
Add a new processing level (cf. Wrapper)
Modify the target of the call

o Constraints

Client and server programs must not be modified
Services may be dynamically added or removed

©S. Bouchenak Adaptive Computing Systems 52

13

Interceptor (2)

e Solutions
o Create interposition objects (statically or dynamically)

o Interposition objets intercept service calls (and/or returns)
and insert specific processing

o Interposition objects may forward calls to other targets

©5. Bouchenak Adaptive Computing Systems 53

Use of Interceptor

i Supporting
Client Infrastructure
— create —j
Servant
Interceptor
create
service request —
Interface |
Interface |)
use service
callback
result
©S. Bouchenak Adaplivmmpuling Systems 54

Comparison of patterns

e Wrappervs. Proxy
o Wrapperand Proxy have a similar structure
Proxy preserves interface ; Wrappertransforms interface
Proxy used for remote access; Wrapper used for local access

e Wrappervs. Interceptor

o Wrapperand Interceptor have a similar function
Wrapper transforms interface
Interceptor transforms function

e Proxyvs. Interceptor
e Proxyis a simple form of Interceptor
An Interceptor may be added to a Proxy (smart proxy)

©5. Bouchenak Adaptive Computing Systems 55

[
[
.
Implementation of patterns :
e Automatic generation
e From a declarative description
Proxy : DL
Wrapper :

14

Implementation of patterns (2)

e Optimizations
o Eliminate indirections (performance overhead)
Shorten indirection chains

Code injection (insertion of generated code in application
code)

Low-level code generation (e.g. Java bytecode)

Reversible techniques (for adaptation)

©5. Bouchenak Adaptive Computing Systems 57

Software frameworks
e Definition

o A framework is a programme "squeleton" that can be used
(adapted) for a famility of applications

o A framework implements a model (not always explicit)

o In object-oriented languages, a framework consists in
A set of (abstract) classes that must be adapted (via
inheritance) to different contexts

A set of usage rules for these classes

©S. Bouchenak Adaptive Computing Systems 58

Software frameworks (2)
e Patterns and frameworks

o Two techniques for reuse

o Pattrens reuse design principles

o Frameworks reuse code implementation

o A framework usually implement one or more patterns

©5. Bouchenak Adaptive Computing Systems 59

Decomposition schemes

e Objectives

o Ease software development
Structure reflects design approach
Interfaces and inter-dependencies are exhibited

o Ease software evolution
Encapsulation

e Example
o Multi-level structures
“verticale” or “horizontal” decomposition

©S. Bouchenak Adaptive Computing Systems 60

15

Decomposition in levels

e Hierarchy of “abstract machines”
o Implementation of levels < i is invisible to level i
o Example: virtual machines (multiple OS, JVM, etc.)

i Communication
protocols

©5. Bouchenak Adaptive Computing Systems 61

“Horizontal” decomposition

o Example: evolution of client-server schema

©S. Bouchenak Adaptive Computing Systems

Example of a global framework

e Architecture of a micro-kernel

[Micro-kerne]
[Hardware
©$S. Bouchenak Adaptive Computing Systems 63

Frameworks and personalities

e Motivation: reuse of generic mechanisms
o A general framework implements entities defined in an abstract model
Criteria: genericity, modularity, adaptability

o “Personnalities” use APIs of the general framework to build concrete
implementations of the model

» Advantages: reusability, reconfiguration
o Issue: efficiency

e Exemples

CORBA

Ee= E

(]

(Generic ORB ’

Component kernel

©S. Bouchenak Adaptive Computing Systems

16

Outline

e Introduction

e Background

e Introduction to middleware
e Motivation of middleware
e Design patterns

o Frameworks

o Main adaptation techniques

o Related work

©5. Bouchenak Adaptive Computing Systems 65

Adaptation of computing systems :

e Whatis adaptation?
o Changing the structure and/or functions of an application
o Dynamic adaptation
Ocecurs at application runtime
Without stopping application

e Why adaptation?
o To answer evolution of
Needs
New functionalities, new quality criteria
Execution environment
Resource capacity, mobility, communication conditions, failures, etc.

©S. Bouchenak Adaptive Computing Systems 66

Adaptation of computing systems (2)

e How?
e Main principle:
Reflective system
System provides a representation of itself
Allows introspection, modification, reconfiguration

e Techniques
e Ad-hoc techniques (interceptors)
o Meta-object protocols (MOP)
o Aspect-oriented pogramming (AOP)

©5. Bouchenak Adaptive Computing Systems 67

Ad-hoc adaptation — Interceptors

e Examples
» Service adaptation according to client device capacity

o Service adaptation in case of mobility

e Service extension, evolution

o Service adaptation for fault tolerance

o Service adaptation for workload variation

o Internet Content Adaptation Protocol (ICAP)

©S. Bouchenak Adaptive Computing Systems 68

17

Example 1:
Service adaptation according to client device

capa/cnT

2R D

Y@‘

HEETR D

= =

y
.t
Clients

Problem: how to continue to use the application?

(servers’ software can not be modified)
—

TN =
=2

& —
<

©$. Bouchenak Adaptive Computing Systems.

a or proxy to i

Example 2:

Service adaptation in case of mobility

iv 54

—

Clients T:L" 3

TLT 2\
==

Problem: how to continue to

exploit the application?

Solution: interpose a proxy to
behave as a cache for the client,
to improve performance

©5. Bouchenak Adaptive Computing Systems

' -

/

70

Example 3:
Service extension, evolution

Problem: howlto
change the contract
(without stopping
application) ?

-
l:,'/l I\ij Solution: interpose one or
multiple interceptors (at client-

Service contract New contract and/or server-side) to extend

the service
CLE(— b\ Interceptor Interceptor

e

©$. Bouchenak Adaptive Computing Systems.

Example 4:

Service adaptation for fault tolerance

Q

Interceptor

©$S. Bouchenak

Solution: use an
interceptor to detect
failures and replace server

Adaptive Computing Systems 72

18

Example 5:
Service adaptation for workload variation

Problem: how to maintain an
acceptable level of
performance when workload
increases?

Solution: dynamic server
provisioning and load
via an
interceptor

©$. Bouchenak Adaptive Computing Systems. 73

Example 6:
ICAP (Internet Content Adaptation Protocol)
protocol

e Definition

¢ A lightweight HTTP-like protocol used to extend transparent proxy
servers

e Motivations

« Implement functions (virus scanning, content filtering, etc.)

» Off-loading value-added services from Web servers to ICAP servers
e How it works

e interposition in an HTTP client-server system

O O

client server
modify request
modify response
add a function
©S. Bouchenak Adaptive Computing Systems

74

ICAP protocol: modify a request

1 4
- ICAP [Web
—_— client «—— \ server
6 5
2 3
Examples
translation
encryption ICAP
filtering server
©S. Bouchenak Adaptive Computing Systems 75

ICAP protocol: modify a response

1 2
- ICAP - Web
—_— client —— \ Server
6 3
4 5
Examples
e ICAP
filtering server
translation
adaptation

Advertisemnt insertion

©S. Bouchenak Adaptive Computing Systems

76

19

ICAP protocol: interpose a function

1
> ICAP
— client
Examples

3
. . —_— Web
function transformation ICAP Tt
adding resources server D E—

adaptation 4

(optional)

©5. Bouchenak Adaptive Computing Systems 7

Adaptation of computing systems

e How?
e Main principle:
Reflective system
System provides a representation of itself
Allows introspection, modification, reconfiguration

e Techniques
e Ad-hoc techniques (interceptors)
o Meta-object protocols (MOP)
o Aspect-oriented pogramming (AOP)

©S. Bouchenak Adaptive Computing Systems

78

Meta-object protocol (MOP)

e An adaptable service is organized in two levels

o Base level
Implement functions defined by specifications

o Meta-level
Use a of the base level to observe or
modify its behavior

This meta-level representation is causally connected to
the base level

©5. Bouchenak Adaptive Computing Systems 79

Meta-object protocol (2)

e Relations between levels

o Creation of the representation of an entity:
reification

o Action of the meta-level on the base level:
reflection

e This organization may be repeated recursively

o “Reflective tour” : meta-meta-level, etc.
o In practice, 2 or 3 levels

©S. Bouchenak Adaptive Computing Systems

20

Meta-object protocol: example | ::

e Reification of a method call:

client object Obj meta-object
Meta_Obj

Obj.meth(params)
meta-object

Meta_Obj /' Meta_Obj MethodCall(m)
meta level i ms=rgify(meth, params) lbaseMethodCall(m) ‘\
F H 5
base level H f
i behavior
Obj.meth(params) Obj.meth(params)
object 0bj /
client H
©$. Bouchenak Adaptive Computing Systems 81

Aspect-oriented programming (AOP) 4

e Main principle
» Separate concerns

» |denify a basic behavior and additional “aspects” as independent as
possible

o Separately describe the basic behavior and aspects
o Integrate all elements in a unique program

o Methodology
o Individual description of each aspect
o Integration (“weaving”) of aspects, static or dynamic weaving

©5. Bouchenak Adaptive Computing Systems 83

(X X]
0000
o000
o000
- - oo
Adaptation of computing systems :
e How?
e Main principle:
Reflective system
System provides a representation of itself
Allows introspection, modification, reconfiguration
e Techniques
e Ad-hoc techniques (interceptors)
e Meta-object protocols (MOP)
o Aspect-oriented pogramming (AOP)
(XX]
0000
o000
00
(X]
[]

Aspect-oriented programming (2)

e Definitions
e Join point
point where to insert aspect code

e Pointcut
Set of join points logically correlated

e Advice

definition of relations basetween inserted code and base
code (e.g.before, after, etc.)

©S. Bouchenak Adaptive Computing Systems 84

21

Aspect-oriented programming:
example

e Implementing a Wrapperin AspectJ
public aspect MethodWrapping {

/* point cut definition */
pointcut Wrappable(): call(public * MyClass.*(..));

/* advice definition */
around(): Wrappable() {
<prelude> /* a sequence of code to be inserted before the call */
proceed(); /* performs the call to the original method */
<postlude> /* a sequence of code to be inserted after the call */
}
}

Result: encapsulate a call to a public method of class MyClass with
<prelude> and <postiude>

Possible usage: logging, assertion test, etc.
©S. Bouchenak Adaptive Computing Systems 85

Outline

e Introduction
e Background
e Introduction to middleware

e Main adaptation techniques
e Motivations
Ad-hoc adaptation techniques
Meta-object protocols (MOP)
e Aspect-oriented programming (AOP)

o Related work

©S. Bouchenak Adaptive Computing Systems

Related work

e SARDES research group (INRIA — LIG laboratory)
e ~20 people
o http://sardes.inrialpes.fr/

e Research topics :

o middleware, distributed systems, cloud computing, autonomic
computing

e SARDES =

Systems Architecture for Reflective Distributed EnvironmentS
Self-Administrable and Reconfigurable Distributed EnvironmentS

©5. Bouchenak Adaptive Computing Systems 87

Related work (2)

e Collaborations
e OW2 consortium
Open source middleware solutions
http://www.ow2.org/

o Industrial partners
Bull
Microsoft
Orange Labs
ST Microelectronics
Start-ups: We Are Cloud, Scalagent, ...

o International collaborations
European projects

©S. Bouchenak Adaptive Computing Systems

22

References

Agenda

Lecture, Monday, 14:00 — 17:00
Introduction to adaptive computing systems
e Lecture partly based on the following documents:
Sacha Krakowiak, http://sardes.inrialpes.fr/people/krakowia/

Java Management eXensions — JMX
°

AOP-based adaptive systems
Introduction to AspectJ

Non-functional aspects of computing systems (logging,
security, dependability, etc.)

Logging with AspectJ

Autonomic computing
(case studies)
Security with AspectJ

Self-adaptive systems
(case studies)

Dependability with AspectJ

89 ©S. Bouchenak Adaptive Computing Systems

Summary and future directions
Evaluation

