Distributed Multi-Tier
Web Applications

Sara Bouchenak| geee
[X XX}
Sara.Bouchenak@imag.fr : :]
http://membres-liglab.imag.fr/bouchenak/teaching/ |

Introduction — Web applications

Computer 1 Computer 2
[
Web client Web server
3. Web
response

Communication system

©S. Bouchenak Distributed systems & Middleware

2. request
processing

Motivations

e Processing a request on the server may successively involve
several types of logic:

o Data access logic
Example: read data from a persistent storage (e.g. a database)

o Business logic

Example: use the read data to perform any application-specific
processing

o Presentation logic

Example: use the obtained result to build a user-friendly response
to the client

© S. Bouchenak Distributed systems & Middleware 3

Computer 1 Computer 2
Web server
. Presentation|Business|Data access
Web client logic logic
1. WeB rééptest to

statisponsent

Communication system

©$S. Bouchenak Distributed systems & Middleware

Example 2

Computer 1 Computer 2

Web server

. Presentation|Business [Data access
Web client

1. Web reGué¥ebo dynamic

logic logic
| X @

Example 3

Computer 1

Web client

©$S. Bouchenak

Computer 2

Web server

Presentation|Business
logic

Data access|

_ﬁ;

logic
y I @

1. Web reGuéééto dynamic
content wiglspensistent data

Communication system

Distributed systems & Middleware

contentnegpormgatile data
Communication system
©S. Bouchenak Distributed systems & Middleware 5
Motivations

e These types of logic may be more or less heavy in terms of
processing time

e A unique server that hosts multiple types of logic may suffer
from scalability issues in case of heavy workload (#concurrent
web clients)

e Solution:

o Separate the different types of logic in different servers
o Multi-tier architecture

© S. Bouchenak Distributed systems & Middleware 7

Overview of the multi-tier

Computer 2 Computer 3

architecture
Computer 0 Computer 1
Web client Web tier

Business
tier

Data

access tier @

©S. Bouchenak

Communication system

Distributed systems & Middleware

Multi-tier architecture

e Java 2 Enterprise Edition

o Webtier

Run a web server

Receive requests from web clients

Run web components

May forward requests to the business tier

Return web documents as responses (e.g. static HTML pages or dynamically
generated web pages)

o Business tier
¢ Run an application server
o Receive requests from the web tier
« Run business components
« May forward requests to the data access tier (via JDBC)

o Data access tier
* Run a database server
o Receive requests from the business tier

© S. Bouchenak Distributed systems & Middleware 9

J2EE multi-tier systems

e Web components

o J2EE web components are either servlets or pages created using
JSP technology (JSP pages)

o Servlets are Java programming language classes that dynamically
process requests and construct responses

o JSP pages are text-based documents that execute as servlets but
allow a more natural approach to creating static content

o Static HTML pages and applets are bundled with web components
during application assembly

©S. Bouchenak Distributed systems & Middleware 10

J2EE multi-tier systems (2)

e Business components
o Business code, i.e. the logic that solves or meets the needs of a particular
business domain such as banking, retail, or finance, is handled by
enterprise beans running in the business tier

o There are three kinds of enterprise beans: session beans, entity beans,
and message-driven beans

o A session bean represents a transient conversation with a client. When
the client finishes executing, the session bean and its data are gone

e An entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying
services ensure that the entity bean data is saved

o A message-driven bean combines features of a session bean and a Java
Message Service (JMS) message listener, allowing a business
component to receive JMS messages asynchronously

© S. Bouchenak Distributed systems & Middleware 11

A simple example

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HIML form data
// (e.g. data the user entered and submitted)

// Perform any internal processing for generating dynamic results

// Use "response" to specify the HITP response line and headers
// (e.g. specifying the content type).

PrintWriter out = response.getWriter();

// Use "out" to send content to browser

©S. Bouchenak Distributed systems & Middleware 12

A simple example (2)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HIML form data
// (e.g. data the user entered and submitted)

String accountIdStr = req.getParameter (“accountId");
int accountId = Integer.parselnt (accountIdStr);

if (accountId != null) {

A simple example (3)

import java.sql.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Perform any internal processing for generating dynamic results
float balance = 0;
Connection conn = DriverManager.getConnection(url, user, password);
Statement stmt = conn.createStatement();
ResultSet rs =stmt.executeQuery ("SELECT balance FROM accounts WHERE id=*
+ accountId);
try {
if (rs.next())
balance = rs.getFloat ("balance");
rs.close(); stmt.close();
} catch (Exception e) {
e.printStackTrace();

)

© S. Bouchenak Distributed systems & Middleware 13

©S. Bouchenak Distributed systems & Middleware 14

A simple example (4)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType (“text/html”);
PrintWriter out = res.getWriter();

out.println (“<HTML>") ;

out.println(“<HEAD> <TITLE> Account ” + accountId + “</TITLE></HEAD>");
out.println(“<BODY>");

out.println(“Current balance is ” + balance);

out.println(“</BODY>");

out.println(“</HTML>");

out.close();

© S. Bouchenak Distributed systems & Middleware 15

J2EE features

Java Servlet technology

JavaServer Pages technology

Enterprise JavaBeans technology

Java Message Service

Java Transaction

JavaMail

Java API for XML processing

Java API for XML-based RPC

Java DataBase Connectivity (JDBC)

Java Naming and Discovery Interface (JNDI)
Java authentication and authorization service

©S. Bouchenak Distributed systems & Middleware 16

Other features of distributed
Web applications

e Caching

e Prefetching

e Partitioning

e Replication

e Load balancing

Cloud computing: toward on-demand remote and elastic
applications

© S. Bouchenak Distributed systems & Middleware

References

©S. Bouchenak

Sun Microsystems. The J2EE Tutorial
http://java.sun.com/j2ee/1.4/docs/tutorial/

Distributed systems & Middleware

Agenda

Lecture, Tuesday, 09:45 - 12:45 Lab, Tuesday, 09:45 - 12:45

Introduction to distributed systems

Distributed applications with RMI (Part)

Distributed Web applications

Distributed applications with RMI (Part Il)

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part Il)

Advanced techniques for efficient
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Advanced techniques for dependable
distributed systems

Evaluation

