MapReduce Systems

e Lectures based on the following slides:

e http:/code.google.com/edu/submissions/mapreduce-
minilecture/listing.html

000
Sara Bouchenak| ¢ @@ _
0000 e Authors:
Sara.Bouchenak@imag.fr 00 e Christophe Bisciglia, Aaron Kimball, Sierra Michels-Slettvet
.) e o0
http://sardes.inrialpes.fr/~bouchena/teaching/ | ¢
Except where otherwise noted, the contents of this presentation are
© Copyright 2007 University of Washington and are licensed under
the Creative Commons Attribution 2.5 License.
2
(XY} (XY}
o000 o000
o000 o000
i 82 3
Outline : :

e Part I: Motivations

Introduction

Parallel vs. Distributed Computing
History of Distributed Computing
Parallelization and Synchronization

e Part Il: MapReduce theory and implementation
e Lisp/ML review (functional programming, map, fold)
o MapReduce overview
e Hadoop

Computer Speedup

CPU-Frequency 1993 - 2005
AMD and Intel

Moore’s Law: “The density of transistors on a chip doubles every 18
months, for the same cost” (1965)

Image: Tom’s Hardware and not subject to the Creative
Commons license applicable to the rest of this work.

Scope of problems

e What can you do with 1 computer?
e What can you do with 100 computers?
e What can you do with an entire data center?

Distributed problems :

e Rendering multiple frames of high-quality animation

Image: DreamWorks Animation and not subject to the Creative Commons license applicable to the rest of this work.

6

Distributed problems

m Simulating several
hundred or thousand
characters

Happy Feet © Kingdom Feature Productions;
Lord of the Rings © New Line Cinema, neither image is subject to the Creative
Commons license applicable to the rest of the work.

Distributed problems

¢ Indexing the web (Google)

e Simulating an Internet-sized network for networking
experiments (PlanetLab)

e Speeding up content delivery (Akamai)

What is the key attribute that all these examples have in common?

Parallel vs. Distributed :

e Parallel computing can mean:
e Vector processing of data
e Multiple CPUs in a single computer

e Distributed computing is multiple CPUs
across many computers over the network

A Brief History... 1975-85 &

e Parallel computing was
favored in the early years

e Gradually more thread-
based parallelism was
introduced

Image: Computer Pictures Database and Cray Research Corp and is not subject to the Creative Commons license
applicable to the rest of this work.

A Brief History... 1985-95

e “Massively parallel architectures” start rising
in prominence

e Message Passing Interface (MPI) and other
libraries developed

e Bandwidth was a big problem

A Brief History... 1995-Today

e Cluster/grid architecture increasingly
dominant

e Special node machines eschewed in favor of
COTS technologies

e Web-wide cluster software

e Companies like Google take this to the
extreme

Parallelization Idea &
e Parallelization is “easy” if processing can be
cleanly split into n units:
. . (XX
Parallelization & 334 e
Synchronization 13 Il e
(wi] w2 | _ws |

Parallelization Idea (2)

Spawn worker threads:

thread thread thread

In a parallel computation, we would like to have as
many threads as we have processors. e.g., a four-
processor computer would be able to run four threads
at the same time.

Parallelization Idea (3)

Workers process data:

thread thread thread

Parallelization Idea (4)

results

thread thread thread
@ Report

Parallelization Pitfalls :

But this model is too simple!

How do we assign work units to worker threads?
What if we have more work units than threads?
How do we aggregate the results at the end?
How do we know all the workers have finished?

What if the work cannot be divided into completely
separate tasks?

What is the common theme of all of these problems?

18

Parallelization Pitfalls (2)

e Each of these problems represents a point at
which multiple threads must communicate
with one another, or access a shared
resource.

e Golden rule: Any memory that can be used
by multiple threads must have an associated
synchronization system!

What is Wrong With This?

Thread 1: Thread 2:
void foo() { void bar() {
X++; Y++;
y =X; X+=3;
J }

If the initial state is y = 0, x = 6, what happens
after these threads finish running?

20

Multithreaded = Unpredictabilit

B Many things that look like “one step” operations
actually take several steps under the hood:

Thread 1: Thread 2:

void foo() { void bar() {
eax = mem[x]; eax = memly];
inc eax; inc eax;
mem[x] = eax; memly] = eax;
ebx = mem[x]; eax = mem[x];
mem[y] = ebx; add eax, 3;

} mem[x] = eax;

}

e When we run a multithreaded program, we don'’t
know what order threads run in, nor do we know
when they will interrupt one another.

21

Multithreaded = Unpredictabilit

This applies to more than just integers:

e Pulling work units from a queue
e Reporting work back to master unit

e Telling another thread that it can begin the
“next phase” of processing

... All require synchronization!

22

Synchronization Primitives

e A synchronization primitive is a special
shared variable that guarantees that it can
only be accessed atomically.

e Hardware support guarantees that operations
on synchronization primitives only ever take
one step

23

Semaphores

e A semaphore is a flag
that can be raised or > Reset
lowered in one step

e Semaphores were flags
that railroad engineers ’
would use when
entering a shared track - —

Only one side of the semaphore can ever be red! (Can both be
green?)

24

Semaphores

e set() and reset() can be thought of as lock()
and unlock()

e Calls to lock() when the semaphore is already
locked cause the thread to block.

e Pitfalls: Must “bind” semaphores to particular
objects; must remember to unlock correctly

25

The “corrected” example

Thread 1: Thread 2:

void foo() { void bar() {
sem.lock(); sem.lock();
X++; Y++;
y =X; X+=3;
sem.unlock(); sem.unlock();

} }

Global var “Semaphore sem = new Semaphore();” guards access to
X&y

26

Condition Variables

e A condition variable notifies threads that a
particular condition has been met

¢ Inform another thread that a queue now
contains elements to pull from (or that it's
empty — request more elements!)

e Pitfall: What if nobody’s listening?

27

(X X J
(X X]
(X J
[]
The final example
Thread 1: Thread 2:
void foo() { void bar() {
sem.lock(); sem.lock();
X++; if(lfooDone)
Y =X fooFinishedCV.wait(sem);
fooDone = true; y++
sem.unlock(); X+=3;
fooFinishedCV.notify(); sem.unlock();

}

Global vars: Semaphore sem = new Semaphore(); ConditionVar
fooFinishedCV = new ConditionVar(); boolean fooDone = false;

28

[X X J (X X]
0000 (X X X
ece’ ece’
Too Much Synchronization? se oo
The Moral: Be Careful! :
Deadlock
o L | e Synchronization is hard
iﬁcghggm;ﬁggfegeﬁﬁgﬁﬁfﬂe 3 00 oo eoesen e » Need to consider all possible shared state
locks can be used \ ot o » Must keep locks organized and use them
i = consistently and correctly
Can cause enire system to “get = bﬁ = @@,@‘g e Knowing there are bugs may be tricky; fixing
Thread A- hread B: o them can be even worse!
semapnore; -:octg; semapnoreﬂoctg; e Keeping shared state to a minimum reduces
semaphorec.loCK(); semaphnore1.lockK(), .
/* use data guarded by /* use data guarded by total SyStem CompleX|ty
semaphores */ semaphores */
semaphore1.unlock(); semaphore1.unlock();
semaphore2.unlock(); semaphore2.unlock(); . .
(Image: RPI CSCI.4210 Operating Systems notes)
[X X J (X X J
0000 (X X X
[X XN (X XN
- eo0o0 ::o
Outline : :

e Part I: Motivations
e Introduction
e Parallel vs. Distributed Computing
e History of Distributed Computing
e Parallelization and Synchronization

e Part ll: MapReduce theory and implementation
e Lisp/ML review (functional programming, map, fold)
e MapReduce overview
e Hadoop

31

Functional Programming Review

e Functional operations do not modify data
structures: They always create new ones

e Original data still exists in unmodified form
e Data flows are implicit in program design
e Order of operations does not matter

32

Functional Programming Review | ¢

fun foo(l: int list) =
sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not matter
— they do not modify /

33

Functional Updates Do Not Modify | ::
Structures

fun append(x, Ist) =
let Ist' = reverse Ist in
reverse (x ::lst")

The append() function above reverses a list, adds a new
element to the front, and returns all of that, reversed,
which appends an item.

But it never modifies Ist!

34

Functions Can Be Used As
Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its
argument; DoDouble() will do it twice.

35

MapReduce

Motivation: Large Scale Data
Processing

e Want to process lots of data (> 1 TB)

e Want to parallelize across
hundreds/thousands of CPUs

e ... Want to make this easy

37

MapReduce

e Automatic parallelization & distribution
e Fault-tolerant

e Provides status and monitoring tools
e Clean abstraction for programmers

38

Programming Model

e Borrows from functional programming
e Users implement interface of two functions:

map (in_key, in_value) ->
(out_key, intermediate_value) list

reduce (out_key, intermediate_value list) —>
out_value list

39

map

e Records from the data source (lines out of
files, rows of a database, etc) are fed into the
map function as key*value pairs: e.g.,
(flename, line).

e map() produces one or more intermediate
values along with an output key from the
input.

40

0000 (X X X
([XXX Input key*value Input key*value [
::. ir ir ::.
reduce : :
. Data store 1 map Data store n map
e After the map phase is over, all the L L
intermediate values for a given output key are A N, A N,
Comblned together Into a ||St vaIIes...) Vallles...) vaIuT...) valules...) values...) values...)
e reduce() combines those intermediate values == Barrier == Aggregates infermediate vaiues by output ey |
into One Or more fina/ Values for that Same intekrze:jyiate intetﬁ']ye?:lyiate inte‘:’rsri/ezyiate
output key values values values
e (in practice, usually only one final value per . o o
key) final'key 1 final key 2 final'’key 3
values values values
[X X J (X X J
0000 (X X X
i i
o Example: Count word occurrences ol

Parallelism

e map() functions run in parallel, creating
different intermediate values from different
input data sets

e reduce() functions also run in parallel, each
working on a different output key

e All values are processed independently

e Bottleneck: reduce phase can't start until map
phase is completely finished.

43

map (String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:

EmitIntermediate(w, "1");

reduce (String output_key, Iterator
intermediate_values) :

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:
result += Parselnt(v);

Emit (AsString(result));

44

Example vs. Actual Source Code

e Example is written in pseudo-code

e Actual implementation is in C++, using a
MapReduce library

e Bindings for Python and Java exist via
interfaces

e True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)

45

Locality

e Master program divvies up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at
least same rack

e map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

46

Fault Tolerance

e Master detects worker failures

Re-executes completed & in-progress map()
tasks

Re-executes in-progress reduce() tasks
e Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.

Effect: Can work around bugs in third-party
libraries!

47

Optimizations

e No reduce can start until map is complete:
A single slow disk controller can rate-limit the
whole process

e Master redundantly executes “slow-moving”

map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn't this mess up
the total computation?

48

MapReduce Conclusions :

MapReduce has proven to be a useful abstraction

Greatly simplifies large-scale computations at
Google

Functional programming paradigm can be applied to
large-scale applications

Fun to use: focus on problem, let library deal w/
messy details

49

Hadoop :

e Apache Hadoop project develops open-source software for
reliable, scalable, distributed computing

e MapReduce implementation

e Who uses Hadoop

Amazon
Adobe
Facebook
FOX
Google
IBM
LinkedIn

50

Outline

e Part I: Motivations

Introduction

Parallel vs. Distributed Computing
History of Distributed Computing
Parallelization and Synchronization

e Part Il: MapReduce theory and implementation

e Lisp/ML review (functional programming, map, fold)
e MapReduce overview
e Hadoop

51

