Livrable Selware SP1
Lot 1, August 14, 2007, 15:49

Selfware Platform Architecture

Contents

1

2

Introduction (INRIA)

Design Principles (INRIA)

2.1 Basic definition
2.2 Architecture-Based Management
2.3 The fractal component model

Architecture Overview

3.1 Managed elements Lo L
3.2 Autonomic Managers L Lo
3.3 Common ServiCeso i e e
3.4 Replication structure for manager nodes

Managed element

4.1 Legacy Managed Element,
4.2 Architectural Managed Element
Example

5.1 Legacy Managed Element

5.2 Architectural Managed Element

Common Services (ALL)

6.1 Deployment (INRIA)
6.1.1 Goal e
6.1.2 Requirements L L
6.1.3 Deployment workflow L.

6.2 Wrapping (IRIT) o
6.2.1 Basic principles of wrapping
6.2.2 Fractal model and wrapperso
6.2.3 Requirements L L

6.3 Monitoring requirements Lo Lo Lo
6.3.1 Objectives
6.3.2 Required features
6.3.3 Software architecture requirements

6.4 Requirements for a monitoring integration middleware

6.5 Decision (BULL, FT),
6.5.1 Active (ECA)rules. Lo
6.5.2 Production (deductive) rules
6.5.3 Workflow engine oo

6.6 Navigation (EMN)
6.6.1 Conceptual Model
6.6.2 Syntax and Semantics of FPath Queries

6.7 Reconfiguration (EMN) o
6.7.1 The FScript Language

10
10
10
11
12

14
14
15

16
16
18

6.7.2 Support for Transactional Reconfigurations

1 Introduction (INRIA)

Today’s computing environments are becoming increasingly sophisticated. They involve
numerous complex software that cooperate in potentially large scale distributed environ-
ments. These software are developed with very heterogeneous programming models and
their configuration facilities are generally proprietary. Therefore, the management ' of
these software (installation, configuration, tuning, repair ...) is a much complex task
which consumes a lot of resources:

e human resources as administrators have to react to events (such as failures) and have
to reconfigure (repair) complex applications,

e hardware resources which are often reserved (and overbooked) to anticipate load
peaks or failures.

A very promising approach to the above issue is to implement administration as an
autonomic software. Such a software can be used to deploy and configure applications in
a distributed environment. It can also monitor the environment and react to events such
as failures or overloads and reconfigure applications accordingly and autonomously.

The goal of autonomic computing is to automate, at least in part, the functions related
to systems administration. This effort is motivated by the increasing size and complexity
of the systems and applications, which has two consequences: (i) the costs related to
administration are taking a major part of the total information processing budgets; and (ii)
the difficulty of the administration tasks tends to approach the limits of the administrators’
skills.

Autonomic computing aims at providing systems with self-management capabilities, in-
cluding self-configuration (automatic configuration of parameters), self-optimization (con-
tinuous performance monitoring and reaction to reach optimality), self-healing (detecting
defects and failures, and taking corrective actions), and self-protection (taking preventive
measures and defending against malicious attacks). Currently, human administrators per-
form management actions to ensure the desired operation of the system, using appropriate
tools. One approach to autonomic computing, which we can call the architecture-based
approach to autonomic computing, views the functioning of an automic computing system
as an evolution of this practice, along the following lines:

e The management system observes and monitors the managed system; the observation
may be active (triggered by the observer) or passive (triggered by the observed
element).

e On the base of the observation results, the management system takes appropriate
steps to ensure that the preset goals are met. This may entail both preventive and
defensive actions, and may necessitate some degree of planning.

In a more detailed view, an autonomic computing system is organized according to the
above overall scheme, sketched on Figure

Lwe also use the term administration to refer to management operations

monitor
F—>
interaction with other
managed elements and
system environment
4_

high-level
goals

manager

decide
plan
execute

Figure 1: Overall view of an autonomic element

In this approach, autonomic computing is closely related to control. More precisely,
an autonomic system is governed a feedback control loop (feedback is preferred to feedfor-
ward because it allows to take into account disturbances in the expected behavior of the
controlled system).

The main advantages of this approach are:

e Providing a high-level support for deploying and configuring applications reduces
errors and administrator’s efforts.

e Autonomic management allows the required reconfigurations to be performed with-
out human intervention, thus saving administrator’s time.

e Autonomic management is a means to save hardware resources as resources can be
allocated only when required (dynamically upon failure or load peak) instead of
pre-allocated.

This document presents the Selfware platform architecture, an environment for devel-
oping autonomic management software. Selfware mainly relies on the following features:

e A component model. Selfware models the managed environment as a component-
based software architecture which provides means to configure and reconfigure the
environment.

e Control loops which link probes to reconfiguration services and implement autonomic
behaviors.

We use the Selfware environment to design autonomic capability in the context of
a clustered J2EE application [28] and in the conext of a distributed JMS infrastructure
[3]. These capabilities are related to self-optimization and self-healing properties. The
rest of the document is organized as follows. Section 2 presents the design principles
underlying Selfware. Section 3 depicts the architecture of the management system. The
design principles and the architecture is illustrated by some examples given in Section 5.
Finally, Section 6 gives an overview of the Seflware common tools.

2 Design Principles (INRIA)

2.1 Basic definition

An autonomic system[29] implements a control loop that regulates a part of the system,
which we call the managed system. The managed system is in turn constituted by a col-
lection of managed elements. A managed element (ME) may consist of a single elementary
hardware or software component, or may be a complex system in itself, such as a cluster
of machines, or a middleware system. In order to be included in a control loop, a man-
aged element must provide management interfaces, which include sensor interfaces and
actuator interfaces®. These are used by a controller, also called an autonomic manager
(AM) to regulate the managed system through a feedback control loop. The autonomic
system (AS) is the ensemble including the managed elements and the control loop, i.e. the
controller and the communication system that it uses to access the management interfaces.

T T

{ Controller]

Sensor __| | Actuator
interface interface
Managed
Element Autonomic

Element

Figure 2: An autonomic element

An autonomic manager may itself be equipped with management interfaces, thus be-
coming in effect a managed element. This allows a hierarchical organization of AMs. In
the same vein, an elementary managed element, such a hardware device like a disk unit,
may itself include embedded, built-in control loops, making it an autonomic system, even
if these control loops are not directly accessible through the ME’s management interfaces.

The controller that regulates a ME in an autonomic element usually deals with a single
control aspect, e.g. security, fault tolerance or performance. A given ME may then be
part of several ASs, each of which deals with a specific aspect; each of these ASs has a
specific AM and may be regarded as a different management domain.

The AMs managing different aspects of a common element have different criteria and
may take conflicting decisions. An approach to resolving such conflicts is to coordinate the
AMs that manage different aspects through a new AM (the coordinator), which applies a
conflict management policy. An example of such a policy might be as follows, to arbitrate
between a repair manager and a performance optimizing manager: give priority to the
repair manager, except when this would degrade the quality of service of a specified client.

2The complexity of these interfaces depends on that of the managed element.

e N

Autonomic Autonomic Autonomic

Manager 1 Manager 2

Manager

management A management
interface v y interface

Management ¥ (] ()

domain 1 anagement

domain 2 Management Management
domain 1 domain 2

r?anagement interfac;e Managed Coordinat

sensors + actuators; oordinator

Element
Management
domain j

Figure 3: Multiple domains for autonomic management

The notion of an autonomic system is thus seen to cover a wide range of situations, at
different levels of granularity. In the above discussion, we came across three typical levels,
in increasing order of abstraction:

e An elementary component, with embedded internal control.

e A mid-level manager, at the application or midleware level, controlling an aspect
such as QoS, security, or fault tolerance.

e A coordination manager, whose role is to arbitrate between several aspect-specific
managers in charge of a common set of resources (a shared ME).

A managed element, be it elementary or complex, needs to provide management in-
terfaces, including sensors and actuators. There is currently no standard defining these
management interfaces, and the existing experimental platforms have developed their own
set of tools (see e.g. [10]). When dealing with legacy software, not initially intended to be
externally managed, a common solution for providing a management interface is to use a
wrapper, or adapter. The function of the wrapper is to make a bi-directional translation
between the interface provided by the legacy components and the specified management
interface. This may be a best effort attempt, depending on the available interfaces of the
legacy software.

2.2 Architecture-Based Management

The notion of a system model is taking an increasing importance in the design, the de-
velopment and the management of software systems. A system model is a formal or
semi-formal description of a system’s organization and operation, which serves as a base
for understanding the system and predicting its behavior, as well as for its design and im-
plementation. The goal of current models of systems architecture is to describe a complex
system as an assembly of elementary parts, using the notions of components, connectors,
and configurations. These entities have different concrete representations according to the
specific architectural model being used, but share common properties (see e.g. [23]).

As system architecture is pervading the area of systems design, it has been realized
that its constructs also form an adequate base for systems management. In particular,
components may be conveniently used as units of deployment, of fault diagnosis, of fault
isolation, as well as domains of trust; reconfiguration is adequately represented by compo-
nent replacement and connector rebinding. The notion of architecture-based management
captures this trend. It promotes the use of architectural models and formal or semi-formal
system descriptions as guidelines for various management functions. Such descriptions are
becoming commonly available, e.g. in the form of an Architecture Description Language
(ADL), a framework for a formal description of a system conforming to an architectural
system model.

Our approach to an architecture-based, control approach to the design and construction
of autonomic systems, relies first on the choice of an appropriate component model. The
component model we use is the fractal model [13]. The Fractal component model is
a reflective component model intended for the construction of dynamically configurable
and monitorable systems. Its main features include: composite components (to obtain a
uniform view of applications at various levels of abstractions), binding components (to reify
arbitrary connections and communication semantics between components), introspection
and reconfiguration capabilities (to monitor, control and modify the execution of a running
system).

The choice of fractal is motivated by several considerations:

e fractal supports a hierarchical modelling of systems, allowing to describe a system
at different levels of abstractions.

e fractal supports software architecture descriptions with component sharing (where
components may belong to different component hierarchies), which allows more nat-
ural specifications of system structures, and a separation of concerns in architecture
descriptions.

e fractal supports reflective components, i.e. components equipped with a meta-level
structure that allows to monitor and control the execution of a component. The
interfaces that make up a reflective component meta-object protocol in effect provide
management interfaces for the component.

e fractal is an open model, that makes no predefined choice concerning the semantics
of component composition. This allows a system designer to define the semantics of
a component binding or of a component meta-level best suited to its design.

e fractal comes equipped with an extensible architecture description language (ADL)
that can be used as a pivot language for capturing information related to different
management concerns, and for expressing management actions.

We briefly present in the rest of this section the main features of the fractal component
model.
2.3 The fractal component model

The fractal component model is a general component model which is intended to imple-
ment, deploy, monitor, and dynamically configure complex software systems, including

operating systems and middleware. This motivates the main features of the model: com-
posite components (to have a uniform view of applications at various levels of abstraction),
introspection capabilities (to monitor and control the execution of a running system), and
reconfiguration capabilities (to deploy and dynamically configure a system). A fractal
component is a run-time entity that is encapsulated, and that has a distinct identity. A
component has one or more interfaces. An interface is an access point to a component
that supports a finite set of methods. Interfaces can be of two kinds: server interfaces,
which correspond to access points accepting incoming method calls, and client interfaces,
which correspond to access points supporting outgoing method calls.

Communication between fractal components is only possible if their interfaces are
bound. fractalsupports both primitive bindings and composite bindings. A primitive
binding is a binding between one client interface and one server interface in the same
address space. A composite binding is a fractalcomponent that embodies a communication
path between an arbitrary number of component interfaces. These bindings are built out of
a set of primitive bindings and binding components (stubs, skeletons, adapters, etc.). The
fractal model thus provides two mechanisms to define the architecture of an application:
bindings between component interfaces, and encapsulation of components in a composite.

The above features (hierarchical components, explicit bindings between components,
strict separation between component interfaces and component implementation) are rel-
atively classical. The originality of the fractal model lies in its open reflective features.
In order to allow for well scoped dynamic reconfiguration, a fractal component can be
endowed with controllers allowing its introspection and the control of its behavior.

At the lowest level of control, a fractal component is a black box that does not pro-
vide any introspection capability. Such components, called base components, are similar
to plain objects in an object-oriented language. Their explicit inclusion in the fractal
model facilitates the integration of legacy software. At the next level of control, a frac-
tal component provides a Component interface, similar to the IUnknown interface in the
COM model, that allows one to discover all its (client and server) interfaces. At upper
levels of control, a fractal component contains several controllers that expose (part of) its
internal structure. A controller can superpose a control behavior to the behavior of the
component’s sub-components, including suspending, checkpointing and resuming activi-
ties of these sub-components. A controller can also play the role of an interceptor, used to
export the interface of a sub-component as an interface of the parent component, and to
intercept the oncoming and outgoing method calls of an exported interface. The fractal
model allows for arbitrary (including user defined) classes of controller and interceptor ob-
jects. It specifies, however, several useful forms of controllers, which can be combined and
extended to yield components with different reflective features, including the following:

Attribute controller: this controller allows getting and setting the component’s
attributes, i.e. its configurable properties.

Binding controller: this controller allows binding and unbinding the component’s
client interfaces to server interfaces.

Content controller: this controller supports an interface to list, add and remove
sub-components in the content of the component.

Life-cycle controller: this controller allows an explicit control over the component’s
execution. Its interface includes methods to start/stop the component’s execution.

Several implementations of the Fractal model have been issued in different contexts, e.g.
an implementation devoted to the configuration of operating systems on a bare hardware
(Think) or an implementation on top of the Jave virtual machine (Julia) targeted to the
configuration of middleware or applications.

3 Architecture Overview

A Selfware system is organized as a collection of fractal components of three different kinds:
managed elements, autonomic managers and common services. The extent of a Selfware
administration domain is given by a set of managed elements representing physical nodes
(i.e. computers running Selfware components), called managed nodes. In the rest of this
report, we use the term node for managed node, unless explicitly specified (e.g. physical
node). To enable self-management functions, autonomic managers and components that
provide common services are managed elements in the Selfware architecture. To enable a
self-healing behavior, the Selfware architecture distinguishes between two kinds of nodes:
manager nodes, which host autonomic manager components, and other standard managed
nodes. Manager nodes, together with their subcomponents, can be replicated to make the
set of manager nodes fault-tolerant and to allow fault management policies implemented
by the autonomic fault manager to apply to manager nodes as well as to standard nodes.
In the rest of this section, we present a brief overview of the different kinds of Selfware
components, the main functions provided by the common services, and the replication
structure for manager nodes. A more detailed description of the various elements of this
architecture is given in the following sections.

3.1 Managed elements

A managed element (ME) is a fractal component that encapsulates a controlled entity. It
can provide sensors to collect information about the entity and actuators to change the
state of the entity. We make little assumption about the controlled entity, apart from
the fact that it can be manifested as a fractal component. A managed element can be
a software or a hardware resource; a primitive or a composite component; a component
located in a single address space, or a distributed composite®. Managed nodes are managed
elements that encapsulate physical nodes. A managed node provides interfaces to install
component packages and to create managed elements on the node.

3.2 Autonomic Managers

An autonomic manager (AM) is a fractal component that implements the analysis, deci-
sion, planning and execution stage of a control loop: it monitors a set of managed elements,
analyzes notifications coming from managed element sensors, diagnoses the state of the
system, decides on or plans a course of action in response to the diagnosis, and according
to high-level administration policies it obeys, and executes the corresponding command

3In the current version of the Selfware system, managed elements correspond to non distributed com-
ponents. A managed element is either a managed node, or a component that executes on a managed
node.

10

plan. The managed elements controlled by an autonomic manager may be designed im-
plicitly or explicitly. Since an autonomic manager is also a managed element, it can be
remotely deployed/undeployed and it can be controlled by another autonomic manager.

An autonomic manager can rely for its operation on a system view maintained by
the system representation service (described below). Two principal modes of operation
are possible with respect to the system representation. In the passive mode, the system
representation is updated by the autonomic manager according to notifications received
from managed elements sensors, and commands that it executes on managed elements
actuators. In the active mode, notifications and commands are mediated by components
in the system representation that implements proxies to managed elements.

3.3 Common services

Common services in the Selfware architecture provide a set of basic capabilities used by
autonomic managers to perform elementary configuration management functions, such
as installing and deploying components on nodes, or communicating with sensors and
actuators. Components that provide common services are also managed elements. The
common services described in this report are the following :

e The resource allocation service provides the functionality to allocate resources for
the managed system as well as for the management system. In a first step this
service will be used for node allocation. Node allocation can take several forms,
and can provide more or less sophisticated levels of hardware resource virtualization.
The node allocator service is typically used by autonomic managers to request or
relinquish nodes.

e The navigation service is designed specifically to express queries on Fractal archi-
tectures. These queries can be used to “walk” inside a running Fractal application,
discovering its structure and selecting elements according to any property repre-
sented in the Fractal model. This service allows an easy access to the architecture
of the managed system as well as of the management system. It complements the
system representation presented below.

e The system representation service is used to maintain a consistent view of the runtime
system as a component-based architecture. This view is isomorphic, introspectable
and causally connected to the runtime infrastructure.

e The deployment service aims at deploying both the managed system and the man-
agement systems on remote nodes. This service (i) download software packages from
a remote location. (ii) install the required software on the cluster, (iii) configures,
instantiates and starts managed elements as well as removes managed elements from
the infrastructure.

e The monitoring service is used to gather arbitrary level information about resource
execution and aggregate these informations to provide high level event with more
semantics. The monitoring service is composed of probes which represent the sensor
of the infrastructure.

11

e The decision service provides decision making tools (models, languages and runtime)
for implementing the reactive part of autonomic management policies defined by
autonomics managers in their control loop.

e The wrapping service provides the language and the runtime used to generate the
component wrappers used to control legacy software. This service will generate
fractal component from wrapper description.

e The reconfiguration service provides two separate but related needs for the Selfware
platform with respect to reconfiguration. First, a specific language (DSL) to ease
the description of reconfigurations. Second, we need to be able to define correctness
for these reconfigurations, which might depend on the target application, and to
guarantee that only correct reconfigurations can be applied, as efficiently as possible.

Figure 4 gives an overview of the Selfware architecture.

Decision Wrapping

Resources

Allocation Navigation

Managed

o System
Monitoring Deployment

Component
System Model

Representation Reconfiguration
(SR)

Common Services

Figure 4: Selfware architecture overview

3.4 Replication structure for manager nodes

The replication of manager nodes is in response to the need for fault tolerance of autonomic
managers, and to the need of a self-healing system. Realizing a self healing system in the
control approach we have adopted for Selfware requires to establish a meta-level control

12

loop for monitoring and dealing with manager node failures. We build this meta-level loop
by replicating manager nodes in a Selfware system, which provides also for fault tolerance.

The replication structure, illustrated in Figure 5, is obtained by: (1) actively dupli-
cating the Manager component on different nodes, and (2) by ensuring that the System
Representation contains a representation of the Manager nodes themselves (together with
their internal configuration and bindings, as for other nodes). A standard active replica-
tion of the Manager component on different nodes is not sufficient, however, for one must
avoid the duplication of commands.

Group communication protocol

I

Manager component Manager component Managﬁ;:g::)ponent
1 1
\ \
\ \
N
N \\
~
S Sea
Command ~ ~ ~
-~ ——
transport) T T T =~ _ \
~ \
~
Notification M)

transport

Managed system

]
{1

Figure 5: Replication structure

The active replication of the manager nodes can be realized according to the following
scheme, using a uniform atomic broadcast protocol with a leader role:

e Manager nodes (together with their autonomic managers, system map and node
fault detectors), are replicated according to the required level of fault-tolerance (if
we only consider silent failures with no possible network partition, f manager node
failures can be tolerated using f + 1 nodes).

e We assume the node fault detection service is available on all manager nodes, and
that it can provide the guarantee that a node crash is ultimately detected by at least
one non failed manager nodes.

e Each node failure notification to, and each command from, a manager node, is

13

broadcast to all other manager nodes in the system (manager nodes form a single
broadcast group in the system), using the uniform atomic broadcast protocol.

e Only the autonomic managers of the Leader manager node act on failure notifications
or instructions from the Console. In particular, only the Leader autonomic manager
sends requests to the node allocator and issue configuration commands to managed
nodes.

e Associations between notifications and resulting commands, as well as between con-
sole instructions and resulting commands, are assigned unique identifiers and jour-
nalized by autonomic managers in each manager node. This allows, for example,
the repair manager of a newly elected Leader to complete the reaction to a failure
notification which has not been completed by the failed former Leader.

e Identifiers for notification/command pairs uniquely identify commands, and are sent
as additional parameters of each command. Actuators discard commands they re-
ceive that bear the same identifier of a previously executed command. This takes
care of the potential window of vulnerability that exists between the completion of
a command and the failure of a Leader manager node.

4 Managed element

This section introduces two kinds of managed elements : (i) the legacy managed element
and (ii) the architecture managed element.

4.1 Legacy Managed Element

A Legacy Managed Element (LME) is any piece of legacy system; it can be a hardware
element such as a cluster node, or software element such as a middleware running on a
node or an application running on the middleware. A Managed Element is equipped with
a uniform management interface that provides a homogeneous view of all the managed
legacy elements. This allows Autonomic Managers to apply common self-management
policies to different managed elements (e.g. different legacy systems). The basic uniform
management interface is composed by the fractal interfaces described above : (i) Attribute
controller interface (property management and introspection). (ii) Binding controller inter-
face (Interconnection management and introspection). (iii) Life-cycle controller interface
(Life cycle management and introspection).

When dealing with legacy software, not initially intended to be externally managed, a
common solution for providing such management interface is to use a wrapper, or adapter.
The function of the wrapper is to make a bi-directional translation between the interface
provided by the legacy components and the specified management interface. Thus any
software managed with Selfware is wrapped in a Fractal component which interfaces its
administration procedures, through the provision of controllers. This provides a means to
manage legacy entities using a uniform model (the Fractal control interface), instead of
relying on software-specific, hand-managed, configuration files. Furthermore, it permits to

14

add a control behavior to the encapsulated legacy entities (e.g. monitoring, interception
and reconfiguration). All wrappers components provide the same (uniform) management
interface for the encapsulated software, whereas the corresponding implementation is spe-
cific to each software (e.g. in the case of J2EE, Apache web server, Tomcat Servlet server,
MySQL database server, etc.).

Wrappers are the part of the management system specific to the legacy software while
they provide the same basic fractal API. Relying on this management layer, sophisticated
administration programs can be implemented, without having to deal with complex, pro-
prietary configuration interfaces, which are hidden in the wrappers.

4.2 Architectural Managed Element

An Architectural Managed Element (AME) represents a given architectural organization
of Managed Elements, e.g. hardware/software stacks (computer, OS, middleware, appli-
cation), or the client/server architecture. Thus, Architectural Managed Elements are the
general representation of complex system architectures. Thanks to Fractal’s hierarchical
model, arbitrary sophisticated organizations can be modelized and managed using appro-
priate composite components. Relying on the fractal composition mechanism, standard
fractal controllers provide coarse grain management operations over the composite struc-
ture. For instance network topology, cluster of machines, distributed J2EE infrastructure
can correspond to a composite component at runtime. These coarse grain management
operations are independant from any applicative context :

e Architecture model and introspection : The software architecture is present at run-
time as a set of interconnected component. This architecture provides a basic knowl-
edge which can be used by control loops through introspection operation. Introspec-
tion allows to discover the structure of a complex infrastructure materialized at
runtime by a composite component. We can discover the subcomponents, their in-
terconnection, their configuration, their lifecycle. Note that the architecture remains
consistent when the legacy system is updated.

e Architecture deployment : Deploying a composite component induces the, possibly
remote, deployment of its subcomponent and interconnection. This level of deploy-
ment is independant from the legacy since configuration specificity are tackle by the
wrappers (i.e : the basic managed element).

e Architecture lifecycle : These operations allow to manage the lifecycle of the com-
plex structure corresponding to the composite inner architecture. The standard
implementation of the lifecycle controller implements a generic workflow (depth first
search) to start and stop subcomponents. This implementation can be modified to
ensure specific workflow if necessary.

e Architecture reconfiguration : It provide operations to reconfigure the composite
inner architecture. It can be used for instance to add or remove subcomponent in a
composite structure.

15

5 Example

5.1 Legacy Managed Element

We now give an example of a Fractal wrapper for the Apache server that is part of the J2EE
architecture described above. As a managed element the wrapper provides an attribute
controller, a binding controller and a lifecycle controller:

e The attribute controller interface is used to set attributes related to the local exe-
cution of the Apache server. For instance, a modification of the port attribute of
the Apache component is reflected in the httpd.conf file in which the port attribute
is defined. This interface can also be used to retrieve some specific configuration
properties.

e The binding controller interface is used to connect Apache with other middleware
tiers. For instance, invoking the bind operation on the Apache component sets up a
binding between one instance of Apache and one instance of Tomcat. The implemen-
tation of this bind method is reflected at the legacy layer in the worker.properties
file used to configure the connections between Apache and Tomcat servers. This
interface can also be used to change a connection between two component and to
discover existing bindings.

e The life cycle controller interface is used to start or to stop the server as well as to
read its state (i.e. running or stopped). It is implemented by calling the Apache
commands for starting/stopping a server.

Other servers (Tomcat and MySQL) are wrapped in a similar way into Fractal com-
ponents, and provide the same management interface.

Once wrapped, many instance of legacy software can be combined together to form a
complex distributed infrastructure. The component layer provide : (i) a naming system
to identify software instance, (ii) a type system to ensure the consistency of software
interconnection. In the following, we show the benefits of using Selfware to perform system
reconfiguration, compared to an ad-hoc approach. Figure 6 illustrates a scenario where,
initially, an Apache web server (Apachel) is running on nodel, and connected to a Tomcat
Servlet server (Tomcat 1) running on node2. In this scenario we want to reconfigure the
clustered middleware layer by replacing the connection between Apachel and Tomcatl by
a connection between Apachel and a new server Tomcat2.

Tomcat1l/Node2 ‘
Apachel/Nodel
ajp_itfj Tomcat2/Node3
k tomcat2-itf

Figure 6: Reconfiguration scenario

Without the Selfware infrastructure, this simple reconfiguration scenario requires the
following steps to be manually done (with very low reactivity), in a legacy-dependent way:

16

first log on nodel, then stop the Apache server by running the Apache shutdown script,
then edit and update the configuration file (worker.properties) in Apache to specify its
binding to the new Tomcat server (Tomcat2 on node3) as follows:

worker.worker.port=8098
worker.worker.host=node3
worker.worker.type=ajpl3
worker.worker.lbfactor=100
worker.list=worker, loadbalancer
worker.loadbalancer.type=1b
worker.loadbalancer.balanced_workers=worker

Finally, the Apache server is restarted by running the hitpd script. With Selfware, as
soon as the required wrappers have been implemented, such a reconfiguration can easily
be implemented in an administration application. The operations required to perform
this same reconfiguration are simply few operations on the involved components in the
management layer, namely:

Apachel.stop()

// unbind Apachel from Tomcatl
Apachel.unbind ("ajp-itf")

// bind Apachel to Tomcat2
Apachel.bind("ajp-itf",tomcat2-itf)

// restart Apachel
Apachel.start ()

In the following we give the example of an apache wrapper (we focus on the lifecycle
controller).

// Here is the standard interface for the lifecycle controller
public Interface LifeCycleController {

/** Starts the component to which this interface belongs */
public void startFc(Q);

/** Stops the component to which this interface belongs */
public void stopFc();

// Here is the wrapper code that implements this interface for the apache server
public class ApacheWrapperImpl implements LifeCycleController, ... {
public void startFc() throws SelfwareException {

ShellCommand.syncExec(dirInstall + "/bin/httpd -f" + dirLocal + "/conf/httpd.conf");
}

public void stopFc() throws SelfwareException {
BufferedReader br = new BufferedReader(new FileReader (new FileReader(dirLocal + "/log

17

ShellCommand.asyncExec("kill -TERM" + br.readLine());
}
}

5.2 Architectural Managed Element

In the case of a J2EE infrastructure, we can provide a J2EE component built from a
set of sub-components representing the legacy servers (apache, tomcat, mysql) and their
interconnections. This is illustrated in Figure 7. In this setting,the structure of the
J2EE component is composed by : (i) a L4-switch balances the requests between two
Apache server replicas, (ii)Two Apache servers connected to two Tomcat server replicas,
(iii) Two Tomcat servers both connected to the same MySQL server. The vertical dashed
arrows (between the management and legacy layers) represent management relationships
between components and the wrapped software entities. In the legacy layer, the dashed
lines represent relationships (or bindings) between legacy entities, whose implementations
are proprietary. These bindings are represented in the management layer by (Fractal)
component bindings (full lines in the figure).

In the case of this J2EE component , an administration program can inspect the overall
J2EE infrastructure, considered as a single composite component (i.e. to discover two
Apache servers interconnected with two Tomcat servers connected to the same MySQL
database server). It can also add or remove legacy servers in the J2EE infrastructure (for
instance adding a tomcat server between an existing set of apache servers and databases).
We can also invoke the start/stop operation provided by the lifecycle controller of the J2EE
component. This will start/stop all the middleware servers belonging to this component
(the apache servers, the tomcat servers and the databases) according to the implemented
lifecycle workflow.

Management layer

Management
interface

L4
switch

@)

Legacy layer

Figure 7: Management layer for a clustered J2EE application

18

6 Common Services (ALL)

6.1 Deployment (INRIA)
6.1.1 Goal

The goal of the deployment service is to install and configure application and well as to
undeploy them. The deployment service will deploy application’s components according to
(i) the ressources provided by members and (ii) some contrainsts related to the application
(for instance locality constraints...). in this section we provide a functionnal description
of the deployment service.

The deployment service is architecture-based. It means that given a description of the
software architecture, the deployment service is capable to install, instantiate and run soft-
ware components described by this architecture. Moreover, the deployment system allows
for component versioning and dynamic updates — several versions of software components
can coexist, components can also be replaced with their new versions.

The software elements to be deployed must be described using the Fractal ADL. The
next section present the requirement of the deployment service. All these requirement are
not currently fulfilled by using a standard ADL factory.

6.1.2 Requirements
e The user can insert or remove a component into an existing component structure.

e The configuration of a component can be explicit or implicit.

e The deployment service must be able to deploy complex component structure which
can be made of legacy components.

e Non functional properties can be easily plugged in the deployment process. For
instance an interesting property is to ensure the atomicity of deployment orders.

e The deployment service must be fully specializable. In particular, the implementa-
tion and the scheduling of the deployment orders can be controlled by the user.

6.1.3 Deployment workflow

This service is implemented using an ADL Factory. The deployment algorithm requires
that physical nodes are wrapped as managed elements and provide (i) an installation
API to install software on the node and (ii) a component factory API to create managed
elements. The algorithms of the deployment process is summarized below:

e Lookup for the node where the component must be deployed.

Install the component package on the target node.

Instantiate the component on the target node.

Configure the component (i.e its attributes and its external bindings).

e Process recursively with the sub-components if necessary.

19

The basic deployment steps are depicted on figure

1/ Node Alloc
Deployment ————
service

6/ create 2/ Install
Managed

element 3/Bundle | |ngtallation

Allocated download Repository
Node

7/ Configure
(attribute and structure) 4/ Bundle
activate
Legacy

Dat:
Managed ata Bundle

Element 8/ configure 5/ Install .
Legacy software Legacy data Activator
In dirLocal

Resource
Allocator
service

Figure 8: The steps of the deployment process

6.2 Wrapping (IRIT)

Wrapping is one of the common services of the Selfware architecture. Wrappers can be
used to encapsulate diverse software resources so that they all present a common and
simplified interface. Software wrapping is a technique in which an interface is created
around an existing piece of software, providing a new view of the software to external sys-
tems, objects, or users. Using wrapping techniques, legacy software (e.g. Apache, Tomcat,
MySQL etc) can be changed to software components that can be integrated (to new com-
puting environment), manipulated (installed, configured, re-configured), controlled and
maintained (repaired) automatically and in efficient manner. In the context of Selfware,
wrapping helps developing an environment whereby a potentially large number of existing
legacy software components can be adapted for use within a new software administra-
tion framework. Wrapping facilitates self-managing capabilities such as self-configuration,
self-optimization, self-healing, and self-protection which are very important properties of
autonomic computing.

6.2.1 Basic principles of wrapping

The aim of wrapping, in the context of Selfware, is to encapsulate the different components
of the J2EE and JMS legacy software platforms in order to develop administration systems
with capabilities of performing the following activities in automatic, efficient and dynamic
fashion:

e Installation and deployment

e Configuration (re-configuration)

20

e Error detection and maintenance

The basic idea of wrapping is to provide control mechanism to do the above activities by
the system. The internal activities of the legacy systems or the interactions/calls between
them are not intercepted or controlled by the system. The system facilitates only the
configuration of the different components.

6.2.2 Fractal model and wrappers

Since the Selfware system is built on the Fractal component model, the purpose of the
wrappers is to create a corresponding Fractal component for each component of the legacy
software. The Fractal model provides adequate support to develop wrappers for legacy
software components because it provides well defined interfaces such as attribute controller,
binding controller, content controller and lifecycle controller which can easily be mapped
to the installation, deployment, configuration and maintenance activities in the legacy
software. Once one legacy software component is wrapped into a Fractal component, the
manipulation of the legacy software is done through the different control interfaces of the
Fractal component.

Consider a clustered J2EE architecture composed of Apache, Tomcat and MySQL com-
ponents. In such a scenario, normally, a human administrator configures the architecture
by accessing the configuration files associated with each component. For example, to con-
figure the port of the Apache server and to define the binding or connection of the Apache
server with other components, this requires the modification by the administrator of the
httpd.conf and the worker.properties files respectively. With the Selfware infrastructure,
by wrapping each of the legacy software into Fractal components, those activities can be
done in an automatic and dynamic manner by an administration system.

For example by creating a Fractal wrapper for the Apache server, the attribute con-
troller interface is used to configure the properties of the Apache server and the binding
controller interface is used to define the connection of the Apache server with other compo-
nents of the system, in this case Tomcat servers. At the same time the life cycle controller
interface is used to start, stop and read the state (running or stopped) of the server.

We identify the following related works on wrapper development, which is a potential
source of inspiration.

e Kilim (http://kilim.objectweb.org/). Kilim is a configuration framework based on
the Fractal component model, that provides a generic model, a powerful language
and tools (a parser, a runtime configuration viewer) to facilitate, automatize and
control the configuration process of arbitrary complex applications. Kilim enables
the definition of composable abstractions called templates, capturing encapsulated
sub-systems, defining their properties and their connectivity (slots), defining the
mapping of these abstractions to existing code in terms of constructors used to
create the various instances they may contain and setters/methods used to configure
and to connect them; and the recursive assembly of these components allowing to
build complex systems. Here, to build a complex system a template is created by
assembling existing templates. Kilim creates components from Java code using the
templates.

21

e Cargo (http://cargo.codehaus.org/Home). Cargo is a thin wrapper around existing
containers (e.g. J2EE containers). It provides different Java APIs to easily manipu-
late containers: starting/stopping containers, configuring containers for deployment
on any user-specified directory, deploying WAR and EAR components on these con-
tainers.

6.2.3 Requirements

Wrapping is one of the common services of the Selfware architecture. We aim at providing
a wrapping service with two components: a wrapper description language (WDL) for the
specification of the wrapper associated with a legacy component, and a wrapper generator
(WG) which generates the wrapping software from the WDL description. The specification
provides vital information that is required to generate the wrapper of the legacy software.
The wrapper generators creates the appropriate Fractal component that corresponds to
the legacy software based on the specification/description.

To aid the development of an appropriate scheme for the wrapping activity, the fol-
lowing requirements should taken into account.

e Dedicated language. To facilitate the definition of wrappers, a dedicated language is
required to specify the translation of administration interfaces into legacy software
administration functions (which are proprietary). The administration interfaces of
the wrappers are used by the system to control and configure the legacy software.

e Extensibility. Since the wrapped legacy software are very heterogeneous (very dif-
ferent administration functions), the WDL should be extensible in order to accom-
modate to very different classes of legacy software (and classes of administration
functions). However, we believe the few personalities of WDL should cover most of
the application domains.

e Generate Fractal components. The Selfware platform is based on the Fractal compo-
nent model. From a WDL specification, we must automatically generate the Fractal
component that corresponds to the wrapped legacy software.

To conclude, if the wrapper specification language is more generic, it has a wide appli-
cability to very different application domains, but required more efforts from the developer
to program the wrapper. If the wrapper specification language is more specific, it limits its
applicability to different application domains but requires less programming efforts. The
good trade-off is probably to provide a wrapping framework for defining specialized WDL
languages (and their associated generators) for different applications domains.

6.3 Monitoring requirements

6.3.1 Objectives

This chapter aims at defining the monitoring requirements for the Selfware platform
in terms of system observation and information feedback. These requirements come from
the project’s autonomic scenarios in the fields of self repair, self configuration and self
optimization. Roughly, the Selfware autonomic infrastructure needs to know what the

22

system it is managing is made of, and what is the state of this system. This information
quest may follow a variety of modalities according to the target resources (software element,
hardware element, network, execution support abstractions...) and the target features
(deployment, configuration, repair, or optimization).

Beyond this information extraction and delivery role, the software architecture of this
monitoring functionality must be consistent with and integrated to the overall Selfware
infrastructure. One of the key ideas behind this requirement is that it should also benefit
from the autonomic management features of the Selfware platform.

6.3.2 Required features

Generalities : The monitoring feature aims at observing the managed system and
delivering the observation results to the autonomic control features, either by broadcasting
events (push mode), or by keeping the information that will be picked by the interested
elements when needed (pull mode). For instance, an autonomic control element may be
interested in receiving an event when a system load threshold is reached, while periodically
checking the availability of a computer on the network.

Elements of the monitoring functionality, that we will call probes, are likely to be
active, possibly to get information (observation, measurement), and possibly to send the
extracted information. Probes may also require a memory feature to keep the extracted
information during a certain amount of time, either as raw data or as statistical values on
sliding time frames.

Basic observations : Scenarios about self repair basically need fault detectors, such
as heart beat (I'm alive!) or ping (are you alive?). Self optimization scenarios needs are:

e system load measurements (CPU consumption, RAM utilization, disk and network
transfer rates, etc.),

e observation of middleware and applications involved in scenarios based on Jonas and
Joram (Java Virtual Machines, Servlet servers, databases, etc.)

Aggregated observations : Beyond those basic observations that are obtained from
basic probes dedicated to specific software or hardware elements of the managed system,
there is also a need for more elaborate, higher level indicators computed from the basic
observations. For instance:

e a system load or an application server load metric

e an aggregation of CPU loads for a given cluster of computers

Both kinds of observation may be required at the same time, and may evolve in time.
Moreover, it might be necessary, or at least convenient, to share probes among several
combinations. For instance, a CPU probe may be used as is, for local CPU observation,
as well as simultaneously in a local system load aggregation and a CPU load aggregation
for a cluster of computers. Finally, probes and aggregations should be reconfigurable.

23

6.3.3 Software architecture requirements

Uniform probe representation : The architecture should feature a uniform rep-
resentation of all probes. This means that all probes must expose identical interfaces,
even when they were in charge of monitoring different system proprieties and/or hetero-
geneous resources. The monitoring framework should support various probe types for
monitoring different system resources and proprieties, at different abstraction levels. For
example, probes could be available for monitoring a system’s CPU, a JVM’s memory, an
application’s workload, or a cluster’s general load. However, all probes should be equally
accessible via identical interfaces, in order to retrieve monitoring data or apply control
commands.

More generally, the monitoring functionality must be deployable and manageable sim-
ilarly to any other element in the Selfware platform. As a consequence, we must rely
on a uniform architecture based on Fractal components that conform to the Manageable
component type.

Recursive, hierarchical probe composition : The architecture must support probe
organisation into recursive, hierarchical constructs. This allows system managers to build
arbitrary monitoring hierarchies based on individual probes. Probes can be basic or com-
posite. Basic probes extract actual data from the monitored system elements and repre-
sent leaf nodes in the monitoring hierarchy. Composite probes collect data from lower-level
probes, which can be in turn basic or composite. Collected data is being processed so as
to provide a higher-level monitoring view of the corresponding resources.

Extensibility : The architecture should enable the monitoring framework to be seam-
lessly extended, in terms of probe types, data formats, processing capabilities and com-
munication protocols.

e Probe types : it should be possible to incrementally provide additional probe types
for monitoring new relevant resources and system properties. The architecture should
allow such additional probes to be seamlessly integrated with the existing monitoring
infrastructure. Third-party or legacy probes should also be supported, provided they
implemented the required framework interfaces. Specific wrappers or adapters should
be specified and built in order to allow various third-party or legacy probes to be
represented as Selfware probes and subsequently reused in the framework.

e Data formats : Probes should be able to provide monitoring data at various detail
levels and in various formats. For example, a simple long|[] array can be used to
repeatedly retrieve the most frequently changing monitored parameters. In addi-
tion, more extensive monitoring data can be available in XML format, to provide a
comprehensive view of all monitored parameters. In this scenario, clients can sub-
sequently decide which data format to retrieve at various times, so as to meet their
requirements while optimising performance

e Data processing : The internal probe architecture must allow data-processing func-
tions to be extensible and configurable across different probes. This implies support

24

for new aggregation, filtering and scheduling strategies, or even of new ways of
combining such strategies into more complex data-processing chains. Upon its in-
stantiation, each probe should be configurable with a custom data-processing chain,
involving specific aggregation, filtering and scheduling functions.

e Communication protocols : Communication protocols intervene at two levels in the
monitoring framework. First, they are used for inter-probe communication. Var-
ious inter-probe communication protocols should be fairly easy to set, at different
hierarchical levels. Second, different communication protocols can be used for access-
ing and/or controlling the probes. Clients should have several choices for remotely
accessing and managing probes, including JMX, JMS or RMI.

Scalability : The monitoring framework should scale gracefully with the number of
monitored resources and aggregated data sources. This means that the overall monitor-
ing hierarchy should withstand increasing numbers of monitoring nodes and that each
composite probe should be able to handle large numbers of data sources.

Adaptability and robustness : The monitoring framework should be able to correctly
handle the dynamic addition and/or removal of monitored resources and/or subordinate
probes. This implies that system managers can dynamically instantiate or remove basic
probes for monitored resources, or composite probes for higher-level properties. Also,
existing composite probes should be dynamically reconfigurable so as to accept additional
data sources, or to adjust their data-processing functions. Finally, composite probes should
be able to withstand system resource failures that imply the sudden absence of basic probes
data sources.

Manageability : The monitoring architecture should enable system managers to fairly
easily control monitoring probes, probe configuration and hierarchical inter-probe bind-
ings. As the monitoring hierarchy’s scale and complexity increase, the number of manual
management procedures should be minimized.

Defining autonomic behaviours for the Selfware platform requires higher level pro-
gramming interfaces and abstractions than the plain probe infrastructure, in order to
easily implement the autonomic control loop for a variety of use cases 7. In other words,
the Fractal-based probe infrastructure provides a sound, generic architectural support that
we may adapt through one or several software layers supporting high level features such
as:

Multi-criteria designation of components (structural criteria, type, name, etc.)

Event designation and access to the values they hold

Numerical expression definition, computed from the values hold by events;

Boolean conditions evaluated from values hold by events or according to the events
source component

25

Portability : The monitoring framework should be portable across various application
platforms, operating systems and CPU architectures. This implies that different moni-
toring probes in the hierarchy should be deployable and usable on different systems, with
dissimilar software and hardware characteristics.

Performance : The performance overheads induced by monitoring probes on the
managed systems should be minimized. A popular approach is to minimize overheads
caused by instrumentation code (i.e. for basic probes) on the actual monitored nodes and
to use separate stations for performing the remaining data-processing and management
functions. In addition, the performance of data transmission and processing procedures
should be such that the Selfware framework can effectively learn of relevant system changes
and react in due time.

Component-based architecture : The monitoring service by itself is likely to be-
come a complex, distributed infrastructure by itself that would deserve relying on the
autonomic services of the platform. To achieve this, the monitoring service shall be based
on components that conform to the Manageable component type. Moreover, functional
requirements in terms of composition (for aggregate observations), sharing and runtime re-
configuration also advocate for an advanced component model featuring recursion, sharing
and reflexion.

Common Monitoring Utilities : Some of the most commonly required monitoring
utilities should be provided to assist administrators with using the monitoring framework.
Such utilities can include graphical user interfaces, probe instantiation and remote deploy-
ment facilities.

6.4 Requirements for a monitoring integration middleware

Numerous monitoring solutions already exist in many domains (network and grid, per-
formance, application-level, environment, etc.). Each of these solutions represent real
expertise in a specialized domain, but they can not be easily combined to provide an
overall picture, as they are generally ad hoc and heterogeneous. Building an autonomic
control loop requires a systemic view of the target application and its environment, which
covers domains currently targeted by different solutions. In order to build such a systemic
view without re-implementing already existing solutions, one must be able to integrate
different monitoring technologies (called ”providers” from now on) in a uniform way. In a
way, what is needed is a monitoring middleware, able to provide a uniform—and hopefully
simple—interface to a set of heterogeneous monitoring solutions.

The requirements presented below supplement and/or specialize those presented above
in the case of a monitoring middleware specifically designed to integrate existing but
heterogeneous monitoring solutions.

The first, core requirement is the need for a common, generic and flexible data model
to represent the monitoring data from all the providers into a single, uniform way to
the end user. The model must be generic, i.e. not domain specific, as the very goal is
to integrate providers specialized in different domains. Because all these providers have

26

been developed independently, the common model must be flexible to accommodate their
differences. For the same reasons, the model must impose as little semantic as possible,
i.e. at its core it must be closer to a plain data structure than to a predefined ontology.
However, that semantic should not be imposed does not mean it should be forbidden: the
model may optionally support ways for providers to declare constraints on how they use
the generic model, for example using typing annotations or schema-like constructs Finally,
as the model will be directly exposed to the end user, it must offer a good compromise
between richness/structure and simplicity.

As already mentioned in section 1, this shared data model must be accessible to the
end-user in two ways:

1. a pull mode, where the user queries the middleware to know the current structure
and state of the model;

2. and a push mode where the user can ask to be notified automatically and asyn-
chronously of specific conditions occurring in the model, so that he does not have to
do potentially inefficient polling of the model.

The interface presented to the end-user, in this case a programmer, should be simple to
learn and to use. This means the API should have a "low surface area” (minimize the
number of functions to learn), and should try to reuse/leverage concepts already familiar
to the user. It also means that the API should isolate the programmer from the actual
implementation details, especially since they will be different from provider to provider.
This last requirement implies that the middleware should provide different interfaces to
the end-user, who needs a simple and uniform view, and the configurator, who builds this
common view by choosing, configuring and integrating the appropriate set of providers.
The interface provided to the configurator will be more complex than the one presented
to the user, but this complexity should be hidden from the latter.

The middleware should support real and seamless integration of heterogeneous providers,
meaning that it should not just be a common ”wrapper” API, but allow multiple providers
to coexist at the same time inside a given instance of the middleware. Also, these multiple
providers should not be completely isolated from each other, but be able to interact, for
example when the configuration of one provider must be updated to reflect new informa-
tion from another (e.g. when one provider detects a new device plugged in the system,
another wants to be notified so it can deploy its own probes on the new device).

As the objects monitored by the system can be highly dynamic and change unpre-
dictably, the middleware configuration must itself be dynamic so as to be adapted to
reflect changes in the target system. This dynamic reconfiguration must be controlable by
program so that it can be automated (for example as part of an autonomic control loop)
and so tools can be built for configurators/administrators.

The middleware should be able to support both simple providers, i.e. primitive
probes which monitor a single element and provide simple measures, as well as struc-
tured providers which have their own, potentially complex, structured data model which
must be mapped into the common model.

The middleware should support abstraction on the data obtained from the providers:
it should not be limited to importing raw measures given by a provider, but should also

27

be able to adapt/abstract over these raw values (by computing derived/aggregated values)
to offer a less ”idiomatic” view. Examples include changing the unit of measure used by
a provider or computing a derivative (bandwidth used from the total number of bytes
sent /received).

Finally, the middleware should impose as little overhead (both in memory and CPU)
in the use of the integration framework/middleware compared to a "native” usage of the
provider.

6.5 Decision (BULL, FT)

Decision making mechanims provides the tools (models, languages and runtime) for im-
plementing the reactive part of autonomic management policies defined by autonomics
managers in their control loop. Each management policy is ”distributed” across the dif-
ferent functions of the architecture:

e in the monitoring function for extracting the relevant information. A part of the
filtering and aggregation task can be done in the monitoring feature.

e in the analysis function for providing the mechanisms that correlate and model com-
plex situations (for example, time-series forecasting and queuing models). These
mechanisms allow the autonomic manager to learn about the IT environment and
help predict future situations. The analyse function evaluates the different condi-
tions that aims to update the global state of the system. This state and its changes
are used as inputs in the condition part of the plan’s rules.

e in the plan function for providing the mechanisms that construct the actions needed
to achieve goals and objectives. The plan function applies the adaptation policy and
fires the rules acting on the system. Depending of the complexity of the operation,
the number of steps, actions can be organized in a workflow process. In this case, the
plan rules throws an action part that creates an instance of a process. The different
interactions at each task can be held by others rules instead of human.

e in the execute function by providing the mechanisms that control the execution of a
plan.

Two approaches are investigated in the Selfware context for decision making and more
globally for reactive capabilities: one is based on active rules (Event Condition Action or
ECA rules), the other is based on production rules. The initial hypothesis in the Selfware
architecture is that an active rules mechanism would be used in local control loops where
reactiveness in essential ; while an production rules mechanism would be used for global
(centralized) management where production rules will be expressed in a high level language
close a natural language. The global decision service would make use of a workflow engine
that can be used for implementing the plan function.

This objective of the work on decision making in Selfware is i) to study comparatively
the two approaches, ii) to validate or invalidate the above hypothesis and iii) more globally
to study interactions between local and global decision making process.

28

6.5.1 Active (ECA) rules

Objective Reactive behaviour, the ability to act/react automatically to take corrective
actions in response to the occurrence of situations of interest (events) is a key feature in
autonomic computing. This reactive behaviour is typically incorporated by active rules
(Event-Condition-Action or ECA rules) [40] a mechanism widely used in active database
systems to provide a reactive behaviour (an elaborated form of triggers as found in most
commercial DBMS). Active rules in ADBMS are used for the implementation of integrity
constraints, derived data, update propagation, default values, versions and schema evalu-
tion management, authorisations, etc.

The approach followed here consists in defining a mechanism for the integration of
active rules in component-based systems to augment them with autonomic properties.
The fundamental idea being to "extract” the reactive functionality of active database
systems[24], and to "adapt” and ”inject” it for component-based systems so as to provide
them with autonomic capabilities.

Rational Active rules in database systems have been extensively studied but cannot
be directly applied to component-based systems. Three main points deserve a special
attention in this respect:

e the definition of a active rule definition model suitable for component-based dis-
tributed systems. In active database systems, events, conditions are actions are
essentially related to data manipulation through (SQL) query statements - while in
component-based autonomic systems, events, conditions and actions are essentially
related to interactions between components (operation invocations on component
interfaces),

e the definition of a rule execution model suitable for component-based distributed
systems. In active database systems, rules are triggered by events generated in the
context of a transaction, conditions are evaluated and actions executed in the context
of a transaction as well (the three steps in one unique transactions or in concurrent
transactions). All dimensions/parameters of rule execution in active database sys-
tems are also based on the presence of transactions in ADBMS which represent a
natural and convenient execution unit. Transactions are generally absent in auto-
nomic component-based systems. Active rule execution models in ADMBS have to
be re-visited for component-based systems.

e the architectural integration of rules in component-based distributed systems. In
active database systems, rules are generally represented and manipulated as any
other data: typically relations (tables) in relational DBMS or objects in object-
oriented DBMS. Their scope is global to a database schema (a set of relations in
relational DBMS, a set of persistent classes in object DBMS). In component-based
systems, the nature (e.g. implicit rules implemented as part of a component platform
or rules as components) and the scope (a rule attached to one component or rules
with broader scopes) of rules have to be stated.

Also important, the extensive study of active rules in database systems has shown that one
semantics (specify by an execution model) does not match all applicative needs. On the

29

contrary, what is needed are flexible execution models that allow programmers to adapt
the rule execution semantics to their specific needs. A overall objective is then to come
up with an adaptable architecture that would support flexible rule execution models.

Reference models and architecture As this work is underway, we can draw here the
big picture of the envisioned ECA rules mechanim:

Definition Model The rule definition model specifies the form (format) of events, con-
ditions and actions. Considered events are applicative events generated by operation
invocations on components interfaces and access the components attributes, struc-
tural events related to changes in the topology of the considered target system (ad-
ditions, removals, replacements of components and bindings between components)
and system events typically generated by the underlying JVM and OS. Applicative
and structural events will be typically detected and notified by interceptors. System
events will typically come from monitoring system such as WildCat, Lewys/CLIF,
JMX, etc. Conditions relate to the states of the considered system known typically
by FPath queries on components attributes and system structure (and possibly be-
havior). Actions range from simple components attributes settings or external notifi-
cations (e-mail, SMS) to complex (possibly transactional) reconfigurations (typically
expressed with FScript).

Execution Model The basis of the execution model for component-based systems is
the execution unit delimited by the interval between the reception of an operation
invocation on a server interface and the emission of a response onto a client interface.
Applicative events (generated by operation invocations) and structural events (add,
remove of components and bindings) are thus decomposed into two signals begin and
end. Other forms of events (e.g. system events) can be integrated in the model by
considering their begin and end signals are merged (i.e. they represent both the
same execution point or point in time). The execution model will also typically
define event processing modes (instance-oriented or set-oriented triggering of rules)
and coupling modes (execution in a immediate, delayed or differed mode in a same
or separate thread of execution).

Architectural Integration The reference architecture of the ECA mechanism is based
on the concept of management domain. A domain a set of entities on which is
applied a common policy. A domain embodies a unit of composition and a unit
of control. The reference architecture is hierarchy of nested domains implemented
as components: a policy component encapsulates a set of rules components and
provide them with a execution strategy in case of multiple or cascading rules, a
rule component encapsulates a event component, a condition component and an
action component and provide them with a local execution strategy (event processing
mode, coupling modes). Event, condition and action components encapsulate sets
of applicative components which embody the scope of event detections, conditions
evaluations and actions executions.

Summary To summerize, Selfware will propose as part the Selfware architecture an
active rule model, i.e. a rule definition model and a rule execution model, that can be

30

coherently integrated into a component model ; and a graceful architecture for the inte-
gration of active rules into component-based systems in which the rules as well as their
semantics (execution model, behaviour) are represented as components, which permits
i) to construct personalized rule-based systems and ii) to modify dynamically the rules
and their semantics in the same manner as the underlying component-based system by
means of configuration and reconfiguration. These foundations form the basis of a frame-
work /toolkit which can be seen as a library of components to construct events, conditions,
actions, rules and policies (and their execution sub-components). The framework is exten-
sible: additional components can be added at will to the library to render more elaborate
and more specific semantics according to specific applicative requirements.

6.5.2 Production (deductive) rules

Introduction The underlying idea of a production rule engine is to externalize the busi-
ness or application logic [4]. A production rule engine can be viewed as a sophisticated
interpreter of if-then statements. The if-then statements are the production rules. A pro-
duction rule is composed of two parts, a condition and an action: When the condition is
met, the action is executed. The if portion contains conditions (such as amount ;=%$100),
and the then portion contains actions (such as offer discount 5%). The inputs to a rule
engine are a collection of rules called a rule execution set and data objects. The out-
puts are determined by the inputs and may include the original input data objects with
modifications, new data objects, and possible side effects (such as sending email to the
customer).

Production rule engines should be used for applications with highly dynamic business
logic and for applications that allow end users to author business rules. A production rule
engine is a great tool for efficient decision making because it can make decisions based on
thousands of facts quickly, reliably, and repeatedly.

Adopting a production rule-based approach for your applications has the following
advantages:

e Rules that represent policies are easily communicated and understood.

e Rules retain a higher level of independence than conventional programming lan-
guages.

e Rules separate knowledge from its implementation logic.

e Rules can be changed without changing source code; thus, there is no need to re-
compile the application’s code.

e Speed and Scalability : The Rete algorithm, Leaps algorithm, and its descendents
such as Drools” Reteoo (and Leaps), provide very efficient ways of matching rule
patterns to your domain object data. These are especially efficient when you have
datasets that do not change entirely (as the rule engine can remember past matches).
These algorithms are battle proven.

31

Which Rule Engine to use? There exists several Production Rule Engine implemen-
tations on the market. The following ones were selected to be supported by Selfware
because of their popularity, open source and varied target audience:

e JBoss Rules, previously known as Drools [1], which is free, open source, and dis-
tributable,

e Jess [2], which is free for personal usage and not distributable,

e Mandarax [5], which is open source.

They all implement the JSR-94 specification, which allows bypassing the vendor lock in.
The specification does not encompass the expression language used to define the Rules.
Although this means that rules are expressed in files with different formats, the same
concept is applied everywhere. Conditions are expressed on properties of Java objects and
some Java code is given in case those conditions are met. There is currently some ongoing
works to propose a common rule format. Thus W3C is working on the Rule Interchange
Format (RIF) and the OMG has started to work on a standard based on RuleML.

JBoss rules is selected for the following advantages :

e is open source (required)

e we are more confortable with this product due to our background acquired during the
jimys project (http://forge.objectweb.org/project /download.php?group_id=5&file_id=4795).

e better performance compare to mandarax
e active and dynamic community

e Eclipse plugin for editing the rules

JBoss Rules JBoss rules (former Drools) is a Rule Engine that uses the Rule Based
approached to implement an Expert System and is more correctly classified as a Production
Rule System. The term ”Production Rule” originates from formal grammer - where it is
described as ”an abstract structure that describes a formal language precisely, i.e., a set
of rules that mathematically delineates a (usually infinite) set of finite-length strings over
a (usually finite) alphabet” (wikipedia).

JBoss rules has implementations for both Rete and Leaps; Leaps is considered exper-
imental, as it is quite new. The Drools Rete implementation is called ReteOO signifying
that Drools has an enhanced and optimised implementation of the Rete algorithm for
Object Oriented systems. Other Rete based engines also have marketing terms for their
proprietary enhancements to Rete, like RetePlus and Rete III. It is important to under-
stand that names like Rete III are purely marketing where, unlike the original published
Rete Algorithm, no details of implementation are published; thus asking a question like
"Does Drools implement Rete III?” is nonsensical. The most common enhancements
are covered in "Production Matching for Large Learning Systems (Rete/UL)” (1995) by
Robert B. Doorenbos.

32

The Rules are stored in the the Production Memory and the facts that the Inference
Engine matches against the Working Memory. Facts are asserted into the Working Memory
where they may then be modiied or retracted. A system with a large number of rules and
facts may result in many rules being true for the same fact assertion, these rules are said to
be in conflict. The Agenda manages the execution order of these conflicuting rules using
a Conflict Resolution stategy.

There are two methods of execution for a Production Rule Systems - Forward Chaining
and Backward Chaining; systems that implement both are called Hybrid Production Rule
Systems. Understanding these two modes of operation are key to understanding why a
Production Rule System is different and how to get the best from them. Forward chaing
is 'data-driven’ and thus reactionary - facts are asserted into the working memory which
results in one or more rules being concurrently true and scheduled for execution by the
Agenda - we start with a fact, it propagates and we end in a conclusion. Drools is a
forward chaining engine.

A rule has the following rough structure:

rule "name” ATTRIBUTES when LHS then RHS end

LHS (Left Hand Side) is the conditional parts of the rule. RHS (Right Hand Side) is
basically a block that allows Java semantic code to be executed

6.5.3 Workflow engine

Introduction A workflow engine, sometimes referred as a BPM (Business Process Man-
agement) engine, is a software component that breaks a work process down into tasks. A
basic example of such a process is an approval workflow process, in which an employee
needs a manager’s permission before running an application. A workflow engine provides
an infrastructure to model this workflow, execute it, assign the tasks to its participants,
and monitor it. To achieve the desired results, it may interact with humans or machines
through, for example, Web services. This enables integration with platforms different from
Java, like mainframes or .NET.

Bonita workflow Bonita is a workflow solution for handing long-running, user-oriented
workflows providing out of the box workflow functionalities to handle business processes.

Bonita is Open Source and is downloadable under the LGPL License (http://bonita.objectweb.org).
Its main key benefits are:

e A comprehensive set of integrated graphical tools for performing the process concep-
tion and definition, the instantiation and control of this process, and the interaction
with the users and other applications.

e 100% browser-based environment with Web Services integration that uses SOAP and
XML Data binding technologies in order to encapsulate existing workflow business
methods and publish them as JavaEE-based web services.

e A Third Generation Worflow engine based in the activity anticipation model. This
flexibility allows a considerable increase of speed in the design and development
phases of cooperative applications.

33

e Support of the XPDL standard, backed by the WIMC (Workflow Management Coali-
tion).

6.6 Navigation (EMN)

In order to take informed adaptation decisions and apply them, an autonomic frame-
work must have access to the architecture of the target application. Moreover, as this
architecture will change dynamically, this information must be obtained directly from
the application or from some causaly connected representation of it, and not from static
sources like ADL files or deployment descriptors.

More precisely, the Selfware platform needs a way to:

1. introspect the architecture and state of the target application in order to decide
which changes to apply, if any. This covers the C (condition) part of decision rules.

2. denote elements of the application to which the reconfigurations it has decided must
apply. This covers the A (action) part of the rules.

The Fractal component model chosen for the Selfware platform already supports in-
trospection of all the elements of an architecture. It is thus possible to write programs
in a general purpose language (e.g. Java) which navigate in an architecture to locate the
elements which must be reconfigured. However, such a direct use of the Fractal API is a
not very practical or flexible: it requires writing verbose and error-prone code, and, in the
case of Java, adds code compilation and deployment phases.

Instead, we propose to use a special notation, FPath [?], designed specifically to express
queries on Fractal architectures. These queries can be used to “walk” inside a running
Fractal application, discovering its structure and selecting elements according to any prop-
erty represented in the Fractal model. The FPath notation features: a concise and readable
syntax, inspired by the XPath [?] language (note that FPath is not based on XPath or
XML, it justs borrows XPath’s syntaxic structure); supports all the introspection capa-
bilities of the standard fractal model; extensible to support new introspection capabilites
introduced by Fractal extensions without changing the syntax. FPath queries can be used,
for example, to locate all the compoents in a given architecture which expose configuration
attributes, or to find components which implement or require a given interface.

In the rest of this section, we first present the conceptual model used by FPath to
represent a Fractal architecture, then we present the syntax and semantics of FPath queries
before showing some concrete examples.

6.6.1 Conceptual Model

FPath sees a given Fractal architecture as an oriented graph with labelled arcs (this is
a conceptual model, and does not mean an implementation has to create such a graph).
Different kinds of nodes represent all the architectural elements we chose to reify:

e the components themselves (not reified as such in Fractal, but only through the
component interface);

e component interfaces (both external and internal);

34

e configuration attributes, corresponding to getter/setter methods on attribute-controllers;
e and finally individual methods on the interfaces.

These nodes are connected by labelled arcs, which denote the kind of relation between
them. For example, an arc labelled interface goes from a given component node to each
interface node representing the component’s interfaces. In the same way, if composite C}

contains C as a sub-component, the corresponding nodes N; and No will be connected
child parent

by two arcs: Ny — Ny and No — Nj.

FPath provides a default set arc types, called azes, which cover all the relationships
defined in the standard Fractal model. These axes can be used to to navigate between
components ands their attributes and interfaces, to follow interface bindings, and to
navigate between components’ children and parents. FPath also defines a few extended
axes which do not map directly to concepts in the Fractal API, for exemple to find a
component’s siblings, or all its ancestors or descendants (including indirect ones).

6.6.2 Syntax and Semantics of FPath Queries

Given this representation, FPath expressions (queries) denote relative paths starting from
an initial (set of) node(s) in the graph. Such a path is made of a series of steps, each
made of up to three elements: axis::test[predicate] (the predicate is optional). On
each step, an initial set of nodes is converted to a new set by following all the arcs with a
label corresponding to the axis, then filtering the result using the test (on the node names)
and optional predicates (boolean expressions applied to each candidate). For a multi-step
path, this algorithm is repeated with the result of the previous step as the current node-set
of the next.

For example, the FPath expression sibling: :*/interface: :*x [provided(.)] [not (bound(.))]
is made of two steps. The first one uses the sibling axis, an “empty” test * (which is al-
ways true) and has no predicate. The second step uses the interface axis, no test either,
and two predicates which are combined. Inside the predicates, the dot “.” represents
the current node on which the predicate is evaluated. Evaluating the complete expression
starting from an initial component node will: (i) select all its sibling components, however
they are named; (7i) select all the external interfaces of these siblings; (4ii) filter this set
of interfaces to return only server interfaces (provided()) which are not already bound.

The expressions used as predicates can be any FPath expression, which includes
not only paths but also standard arithmetic operations, comparisons, function calls, lit-
teral strings and numbers and finally variable references ($varName). When a path ex-
pression is used as a predicate, it is considered true if and only if it returns a non-
empty set of nodes. For example, to find all the components in a application which
provide configuration attributes, one could use the following expression on the applica-
tion’s root component: descendant-or-self::*[attribute::*]. This initially selects
all the components contained in the root, recursively, and then filters this set to re-
tain only those from which the step attribute::* returns a non-empty set, i.e. the
nodes which have configuration attributes. Note that this expression is different from
descendant-or-self: :*/attribute: :*, which returns the configuration attributes them-
selves, not the components which provide them.

35

6.7 Reconfiguration (EMN)

The Fractal component model used in Selfware is fully dynamic and reflexive and makes it
possible to program dynamic reconfigurations, even unanticipated ones, to be executed in
a running application. This is important in order to evolve applications without stopping
and redeploying them (for example to update a component or subsystem). However, as was
the case in the previous section with the introspection features, direct use of the Fractal
APIs to program reconfigurations has several drawbacks: verbose and error-prone code
due to the lack of language integration and minimalist design of the APIs, compilation
and code deployment phases which complicate the process (in the case of Java). Using the
bare APIs — especially in a general purpose language — also makes it difficult to guarantee
the correctness of the reconfigurations: individually correct Fractal reconfigurations can
result in globally incorrect reconfiguration depending on when and how they are executed
with respect to each other and to the normal execution of the application. If the Selfware
platform is to be used to reconfigure applications during their execution, it is essential we
guarantee the application will not break.

We can distinguish two separate but related needs for the Selfware platform with
respect to reconfiguration. First, we need a specific language (DSL) to describe the re-
configurations. As stated above, direct usage of the APIs in a general purpose language
has several issues. A DSL can provide domain-specific notations and abstractions, and
because it targets a more limited range of programs, is more amenable to verification and
optimization. In the next subsection, we present the FScript Domain-Specific Language,
which builds upon the FPath notation and extends it with the ability to specify complex
reconfigurations of Fractal architectures. Second, we need to be able to define correctness
for these reconfigurations, which might depend on the target application, and to guarantee
that only correct reconfigurations can be applied, as efficiently as possible. The second
sub-section shows how this can be done using the generic concept of transactions applied
at the level of the Fractal model: how the properties of transactions solve this issue and
what it takes to implement them in the context of Fractal.

The works presented in these two sections are related but somewhat independant. Al-
though the syntactic aspects of FScript are interesting by themselves, the main benefit
of using a DSL is to offer guarantees on the behaviour of the programs, in this case the
correctness of the reconfigurations. On the other hand, the support for transactional re-
configurations described in the second sub-section can be used independently of FScript,
e.g. from a Java program, but using it through FScript can enable more powerful and/or
efficient verifications, as the transactional layer can then make stronger assumptions (for
example that the reconfiguration will always terminate, a property of FScript programs).
In practice, the current implementation of FScript includes custom support for transac-
tional reconfigurations (with some limitations). This will be replaced by the more general
and powerful solution described here when it becomes available, which will itself also be
usable independently of FScript.

6.7.1 The FScript Language

FScript is a Domain-Specific Language designed to program structural reconfigurations
of Fractal architectures. Compared to the use of the standard Fractal APIs in a general

36

purpose language, FScript offers better syntactic support for navigation, more dynamicity,
and guarantees on the consistency of the reconfigurations.

To do this, FScript relies on the FPath notation presented in section 6.6 to navigate
intuitively inside an architecture and select parts of it. FScript supplements FPath by
adding the possibility to define complex (scripted) reconfiguration actions to architecture
elements selected by FPath queries. These elements can be acted upon to reconfigure the
architecture using primitive Fractal operations or user-defined reconfigurations scripts.
Beyond its direct syntactic support for Fractal concepts, FScript can provide guarantees
on the consistency of the reconfigurations by cooperating with a external system which
treats Fractal reconfigurations as ACID transactions.

FScript is a simple imperative/procedural language whose main features are its direct
syntaxic support for navigation in Fractal architectures thanks to FPath, safety guarantees
on the application of the reconfigurations, and a very dynamic implementation where
reconfiguration scripts can then be dynamically loaded and executed without an additional

compilation phase.

Here is a simple example of the definition of an FScript reconfiguration action which
illustrates almost all of FScript constructs. It automatically connects a component’s re-
quired interfaces by discovering the compatible server interfaces on sibling components.

action auto-bind(comp) = {
// Selects the interfaces to connect
clients := $comp/interface::*[required(.)] [not(bound(.))];
foreach itf in $clients do {
// Search for candidates compatible interfaces
candidates := $comp/sibling::*/interface: :*[compatible?($itf, .)];
if (not(empty?($candidates))) {
// Connect one of these candidates
bind($itf, one-of ($candidates));
}
}
return empty?($comp/interface: :*[required(.)] [not(bound(.))]1);
}

This defines a new reconfiguration action named auto-bind. Given a component comp
as parameter, this action first uses FPath to find all its client interfaces which are not yet
bound. The action then iterates over this set of client interfaces: on each iteration, the
action searches for compatible interfaces on the siblings of comp, again using an FPath
query. Finally, the action tests whether this set is empty, and if not, uses the primitive
action bind() to connect the client interface itf to one of the candidates. Finally, it
returns a boolean indicating whether all client interfaces have been bound.

FScript provides a standard library of primitive functions and actions which gives
the user access to all the information available from the Fractal API, and all the stan-
dard reconfigurations, including component instanciation (new()), composite content’s
manipulation (add() and remove()), connections management (bind() and unbind()),
component lifecycle (start() and stop()), and configuration (set-value() to change
component attributes). FScript is designed and implemented so that it is easy to add new
primitives corresponding to Fractal extensions.

FScript’s design and implementation guarantee some consistency of reconfigurations

37

in part by the language’s structure itself, whose expressive power has been limited, and
in part by the implementation. More precisely, it guarantees that reconfigurations always
terminate (no infinite loops), that they are atomic (i.e. either succesfuly and completely
applied or not at all), and that if they succeed, the resulting application will be a valid
Fractal architecture. The current implementation of these guarantees is embedded inside
the FScript interpreter and has some limitations. The next section describe a more generic
and complete solutions to the correctness of reconfigurations which, although independant
of FScript is planned to replace FScript’s custom solution in the future.

6.7.2 Support for Transactional Reconfigurations

Dynamic reconfigurations allow modifications of a part of a system during its execution
without stopping it entirely so as to maximise its availability. Thanks to properties of com-
ponent models like modularity and loose coupling, reconfigurations can rely on component-
based architectures. However, runtime modifications can let the system in an inconsistent
state and we identified three main reliability problems when reconfiguring systems:

1. A first problem when modifying a system at runtime is the synchronization between
reconfigurations and the functionnal execution of the system. Actually, the part of
the system which is modified could be unavailable for functional execution during
the reconfiguration time. To take the hotswap example with a stateful component,
calls on the old component must be blocked until a “quiescent state” is reached, then
the state must be transfered, and finally previous calls are forwarded towards the
new component.

2. A second problem at the model level is about consistency violation by reconfigura-
tions. Component models and application models should define what this consistent
system is. So we must ensure the conformity of the system to the model and what
we call integrity constraints after reconfigurations.

3. The third and last problem is linked to the composition of reconfiguration opera-
tions. The semantics of reconfiguration operations implies there can be some con-
flicts between them in case of compostion and for synchronization between several
reconfigurations.

We think that well-defined transactions associated with structural and behavioral con-
straints verification is a mean to guarantee the reliability of reconfigurations in compo-
nent models. In our approach, we defined each of the ACID properties in the context of
component-based systems:

e Atomicity: either the system is reconfigured or it is not. Each reconfiguration op-
eration must specify its reversible operation. Thus if a reconfiguration transaction is
rollbacked, it is possible to come back in a previous stable state by undoing opera-
tions. Transaction demarcation is either programmed in the language or automatic.

e Consistency: a transaction must be a correct transformation of the system state.
So the reconfigured application must be conform to the component model and
application-specific constraints. A reconfiguration transaction can be commited only

38

if the resulting system respects the constraints. Other faults like software and hard-
ware failures are the responsibility of the commit protocol.

e Isolation: several reconfiguration transactions are independant and any schedule of
reconfiguration operations must be equivalent to their serialization. The scheduling
must respect the operation semantics and conflicts.

e Durability: once a reconfiguration completes with success (commit), the new state
is persistent. For every transaction, operations are logged in a journal so that re-
configurations can be redone in case of failure. The application state (architecture
and component state) is periodically checkpointed so that any component can be
recovered in its last stable state resulting from the last successful reconfiguration.

In our proposal, system consistency relies on integrity constraints both at the appli-
cation and at the model level. An integrity constraints is a predicate which concerns the
validity of an assembly of architectural elements but it can also concern component state.
An example of such a constraint at the component model level is hierarchical integrity
(bindings between components must respect the component hierarchy). Constraints must
be checked both at compile time on the ADL configuration and at runtime. We represent
the Fractal component model as a typed graph and then each fractal-based application
is also a graph which is a well-typed instance of the typed graph and is provided at
runtime by the reflexivity of the model. The vertexes are elements from the component
model (components, interfaces, etc.) and the edges represent relations between the ele-
ments (composition links, binding links etc.) Then integrity constraints can be specified
on the graphs with a constraint language “a la OCL”, basically an extension of FPath
with invariants, preconditions, postconditions.

// Example of a precondition for removing a component
operation: void removeSubComponent (Component sub) ;
preconditions:

// all interfaces of the sub-component are unbound
not (exists(sub/interface: :* [not (bound(.))]1));

To compose operations and regardless of a dedicated reconfiguration language, we con-
sider sequences or parallel executions of intercession operations with conditions expressed
by means of introspection operations but all compositions are not always valid. We want
to make operation semantics explicit in terms of preconditions and postconditions with
our constraint language and we want eventually to be able to change it and to specify new
primitive operations. We distinguish two types of conflicts between operations:

e Parallel conflicts: for two given reconfigurations R1 and R2 executed on the same
system, a parallel conflict occurs if R1 and R2 modify the same manageable elements
in the system model (e.g. bind and unbind operations).

e Execution dependencies: an execution dependency occurs if RI either need R2
to be executed first (e.g. stop before unbind)or if R1 cannot be executed after R2.
That is to say R2 postconditions cover or not R1 preconditions.

39

To deal with reconfiguration concurrency, we propose a pessimistic approach with
locking based on operation semantics to avoid inconsistent compositions of operations.
We see two different possibilities for the locking algorithm:

e The first one is to lock directly reconfiguration operations: either conflicts between
operations are automatically calculated thanks to their preconditions and postcon-
ditions or conflict must be explicitely defined.

e The second one is to use a modified DAG locking algorithm on our instance graph
defined in. Then the lock granularity is defined by the manageable elements in
the graph representation (e.g., a lock acquisition on a component also locks all its
interfaces and every operations in each interfaces).

Another approach to locking is to constrain the execution order of reconfiguration
operations with a simple language inspired of behavior protocols in [41]. The protocol
compliance is checked at runtime by intercepting reconfiguration calls.

References

[1] Drools. JBOSS. http://labs.jboss.com/jbossrules/docs.

[2] Jess. Jess. http://herzberg.ca.sandia.gov /jess/.

[3] Jms. Sun Microsystem. http://java.sun.com/products/jms/.

[4] Jsr94. Sun Microsystem. http://java.sun.com/developer/technical Articles/J2SE/JavaRule.html.
[5] Mandarax. Mandarax. http://mandarax.sourceforge.net/.

[6] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Ra-
jamani, and W. Zwaenepoel. Specification and Implementation of Dynamic Web Site
Benchmarks. In IEEE 5th Annual Workshop on Workload Characterization (WWC-
5), Austin, TX, November 2002.

[7] Apache - HTTP Server Project. Apache. http://httpd.apache.org/.

[8] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. Oceano - SLA
based management of a computing utility. In 7th IFIP/IEEE International Sympo-
sium on Integrated Network Management, Seattle, WA, May 2001.

[9] M. Aron, P. Druschel, , and W. Zwaenepoel. Cluster Reserves: a mechanism for
resource management in cluster-based network servers. In International Conference
on Measurement and Modeling of Computer Systems (ACM SIGMETRICS-2000),
Sant Clara, CA, June 2000.

[10] Research projects in autonomic computing. IBM Research, 2003.
http://www.research.ibm.com/autonomic/research/projects.html.

[11] Thais Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic
reconfiguration in component-based systems. In EWSA, pages 1-17, 2005.

40

[12]

[13]

[16]

[19]

[20]

[21]

[22]

S. Bouchenak, F. Boyer, D. Hagimont, and S. Krakowiak. Architecture-Based Au-
tonomous Repair Management: An Application to J2EE Clusters. In 2/th IEEE Sym-
posium on Reliable Distributed Systems (SRDS-2005), Orlando, FL, October 2005.

E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and Dynamic Software Compo-
sition with Sharing. In International Workshop on Component-Oriented Programming
(WCOP-02), Malaga, Spain, June 2002. http://fractal.objectweb.org.

B. Burke and S. Labourey. Clustering With JBoss 3.0. October 2002.
http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. A Microrebootable
System: Design, Implementation, and Evaluation. In 6th Symposium on Operat-
ing Systems Design and Implementation (OSDI-2004), San Francisco, CA, December
2004.

E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel. Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content.
In 4th ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro,
Brazil, June 2003.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clus-
tering Middleware. In USENIX Annual Technical Conference, Freenix track, Boston,
MA, June 2004. http://c-jdbc.objectweb.org/.

J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing Energy
and Server Resources in Hosting Centers. In 18th Symposium on Operating Systems
Principles (SOSP-2001), Chateau Lake Louise, Banff, Canada, October 2001.

Y. Chawathe and E. A. Brewer. System Support for Scalable and Fault-Tolerant
Internet Services. In Distributed System Engineering. The British Computer Society,
1999.

S. W. Chen, A. C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste. An Architecture
for Coordinating Multiple Self-Management Systems. In 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA-4), Oslo, Norway, June 2004.

J. Dowling and V. Cahill. Self-managed decentralised systems using k-components
and collaborative reinforcement learning. In 1st ACM SIGSOFT Workshop on Self-
Managed Systems (W0SS5°04), New York, NY, 2004.

R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource Provi-
sioning in a Web Service Utility. In 4th USENIX Symposium on Internet Technologies
and Systems (USITS-2003), Seattle, WA, March 2003.

D. Garlan, S'W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self adaptation with reusable. IEEE Computer, 37(10), October
2004.

41

[24]

[25]

[36]

[37]

Stella Gatziu, Arne Koschel, Günter von Bültzingsloewen, and Hans
Fritschi. Unbundling active functionality. SIGMOD Rec., 27(1):35-40, 1998.

I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for
distributed systems. In 1st Workshop on Self-Healing Systems (W0S5°02), New York,
NY, 2002.

X. He and O. Yang. Performance Evaluation of Distributed Web Servers under Com-
mercial Workload. In Embedded Internet Conference 2000, San Jose, CA, September
2000.

A. Iyengar, E. MarcNair, and T. Nguyen. An Analysis of Web Server Performance.
In IEEE Global Telecommunications Conference (GLOBECOM’97), Phoenix, AR,
November 1997.

JOnAS Project. Java Open Application Server (JOnAS): A J2EE Platform.
http://jonas:objectweb.org.

J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Com-
puter Magazine, 36(1), 2003.

J. C. Knight, D. Heimbigner, A. Carzaniga Alexander Wolf, J. Hill, P. Devanbu, and
M. Gertz. The Willow Survivability Architecture. In 4th Information Survivability
Workshop (ISW-2001/2002), Vancouver, Canada, March 2002.

J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering, 16(11):1293-1306, 1990.

M.Y. Luo and C. S. Yang. Constructing Zero-Loss Web Services. In 20th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM-2001),
Anchorage, AL, April 2001.

Rui S. Moreira, Gordon S. Blair, and Eurico Carrapatoso. Supporting adaptable
distributed systems with formaware. In ICDCSW ’04: Proceedings of the 24th Inter-
national Conference on Distributed Computing Systems Workshops, pages 320-325,
Washington, DC, USA, 2004. IEEE Computer Society.

MySQL. MySQL Web Site. http://www.mysql.com/.

K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Under-
standing and Dealing with Operator Mistakes in Internet Services. In 6th Symposium
on Operating System Design and Implementation (OSDI-2004), San Francisco, CA,
December 2004.

J. Norris, K. Coleman, A. Fox, and G. Candea. OnCall: Defeating Spikes with
a Free-Market Application Cluster. In Ist International Conference on Autonomic
Computing (ICAC-2004), May 2004.

ObjectWeb Open Source Middleware. C-JDBC: Clustered JDBC. http://c-
jdbc.objectweb.org/.

42

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Oscar. Oscar - An OSGi framework implementation. http://oscar.objectweb.org/.

OSGi Alliance. The OSGi Service Platform - Dynamic services for networked devices.
http://www.osgi.org/.

Norman W. Paton, F. Schneider, and D. Gries, editors. Active Rules in Database
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE Trans. Softw. Eng., 28(11):1056-1076, 2002.

PLB. PLB - A free high-performance load balancer for Unix. http://plb.sunsite.dk/.

S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-Driven Server Migration for Internet
Data Centers. In 10th International Workshop on Quality of Service (IWQoS 2002),
Miami Beach, FL, May 2002.

Y. Saito, B. N. Bershad, and H. M. Levy. Manageability, Availability and Performance
in Porcupine: A Highly Scalable, Cluster-Based Mail Service. ACM Transactions on
Computer Systems, 18(3), August 2000.

G. Shachor. Tomcat Documentation. The Apache Jakarta Project.
http://jakarta.apache.org/tomcat/tomcat-3.3-doc/.

K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource management for cluster-
based internet services. In 5th USENIX Symposium on Operating System Design and
Implementation (OSDI-2002), December 2002.

S. Sudarshan and R. Piyush. Link Level Load Balancing and Fault
Tolerance in NetWare 6. NetWare Cool Solutions Article. March 2002.
http://developer.novell.com /research /appnotes/2002/march/03/a020303.pdf.

Sun Microsystems. Java 2 Platform Enterprise Edition (J2EE).
http://java.sun.com/j2ee/.

Sun Microsystems. Java DataBase Connection (JDBC). http://java.sun.com/jdbc/.
The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.

B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet
Services. Technical report, Department of Computer Science, University of Mas-
sachusetts, November 2004.

B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and network bandwidth in
shared clusters. IEEE Transactions on Parallel and Distributed Systems, 15(1), 2004.

B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic Provisiong of Multi-
Tier Internet Applications. In 2nd International Conference on Autonomic Computing
(ICAC-2005), Seattle, WA, June 2005.

43

[54] H. Zhu, H. Ti, and Y. Yang. Demand-driven service differentiation in cluster-based
network servers. In 20th Annual Joint Conference of the IEEE Computer and Com-
munication Societies (INFOCOM-2001), Anchorage, AL, April 2001.

44

