
1

Servlet-Based

Distributed Systems

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://membres-liglab.imag.fr/bouchenak/teaching/

© S. Bouchenak Distributed systems & Middleware 2

Introduction – Web applications

Web client

Computer 1

Web server

Computer 2

Communication system

1. Web
request

2. request
processing

3. Web
response

© S. Bouchenak Distributed systems & Middleware 3

Introduction – Web applications

� Communication between client and server
� In a web application, client and server communicate via the HTTP

protocol (HyperText Transfer Protocol)

� Web request
� Client wants to access a remote “resource” available on the server

� A resource in the WWW is identified and located using a URL

� A resource can be:
� a file or a directory
� a reference to a more complicated object, e.g. a query to a database, a query

to a search engine, a program to run

� Examples of URLs to resources:
� http://serverhost/index.html a file

� http://serverhost/program?arg1=val1&arg2=val2 a program

© S. Bouchenak Distributed systems & Middleware 4

What are Servlets

� Servlets are Java programs which run in a server (e.g. a web server)

� They can be remotely requested (e.g. by web clients)

� Servlets that run on a web server build web pages on the fly,and
return them to clients

� Building web pages on the fly is useful for a number of reasons:
� The Web page is based on data submitted by the user

� Examples: results pages from search engines, programs that process orders
for e-commerce sites

� The data changes frequently

� Example: news headlines page might build the page dynamically

� The Web page uses information from corporate databases or other such
sources

� Examples: an on-line store that lists current prices and number of items in
stock

2

© S. Bouchenak Distributed systems & Middleware 5

Advantages of Servlets

� Efficiency
� With traditional CGI, a new process is started for each HTTP request, the

overhead of starting the process can dominate the execution time.
� With servlets, the Java Virtual Machine stays up, and each request is

handled by a lightweight Java thread, not a heavyweight operating system
process.

� In traditional CGI, if there are N simultaneous requests to the same CGI
program, then the code for the CGI program is loaded into memory N times.

� With servlets, there are N threads but only a single copy of the servlet class

� Portability
� Servlets are written in Java and follow a well-standardized API.
� Servlets can run virtually unchanged on any Servlet server (e.g. Apache

Tomcat, IBM’s WebSphere Application Server, BEA WebLogic Application
Server, etc.)

� Power
� User session tracking

� Database connection pools

© S. Bouchenak Distributed systems & Middleware 6

Outline

1. Introduction

2. HTTP basics

3. Servlet basics

4. Miscellaneous

© S. Bouchenak Distributed systems & Middleware 7

HTTP basics

� HTTP: HyperText Transfer Protocol
� A communication protocol
� Used to transfer hypertext data on the World Wide Web (WWW)

� A protocol (in the general sense)
� A set of guidelines and rules that help in governing interactions between two

parties

� Examples:
� In diplomacy: standards of behavior and ceremony to be observed by

diplomats and heads of state in relation to each other

� Tests and experiments: clinical trial protocol, the method used in a clinical trial
of a drug or medical treatment

� Computing: a set of rules governing communication between computing
endpoints

© S. Bouchenak Distributed systems & Middleware 8

HTTP basics (2)

� HTTP protocol specifies
� Requests

� Responses

� Headers

� Requests invoke a particular method within the set
of HTTP methods
� HTTP GET method

� HTTP POST method

� Other HTTP methods

3

© S. Bouchenak Distributed systems & Middleware 9

HTTP requests

� HTTP: a simple stateless communication protocol
� An HTTP client (e.g. a web browser) makes a request to an

HTTP server

� The HTTP server (e.g. a web server) responds

� And the stransaction is done.

� Request
� Client request has the following form:

� a method,
� target resource address (a URL),

� HTTP protocol version

� Example:
GET /intro.html HTTP/1.0

© S. Bouchenak Distributed systems & Middleware 10

HTTP request headers

� After sending the request, the client can send optional header
information

� The header tells the server extra information about the request such
as:
� What software the client is running
� What content types the client understands

� The request ends with an empty line

� This information does not directly pertain to what was requested, but
it could be used by the server in generating its response

� Example:
User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)
Accept: image/gif, image/jpeg, text/*, */*

© S. Bouchenak Distributed systems & Middleware 11

HTTP responses

� After the server processes the request, it sends an
HTTP response

� The first line of the response specifies the following:

� server’s HTTP protocol version

� a status code (e.g. 200 for successful, 404 for “Not Found”)

� a description of the status code

� Example:

HTTP/1.0 200 OK

© S. Bouchenak Distributed systems & Middleware 12

HTTP response headers

� After sending the status line, the server sends header information

� The header tells the client extra information about the response such as:

� What software the server is running

� What content types the server understands

� The server sends a blank line after the header

� Example:
Date: Saturday, 20-October-2007 03:25:12 GMT
Server: JavaWebServer/1.1.1
MIME-version: 1.0
Content-type: text/html
Content-length: 1029
Last-modified: Thursday, 18-October-2007 12:15:35 GMT

� If the request was successful, the requested data is sent as part of the response

4

© S. Bouchenak Distributed systems & Middleware 13

HTTP GET method

� GET method is designed for getting a resource

� Examples:

� an HTML/image file,

� a chart

� the result of a database query

� GET method can have parameters that better describe what

to get

� Example: an x, y scale for a dynamically created chart

� Parameters are passed as a sequence of characters appended

to the request URL (i.e. a query string)

© S. Bouchenak Distributed systems & Middleware 14

HTTP POST method

� POST method is designed for posting information

� Examples:

� a credit card number

� some new chart data

� information to be stored in a database

� POST method passes all its data as part of the HTTP
request body

� It may need to send megabytes of information

� POST requests should not be bookmarked or emailed
(or reloaded)

© S. Bouchenak Distributed systems & Middleware 15

Other HTTP methods

� HEAD method
� Sent by a client when it wants to see only the headers of the response
� Examples of use:

� determine the document’s size
� determine the document’s modification time, etc.

� PUT method
� Place documents directly on the server

� DELETE method
� Delete documents from the server

� TRACE method
� Return to the client the exact contents of its request (used for debugging)

� OPTIONS method
� Ask the server which methods its supports

© S. Bouchenak Distributed systems & Middleware 16

Outline

1. Introduction

2. HTTP basics

3. Servlet basics
� Generic servlets and HTTP servlets

� Servlet lifecycle
� Servlet API
� A simple example
� Getting information from requests
� An HTML form example

4. Miscellaneous

5

© S. Bouchenak Distributed systems & Middleware 17

A generic servlet handling a request

service ()

Servlet Server GenericServlet subclass

request

response

Implemented by subclass

“service” method is the GenericServlet’s entry point

© S. Bouchenak Distributed systems & Middleware 18

An HTTP servlet handling GET and
POST requests

service ()

HTTP (i.e. web) and Servlet server HttpServlet subclass

GET request

response

POST request

response

Implemented by subclass

doGet ()

doPost ()

“doGet” method is the HttpServlet’s entry point for GET requests

“doPost” method is the HttpServlet’s entry point for POST requests

© S. Bouchenak Distributed systems & Middleware 19

Servlet lifecycle

init

service service

service

service

service

service service

service

destroy

time

thread 1 thread 2 thread 3

A typical servlet life cycle

© S. Bouchenak Distributed systems & Middleware 20

Servlet lifecycle (2)

� A Servlet is an instance of a class which implements the
javax.servlet.Servlet interface

� A Servlet server initializes a Servlet by
� loading the Servlet class, and

� creating an instance of the Servlet by calling the no-args constructor,
then

� calling the Servlet's init(ServletConfig config) method

� Servlet’s init(ServletConfig config) method
� It performs any necessary initialization of the Servlet and stores the

ServletConfig object
� The ServletConfig object contains Servlet parameters and a reference to

the Servlet's ServletContext

� The init method is guaranteed to be called only once during the Servlet's
lifecycle

6

© S. Bouchenak Distributed systems & Middleware 21

Servlet lifecycle (3)

� Servlet’s service method

� When the Servlet is initialized, its service(ServletRequest req,
ServletResponse res) method is called for every request to the Servlet

� The method is called concurrently (i.e. multiple threads may call this method
at the same time)

� It should be implemented in a thread-safe manner

� Servlet’s destroy method

� Sometimes, a Servlet may need to be unloaded (e.g. because a new version
should be loaded or the server is shutting down)

� When the Servlet needs to be unloaded, the destroy() method is called

� There may still be threads that execute the service method when destroy is
called, so destroy has to be thread-safe

� All resources which were allocated in init should be released in destroy

� This method is guaranteed to be called only once during the Servlet's
lifecycle

© S. Bouchenak Distributed systems & Middleware 22

Outline

1. Introduction

2. HTTP basics

3. Servlet basics
� Generic servlets and HTTP servlets

� Servlet lifcycle
� Servlet API
� A simple example
� Getting information from requests
� An HTML form example

4. Miscellaneous

© S. Bouchenak Distributed systems & Middleware 23

Servlet API
� Package javax.servlet

� Contains classes to support generic, protocol-independent
servlets

� Some elements of the package:
� Servlet interface:

� defines methods that all servlets must implement

� GenericServlet abstract class:
� defines a generic, protocol-independent servlet

� ServletRequest interface:
� defines an object to provide client request information to a servlet

� ServletResponse interface:
� defines an object to assist a servlet in sending a response to the client

� ServletConfig interface:
� defines the information used by a servlet container to pass to a servlet

during initialization

� ServletContext interface:
� defines a set of methods that a servlet uses to communicate with its servlet

container, (e.g. write to a log file)

© S. Bouchenak Distributed systems & Middleware 24

Servlet API (2)

� Package javax.servlet.http

� Contains classes to support HTTP-based servlets

� Some elements of the package:

� HttpServlet abstract class:

� subclass of GenericServlet, provides an abstract class to be
subclassed to create an HTTP servlet suitable for a Web site

� HttpServletRequest interface:

� extends the ServletRequest interface to provide request

information for HTTP servlets

� HttpServletResponse interface:

� extends the ServletResponse interface to provide HTTP-specific
functionality in sending a response

7

© S. Bouchenak Distributed systems & Middleware 25

Outline

1. Introduction

2. HTTP basics

3. Servlet basics
� Generic servlets and HTTP servlets

� Servlet lifcycle
� Servlet API
� A simple example
� Getting information from requests
� An HTML form example

4. Miscellaneous

© S. Bouchenak Distributed systems & Middleware 26

HTML basics

� The most basic type of HTTP servlet generates HTML pages

� HTML (HyperText Markup Language)

� The predominant markup language for web pages

� Provides a means to describe the structure of text-based

information in a document

� Denotes certain text as headings, paragraphs, lists, etc.

� Supplements the text with interactive forms, embedded images,

and other objects

© S. Bouchenak Distributed systems & Middleware 27

An HTML page – A simple example

© S. Bouchenak Distributed systems & Middleware 28

An HTML source page

<HTML>

<HEAD>
<TITLE>

Hello World
</TITLE>

</HEAD>

<BODY>
<BIG>

Hello World

</BIG>
</BODY>

</HTML>

8

© S. Bouchenak Distributed systems & Middleware 29

A simple HTTP Servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType(“text/html”);

PrintWriter out = res.getWriter();

out.println(“<HTML>”);

out.println(“<HEAD> <TITLE> Hello World </TITLE> </HEAD>”);

out.println(“<BODY> <BIG> Hello World </BIG> </BODY>”);
out.println(“</HTML>”);

out.close();

}

}

© S. Bouchenak Distributed systems & Middleware 30

Outline

1. Introduction

2. HTTP basics

3. Servlet basics
� Generic servlets and HTTP servlets

� Servlet lifcycle
� Servlet API
� A simple example
� Getting information from requests
� An HTML form example

4. Miscellaneous

© S. Bouchenak Distributed systems & Middleware 31

Getting information from requests

� A request contains data passed between a client and the servlet

� All requests implement the ServletRequest interface

� This interface defines methods for accessing information such as:

� String getParameter(String name):

� returns the value of a request parameter as a String, or null if the
parameter does not exist

� String getProtocol():

� returns the name and version of the protocol the request uses

� String getRemoteAddr():

� returns the Internet Protocol (IP) address of the client that sent the
request

� etc.

© S. Bouchenak Distributed systems & Middleware 32

Getting information from requests (2)

public class BookInfoServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

...

String bookId = req.getParameter("bookId");
if (bookId != null) {

// Retrieve information about that book

...

}

...

}

...

}

� Example:
� A customer wishes to get information about a book.

� He calls BookInfoServlet and includes the identifier of the book in his request

� For example: http://host:port/servlets/BookInfoServlet?bookId=1234

9

© S. Bouchenak Distributed systems & Middleware 33

Outline

1. Introduction

2. HTTP basics

3. Servlet basics
� Generic servlets and HTTP servlets

� Servlet lifcycle
� Servlet API
� A simple example
� Getting information from requests
� An HTML form example

4. Miscellaneous

© S. Bouchenak Distributed systems & Middleware 34

An HTML form – A simple example

© S. Bouchenak Distributed systems & Middleware 35

The HTML source form

<HTML>

<HEAD>

<TITLE>

Introductions
</TITLE>

</HEAD>

<BODY>
<FORM METHOD=GET ACTION="servlet/HelloWorldServlet" >

If you don't mind me asking, what is your name?

<INPUT TYPE=TEXT NAME="name">

<P>

<INPUT TYPE=SUBMIT>
</ FORM>

</BODY>

</HTML>

© S. Bouchenak Distributed systems & Middleware 36

A simple HTTP Servlet handling a form

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType(“text/html”);

PrintWriter out = res.getWriter();

String name = req.getParameter(“name”);

out.println(“<HTML>”);

out.println(“<HEAD> <TITLE> Hello,” + name + “</TITLE></HEAD>”);

out.println(“<BODY>”);

out.println(“Hello, ” + name);

out.println(“</BODY>”);

out.println(“</HTML>”);
out.close();

}

}

10

© S. Bouchenak Distributed systems & Middleware 37

Basic HTTP Servlet structure

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data

// (e.g. data the user entered and submitted)

...

// Perform any internal processing for generating dynamic results

...

// Use "response" to specify the HTTP response line and headers

// (e.g. specifying the content type).

res.setContentType(“text/html”);

// Use "out" to send content to browser
PrintWriter out = response.getWriter();

...

}

...

© S. Bouchenak Distributed systems & Middleware 38

Basic HTTP Servlet structure (2)

...

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

doGet(req, res);

}

}

© S. Bouchenak Distributed systems & Middleware 39

Outline

1. Introduction

2. HTTP basics

3. Servlet basics

4. Miscellaneous
� User authentication

� User session based on username

� User session based on cookies

© S. Bouchenak Distributed systems & Middleware 40

User authentication

� Objective
� Restrict access to some of resources of the web application

� Example
� A magazine is published online

� Only paid subscribers can read the articles

� Principles
� An HTTP server has a built-in capability to restrict access to

some or all of its resources to a given set of registered users.

� How to set up restricted access depends on the server, but here
are the underlying principles

� The first time a web client (e.g. Browser) attempts to access one
of these resources, the HTTP server replies that it needs special
user authentication

11

© S. Bouchenak Distributed systems & Middleware 41

User authentication (2)

� Principles (cont.)

� When the browser receives this response, it usually pops open a window
asking the user for a name and password appropriate for the resource

� Once the user enters his information, the browser again attempts to
access the resource, this time attaching the user's name and password
along with the request

� If the server accepts the name/password pair, it happily handles the
request.

� If, on the other hand, the server doesn't accept the name/password pair,
the browser is denied

© S. Bouchenak Distributed systems & Middleware 42

Servlets and user authentication

� When access to a servlet has been restricted by the server,

the servlet can get the name of the user that was accepted by

the server

� To do so, the servlet uses the getRemoteUser() method

� This information is retrieved from the servlet's

HttpServletRequest object

� public String HttpServletRequest.getRemoteUser()

� This method returns the name of the user making the request

as a String, or null if access to the servlet was not restricted

© S. Bouchenak Distributed systems & Middleware 43

Outline

1. Introduction

2. HTTP basics

3. Servlet basics

4. Miscellaneous
� User authentication

� User session based on username

� User session based on cookies

© S. Bouchenak Distributed systems & Middleware 44

User session based on username

� Username can be used to track a client session

� Once a user has logged in, the browser remembers her
username

� A servlet can identify the user through her username and thereby
track her session

� Example

� if the user adds an item to her virtual shopping cart, that fact can
be remembered (e.g. in a shared class or external database)

� This can be used later by another servlet when the user goes to
the check-out page

12

© S. Bouchenak Distributed systems & Middleware 45

User session based on username

(2)

� Example:

� A servlet utilizes user authorization to add items to a user's
shopping cart

String name = req.getRemoteUser();

if (name == null) {

// Explain that the server administrator should
// protect this resource

} else {

String[] items = req.getParameterValues("item");

if (items != null) {

for (int i = 0; i < items.length; i++) {

addItemToCart(name, items[i]);

}

}

}

© S. Bouchenak Distributed systems & Middleware 46

User session based on username

(3)

� Example:

� Another servlet can then retrieve the items from a user's cart

String name = req.getRemoteUser();

if (name == null) {

// Explain that the server administrator should protect
// this page

} else {

String[] items = getItemsFromCart(name);

...

}

© S. Bouchenak Distributed systems & Middleware 47

Outline

1. Introduction

2. HTTP basics

3. Servlet basics

4. Miscellaneous
� User authentication

� User session based on username

� User session based on cookies

© S. Bouchenak Distributed systems & Middleware 48

User session based on cookies

� Servlet API provides the javax.servlet.http.Cookie class for working with
cookies

� A cookie is created with the Cookie() constructor
� public Cookie(String name, String value)

� A servlet can send a cookie to the client by passing a Cookie object to
the addCookie() method of HttpServletResponse
� public void HttpServletResponse.addCookie(Cookie cookie)

� Because cookies are sent using HTTP headers, they should be added
to the response before you send any content.

� Browsers are only required to accept
� 20 cookies per site,

� 300 total per user, and
� they can limit each cookie's size to 4096 bytes.

13

© S. Bouchenak Distributed systems & Middleware 49

User session based on cookies (2)

� A servlet sets a cookie like this:
Cookie cookie = new Cookie("ID", "123");
res.addCookie(cookie);

� A servlet retrieves cookies by calling the getCookies() method of
HttpServletRequest:

public Cookie[] HttpServletRequest.getCookies()

� A servlet fetches cookies looks like this:
Cookie[] cookies = req.getCookies();
if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName();

String value = cookies[i].getValue();
}

}

© S. Bouchenak Distributed systems & Middleware 50

References

This lecture is extensively based on:

� S. Bodoff. Java Servlet Technology.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

� M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

� M. Hall. Servlets and Java ServerPages: A Tutorial.

http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/

� J. Hunter, W. Crawford. Java Servlet Programming. O’Reilly, 1998.

� S. Zeiger. Servlet Essentials.
http://www.novocode.com/doc/servlet-essentials/

