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Introduction — Web applications
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2. request
processing

Motivations

e Processing a request on the server may successively involve
several types of logic:

o Data access logic
Example: read data from a persistent storage (e.g. a database)

o Business logic

Example: use the read data to perform any application-specific
processing

o Presentation logic

Example: use the obtained result to build a user-friendly response
to the client
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Motivations

e These types of logic may be more or less heavy in terms of
processing time

e A unique server that hosts multiple types of logic may suffer
from scalability issues in case of heavy workload (#concurrent
web clients)

e Solution:

o Separate the different types of logic in different servers
o Multi-tier architecture
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Multi-tier architecture

e Java 2 Enterprise Edition

o Webtier

Run a web server

Receive requests from web clients

Run web components

May forward requests to the business tier

Return web documents as responses (e.g. static HTML pages or dynamically
generated web pages)

o Business tier
¢ Run an application server
o Receive requests from the web tier
« Run business components
« May forward requests to the data access tier (via JDBC)

o Data access tier
* Run a database server
o Receive requests from the business tier
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J2EE multi-tier systems

e Web components

o J2EE web components are either servlets or pages created using
JSP technology (JSP pages)

o Servlets are Java programming language classes that dynamically
process requests and construct responses

o JSP pages are text-based documents that execute as servlets but
allow a more natural approach to creating static content

o Static HTML pages and applets are bundled with web components
during application assembly
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J2EE multi-tier systems (2)

e Business components
o Business code, i.e. the logic that solves or meets the needs of a particular
business domain such as banking, retail, or finance, is handled by
enterprise beans running in the business tier

o There are three kinds of enterprise beans: session beans, entity beans,
and message-driven beans

o A session bean represents a transient conversation with a client. When
the client finishes executing, the session bean and its data are gone

e An entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying
services ensure that the entity bean data is saved

o A message-driven bean combines features of a session bean and a Java
Message Service (JMS) message listener, allowing a business
component to receive JMS messages asynchronously
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A simple example

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HIML form data
// (e.g. data the user entered and submitted)

// Perform any internal processing for generating dynamic results

// Use "response" to specify the HITP response line and headers
// (e.g. specifying the content type).

PrintWriter out = response.getWriter();

// Use "out" to send content to browser
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A simple example (2)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HIML form data
// (e.g. data the user entered and submitted)

String accountIdStr = req.getParameter (“accountId");
int accountId = Integer.parselnt (accountIdStr);

if (accountId != null) {

A simple example (3)

import java.sql.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Perform any internal processing for generating dynamic results
float balance = 0;
Connection conn = DriverManager.getConnection(url, user, password);
Statement stmt = conn.createStatement();
ResultSet rs =stmt.executeQuery ("SELECT balance FROM accounts WHERE id=*
+ accountId);
try {
if (rs.next())
balance = rs.getFloat ("balance");
rs.close(); stmt.close();
} catch (Exception e) {
e.printStackTrace();

)
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A simple example (4)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType (“text/html”);
PrintWriter out = res.getWriter();

out.println (“<HTML>") ;

out.println(“<HEAD> <TITLE> Account ” + accountId + “</TITLE></HEAD>");
out.println(“<BODY>");

out.println(“Current balance is ” + balance);

out.println(“</BODY>");

out.println(“</HTML>");

out.close();
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J2EE features

Java Servlet technology

JavaServer Pages technology

Enterprise JavaBeans technology

Java Message Service

Java Transaction

JavaMail

Java API for XML processing

Java API for XML-based RPC

Java DataBase Connectivity (JDBC)

Java Naming and Discovery Interface (JNDI)
Java authentication and authorization service
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Other features of distributed
Web applications

e Caching

e Prefetching

e Partitioning

e Replication

e Load balancing

Cloud computing: toward on-demand remote and elastic
applications
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