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1 Introduction

Autonomic computing, which aims at the constructioh self-managing and self-adapting
computer systems, has emerged as an importantfgoalany actors in the domain of large scale
distributed environments and applications. Indesedh environments and applications are becoming
increasingly sophisticated, involving numerous clampsoftware developed with heterogeneous
programming models. The main difficulty raised lystsituation concerns the management of the
environment and its applications (installation, foaguration, tuning, repair ...), that often reliea
several proprietary configuration facilities.

One approach to autonomic computing, calledcin&rol approachyiews the functioning of an
autonomic computing system as a feedback contap. I&s presented in the SP1-L1 document, the
Selfware platform follows this approach, by prowiglisystems and applications with self-management
capabilities, including self-configuration (automatonfiguration according to a specified policy),
Self-Optimization (continuous performance monitgjinSelf-Repair (detecting defects and failures,
and taking corrective actions), and self-protec{i@king preventive measures and defending against
malicious attacks).

This platform has been used to manage clustered dpglication servers, by applying autonomic
repair and optimization control loops. The objeetiof this document is to give details on these
experiences. The following sub-sections firstlyale¢he main design principles of the Selfware
platform, and then describe the different contoolds implementations in two environments J2EE 1.4
and Java EE 5.
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2 Selfware Design Principles

This section recalls the main design principleshef Selfware platform, based on the notions of
Managed Elements and Autonomic Managers.

2.1 Managed Elementsand Autonomic Managers

As detailed in the SP1-L1 documejdf], the autonomic regulation provided by the Selfev
infrastructure on a managed system is based ongednalements (ME) and autonomic managers
(AM). A system managed with Selfware is more prelgisonstituted by a collection of managed
elements, that may consist of a single elementarghirare of software element, or may be a complex
system in itself, such as a clustered applicateraes.

A managed element provides sensor and actuatafaots respectively allowing to observe and
manipulate it. Sensor and actuator interfaces sed by autonomic managers, that regulate a managed
system through feedback control loops, as illusttain Figure 1. An autonomic element is the
ensemble including a set of managed elements diaatimy autonomic managers.

Controller Autonomic
" Element
N
detection reaction --\
sensors actuator

Managed Element /
K= [

Figure 1. An autonomic element

A main design choice is to rely on a component rhémrebuilding both Managed Elements and
Autonomic Managers. The component model we use ractédd Erreur ! Source du renvoi
introuvable.. A managed element is implemented as a Fractalpopent that encapsulates a
controlled legacy entity. In the same way, an aomeic manager is a Fractal component that monitors
a set of managed elements, analyzes notificatiomsng from managed elements sensors, diagnoses
the state of the system, decides on a plan ofrectaad finally, executes the corresponding command
plan.

2.2 Autonomic managers

Autonomic Managers administer legacy systems emndayesl in Managed ElementBigure 2
illustrates the general architecture of the Seléafsamework. In accordance with the purpose of this
document, we recall the main principles of two aotnic managers: the Self-Repair manager and the
Self-Optimization manager. These managers use smmenon services provided by the Selfware
platform, that are detailed in the SP1-L2 docunfjghtand summarized in the following sub-section.
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Figure 2.The Selfware global architecture

2.2.1 Main common Services

The three main common services used by the Sel&iReymd self-optimizer managers are the
Node Allocation Service, the Deployment Service tredSystem Representation Service.

The Node Allocation Service implements cluster vese reservation by allowing to allocate/de-
allocate nodes in a cluster. The Software InstaliaGervice allows to install a software on a ndde
not already existing. This service implements aosépry that stores software libraries needed by
managed legacy systems, but also the librariebeofsrappers associated with these legacy systems.
This service is implemented using the OSGi techyl@and the stored software libraries are OSGi
bundles (i.e. specific Java libraries, see httpultnosgi.org/ ).

The Deployment Service allows to create and stah&dged Elements (i.e. legacy systems and
their wrapper components) on the allocated nodesrebVer, deployment operations may
automatically induce software installation openagidf the necessary software is not already irestall
Selfware Deployment Service is built on top of Fahadeployment features. Furthermore, it is
important to notice that the Software Installat®ervice and Deployment Service are generic and may
apply to any legacy system.

Finally, the Selfware System Representation Seryiagvides a checkpoint of the Managed
Elements. This is mainly used by the Self-Repaiomamic manager upon failures of MEs, while the
other Selfware services may be used by all Autondvianagers.

2.2.2 The Sdf-Repair autonomic manager

The Self-Repair Manager deals with fail-stop fakiof MEs, e.g. a node hardware failure, or a
server (i.e. middleware) crash. This manager allblis to recover from their failures by periodically
monitoring their status via heart-beat sensors. Whailure of a ME is detected, the repair aldjonit
consists in first accessing the System Represent&grvice to retrieve the state of the failed Migrmp
to failure. The System Representation Service réiqodarly necessary in case the failing ME is a
node, which results in loosing the wrapper assediavith that ME, and thus being unable to
introspect that wrapper to retrieve the state efftiled ME prior to failure. The state of the éallME
retrieved from the System Representation Serviteeis used to rebuild the failed legacy elemert as
was prior to failure.
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To this purpose, new nodes are allocated from th@éeNReservation Service if necessary, legacy
software elements are installed if needed usingSibféware Installation Service, and a new ME is
redeployed to replace the failing one using thel®gpent Service. Furthermore, if the failed ME was
bound to other MEs, the bindings are recreated thgghrecovered ME to reflect the same connections.
And if the failled ME contained sub-MEs (i.e. subwgmnents), these sub-MEs are recursively
repaired.

Furthermore, it is important to notice that thef&apair Manager is replicated (see SP2FR}
in order to prevent the manager from being a sipgimt of failure, and thus guarantying fault-
tolerance continuity.

2.2.3 The Sdf-Optimization autonomic manager

The Self-Optimization Managers aim at maximizinglagtion performance while minimizing
the underlying resource usage (e.g. cluster natdes)gh dynamic resource provisioning and dynamic
load-balancing. This kind of managers target MEs tlepresent clusters of replicated MEs, e.g. a
cluster of replicated web servers or a cluster jof aontainers. The cluster ME is periodically
monitored via load sensors (e.g. CPU load, netwotkity, memory consumption, or an aggregation
of sensors). We describe hereinafter the two kaidelf-Optimization Managers:

2.2.3.1 Dynamic resource provisioning

When the load exceeds a given maximum threshotd chister ME is resized by dynamically
adding new replicas as sub-MEs of the cluster MEis Tconsists in first contacting the Node
Allocation Service to allocate a new node, themgishe Software Installation Service to installdeg
software elements if necessary, and introspectiregad the sub-MEs of the cluster ME to replicate it
on the new node as a newly deployed sub-ME. Syncady, if the overall load of a cluster ME is
below a given minimum threshold, that means thatuhderlying cluster nodes are under-utilized.
Thus, the cluster ME is dynamically resized by remg one or more of its replicated sub-MEs, and
de-allocating the underlying nodes if no more used.

Furthermore, if the resized cluster ME consistsstafteful replicated MEs with a dynamically
changing state, replica consistency must be ensuhesh resizing the cluster ME; this is typically
based on consistency policies underlying the legd&s. Replica consistency is supposed to be
ensured through the underlying database clustsyistgm.

2.2.3.2 Dynamic load-balancing

When a cluster is not fully congested, i.e. if & fleodes are not yet overloaded, load-balancing
parameters tuning can be a less costly approgsértorm optimizations. The purpose of this manager
is to maximize the use of available resources icluster, by adding load-balancers as managed
elements of client-side.

Each ME is instrumented (sensors and actuatorsadoad-factor is computed for each replicated
ME. A global load-factor for the cluster ME giveshaalth indicator for the cluster ME. When the
system can be optimized without collapsing thetelyshe load-balancer can be tuned for routing the
requests towards the lowest loaded replicated Mte [bad-balancer implements a weighted round
robin algorithm and provides an interface for settdynamically new weights for each replica. The
autonomic manager aims at tuning these parameteosding the current load of each replicated ME.
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3 Autonomic management of a J2EE Application Server

The Selfware platform has been used to manageQhAS J2EE application server in a clustered
environment. In the following, we first provide t@cound information on this application server and
motivate its usage as a validation environmenpteeflescribing its self-management with Selfware.

3.1 Background and motivations

Nowadays, a large portion of web applications fella multi-tier architecture. Java 2 Platform,
Enterprise Edition (J2EE) defines the Java stanttardeveloping multi-tier applicatioq27]. Such
applications usually start with requests from wkénts that flow through an HTTP server front-end
and provider of static content, then to an enteepserver to execute the business logic of the
application and generate web pages on-the-fly, faradly to a database that stores non-ephemeral
data. However, the complexity of multi-tier archbiteres and their low rate for delivering dynamic
web documents (often one or two orders of magng#uslewer than static documents) place a
significant burden on servefd7]. To face high loads and provide higher servéoalability, a
commonly used approach is the replication of serireclusters.

Replication-based clustering solutions are resjbmgif dynamically balancing the load among
replicas, and managing replica consistency if amyg.(database replica consistency). Instances of
J2EE clustering solutions are c-jdbc for a clustedatabase servefdl], JOnAS clustering for a
cluster of JOnAS EJB servd®9], Tomcat clustering for a cluster of Tomcat\&etr serverg28], and
the L4 switch for a cluster of replicated Apachéwgervers for example.

In this context, including autonomic managementltstered multi-tier web systems brings the
following interesting challenges:

* The management of a variety of legacy systemsgargric way, since each tier in the multi-tier
architecture embeds a different piece of softwarg. (@ web server, an enterprise server, or a
database server).

« The management of distributed systems with complekitectures in a generic way, where in
addition to the multi-tier organization, each fiea software stack that may be replicated.

3.2 Javaenvironments, applications and scenarios
The Selfware platform supports two Java environsient

* An environment J2EE 1.4, fdava 2 Platform, Enterprise Edition
* An environment Java EE 5, fdava Platform, Enterprise Edition

J2EE and Java EE design two consecutive generatfgiatform for server programming in the
Java programming language. The last version numb@2EE is 1.4 and the first one of Java EE is 5.
These platforms are defined by specifications fdimad by two Java Community Processes: JSR
151for J2EE 1.4 and JSR 244 for Java EE 5.

Two scenarios use the J2EE 1.4 environment andleer one uses the environment Java EE 5.
According to the scenarios, different applicatibase been used. The next sub-sections will describe
them and will map a Java environment and an apjaitéor each scenario.

3.21 TheJ2EE application Rubis

We considered a J2EE multi-tier web system comgjsif three tiers: a web tier as a front-end, an
enterprise tier as a middle- tier, and a datakiase$ a back-end. A first node hosts the Apache we
server middlewarg6], a second node hosts the Tomcat enterpriseseanddleward28], and a third
node hosts the MySQL database server middle{2éie
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This multi-tier system runs the Rubis e-commercgliegtion which models an auction sitg.
More precisely, Rubis’ web documents are deployedhe Apache web middleware, where they
represent the application layer of that tier. Rulbéwva Servlets are deployed on the Tomcat enserpri
middleware, where they represent the applicatigrerlaunning on that middleware. And Rubis’
database tables are deployed on the MySQL datahiaséeware where they represent the application
layer of that tier. Moreover, each tier is replaghto form a highly scalable system; the PLB sydtem
used as the web tier clustering solut{@3], the Tomcat clustering system is used to capdi the
enterprise tief28], and the c-jdbc database clustering solutomsed to replicate the database tier
[11]. Thus, this system brings together 9 differpigces of legacy software, namely the Apache
middleware, Tomcat middleware, the MySQL middlewate Rubis web application, the Rubis
enterprise application, the Rubis database appitathe PLB web clustering system, the Tomcat
enterprise clustering system, and the c-jdbc dawbhustering system.

This system exhibits a complex architecture comgjstf a multi-tier system representing a series
of three clusters; each cluster is a collectiorregflicated systems; and each replicated system is a
stack of node/middleware/application. We used Sadwin order to integrate self-management
properties to such a system.

To this end, we built a Selfware wrapper for easfaty system, to obtain a total of 6 specific
legacy Managed Elements corresponding to the silieivare and application elements.

3.2.2 TheJ2EE application SOAPSOO

SOAPSOO is a web application based on J2EE techiesldrom France Telecom's information
system. It manages articles of two kinds (hardvesne service), associated to catalogs and contracts.
Through a web interface, users may browse, consuldify, create or delete articles, catalogs and
contracts (sekigure 3).

==Rezzource=s=
Catalogue

-no ; undefmed

1

comprend
*
==Hpgso; e==
Article =<Hpszource=>=
test foumipar | ::Vue Objet:: Catharche: :Marche
-Ihele ; undefmed
-dateCormercialiatibn . undefined LA |-lbelle : widefined
==Rezaontce=>= ==Reazource==
Materiel Service
-cotkur ; undefined -frais ; undefmed
-proe o unde fined -option | undefmed

Figure 3. Data model of the SOAPSOO on-line catalog we b application (simplified view)

Connection to the application is done through sauauthentication page with a login identifier
and a password. Authentication is based on an HFOBT method. Then, further user interactions
are based on HTTP GET methods only. The presentéitio is implemented on Struts. It uses the
Axis middleware to call the business logic through SOAP protocol over HTTP. The persistence
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tier is achieved on top of a relational databaseutih the Data Access Object standard using the
Object Relational Mapping (DAO ORM).

3.2.3 Thescenarios

The used Java environment and application, for eeehario, are given by tikégure 4.

Scenario Java environment Application
Self-repair & self-optimization (83.3) J2EE 1.4 Rubis
Self-repair with integrity constraints ($3.4) J2EE 1.4 SOAPSOO
Self-benchmarking & Self-optimization ($3.5) Java EE 5 SOAPSOO

Figure 4.Java environment and application for each scenario

The scenarios will be describes in the next sestion

3.3 Sdf-repair and self-optimization of J2EE 1.4 Application Server

3.3.1 Experimental environment

The evaluation has been realized with the Rubidisiet J2EE application benchmark which
implements an auction si{®]. Rubis defines several web interactions (eegistering new users,
browsing, buying or selling items); and it providesbenchmarking tool that emulates web client
behaviours and generates a tuneable workload. Ralries with two mixes: a browsing mix in which
clients execute 100% read-only requests and argdaiix composed of 85% read-only interactions.
This benchmarking tool gathers statistics aboutth@ication. Rubis was deployed as a cluster-based
replicated multi-tier system, consisting of a chusif replicated web/enterprise servers as a feont-
and a cluster of replicated database servers askaibd. We used the Rubis 1.4.2 version of theimult
tier J2EE application running on several middlewpliaforms: Apache 1.3.29 as a web server [2],
Jakarta Tomcat 3.3.2 as an enterprise s¢p8r MySQL 4.0.17 as a database sef2€), PLB 0.3 as
the web server clustering solutif28], Tomcat clustering as the enterprise servesteling solution
[28], and c-jdbc 2.0.2 as the database servereriogtsystenjll]. Experiments were performed on
the Linux kernel running x86-compatible machineghwviGB RAM and 1800MHz, connected via a
100Mb/s Ethernet LAN to form a cluster.

3.3.2 Generic Approach

One of the objectives of the Selfware autonomic agament framework is to manage a variety of
legacy software systems, regardless of their dpanikrface and underlying implementation. Another
objective is to deal with different system architees, as complex as cluster-based multi-tier
architectures. To this end, the Selfware framewamksists of a set of generic common services. In
addition to these generic services, we built apgibn-specific sub-systems that are needed in a
particular application domain (e.g. Selfware wrappr the different legacy Managed Elements
involved in a multi-tier web system).
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# JavalJava code|l# ADL|ADL file

classes |size files size
Software Installation Service 3 430 lines 9 830 lines
Generic code |Deployment Service 21 2600 lines 9 830 lines
Node Reservation Service 2 475 lines 1 30 lines
System Representation Service [40 6630 lines — —
Self-Recovery Manager 48 4750 lines 26 430 lines
Self-Optimization Manager 14 2340 lines 12 150 lines
Architectural MEs 4 840 lines 4 200 lines
Total 132 18065 lines |61 2470 lines

Rubis web application 1 150 lines 11 lines
150 lines
150 lines
800 lines 16 lines
Tomcat enterprise middleware 550 lines 12 lines

Specific code 9 i
1 1
3 1
3 1
MySQL database middleware |4 760 lines 3 40 lines
2 1
2 1
1 1
1 1

11 lines

11 lines

Rubis enterprise application
Rubis database application
Apache web middleware

PLB web clustring 460 lines 14 lines
Tomcat enterprise clustring 460 lines 14 lines
c-jdbe database clustering 810 lines 14 lines
Total 9 4290 lines 1 143 lines
Average 2 477 lines 1 16 lines
Figure 5. Code size of Selfware’s generic servicesa  nd specific sub-systems

Figure 5 gives the code size of Selfware’s gersgiwices and specific sub-systems. It provides a
rough measure of the code factoring obtained thamkse generic approach followed in Selfware.
Indeed, taking into account a new administereddggastem in Selfware would require to implement
a Selfware wrapper that consists of, in averagé,lihés of Java code and a Fractal configuratitn fi
of 16 lines (i.e. Fractal ADL). On the other hamdth an ad-hoc (i.e. non-generic approach), taking
into account a new legacy system would require gamplement new versions of Autonomic
Managers for that legacy system, for instance, & 8elf-Optimization Manager and a new Self-
Repair Manager (with a total code size around hdgdiof Java code).

33.3 Sef-Repair

The first Self-Repair experiments were performedadhree-tier auction site consisting of a web
server, an enterprise server and a database sefitteia medium workload of 300 web clients. If no
Self-Repair underlies the system, when a failureus on the web server, the auction site becomes
unavailable. Thus, all new client requests resulam HTTP error until the end of the experiment.
While when Selfware is used, the failure is autacadly repaired by replacing the failed web server
by a new one, and thus guarantying service cortyinui

We run other experiments on the multi-tier aucgae consisting of a web server, a cluster of two
replicated enterprise servers and a database s¥t@iout Selfware, the enterprise server clustgrin
solution applies fail-over techniques to providelgll service availability. However, this is obtadret
the expense of service performance, where the d¢batie failed enterprise server is moved to the
remaining replica. While when Selfware is usedaddlition to service continuity, automatic recovery
ensures performance stability.

3.34 Sdf-Optimization

In order to evaluate the Self-Optimization poliapyided by Selfware, we considered a scenario
where the application workload varies dynamically.the beginning of the experiment, the web
application is submitted to a medium workload (80nts); then the load increases progressivelyoup t
500 clients; and finally the load decreases symuoady down to reach 80 clients.

10
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Initially, the multi-tier auction site is deployexh one enterprise (and web) front-end server and
one database back-end server. Since CPU is thebotilfeneck resource in these experiments, the
managed system elements (i.e. enterprise tier atabase tier) are monitored by sensors that gather
CPU usage information every second and computeatabd and temporal 2 average CPU usage
value. The Self-Optimization manager ensures that dverage CPU usage is kept between a
minimum and a maximum thresholds. In order to pnéwscillations due to parallel reconfigurations
started on the front-end tier and the back-end @&rthe multi- tier managed system, the
reconfiguration workflow associated with the ungierd Multi-Tier Managed Element specifies that a
reconfiguration started on one of the tiers inkikity new reconfiguration for a short period.

Figure 6 shows the variation of the number of egdj for both the enterprise servers and database
servers when the application workload varies. Aswlorkload progressively increases, the average
resource consumption of the cluster of replicatethlobse systems also increases, and this tier
becomes a bottleneck. An allocation of a new dabeplica is triggered, which results in a cluesder
back-end containing two database systems. The wamtikdontinues growing and triggers another node
allocation for the clustered database. The workloackases further; and this places the bottleneck
the front-end tier. An allocation of a new entespris triggered, resulting in a system composed of
two enterprise systems and three database systdrasworkload then increases without saturating
this configuration before it starts decreasing.sThiorkload decrease implies a decrease of the
resource consumption of the front-end tier whioggeers a de-allocation of one its replicas, and e
low resource consumption of the clustered datababkéh triggers a de-allocation of a database
replica.

600 T T T T T
Workload (# of clients)
# of database backends --
# of enterprise servers ss====:-

500

400

300

# of clients
1
[

# of replicas

200

100

1 1 1 1 1
- 0
0 500 1000 1500 2000 2500 3000

Time (s)
Figure 6. Variation of the application workload and number of replica

These experiments were run, on the one hand, gistans managed with Selfware and, on the
other hand, on the same system with no Self-Opétita

Unlike most of the existing autonomic managemenppsalg31][12][15], Selfware was able to
manage systems with replicated static data (emserpeplicas in our experiments) as well as systems
with replicated dynamically changing data (datalrapdicas). Here, replica consistency was based on
underlying clustering solutions, e.g. enterpris&eseclustering and database server clustering.

! Over nodes of replicated elements
2 Over the last 60 seconds

11
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3.3.5 Performance overhead

In order to measure the possible performance owerheduced by the self-management
framework, we compared two executions of the samki-ier system: when it is run over Selfware
and when it is run without Selfware. During the exments, the managed application has been
submitted to a medium workload so that its executimder the control of Selfware induced no
dynamic reconfiguration.

3.4 Sdf-repair of J2EE 1.4 Application Server with integrity constraints

This scenario is used to repair a transient failara JOnAS instance. A transient failure is for
instance a memory leak or a memory overload, armhanon way to repair such a failure is to restart
the application server. Moreover we demonstratghia scenario some abilities of the dynamic
reconfigurations used for system adaptation inSeBware platform. Actually, it is possible to add
some integrity constraints on the cluster architecthat must not be violated during reconfiguraio
Then the reconfiguration service ensures that ¢henfigurations used by the autonomic manager to
repair the system are reliable and conforms t@tmstraints.

For this scenario, we use the France Telecom welicafion SOAPSOOQO described in the next
section and we deploy it on a JOnAS 4.8 cluster.

3.4.1 Additional Common Servicesused in the scenario

To implement the scenario, we use two additionalises in the Selfware platform: the Constraint
Checking Service and the Reconfiguration Service.

To implement the scenario, we use two additionalises in the Selfware platform: the Constraint
Checking Service and the Reconfiguration Service.

With the Constraint Checking Service, it is possible to check that the system architecture
conforms to some specified integrity constraints. iAtegrity constraint is a predicate on assemblies
of architectural elements and component statesgaftion 2.3.2 of SP2-L1). Therefore, a system is
consistent if all integrity constraints in the st are satisfied. Constraints are expressed with a
navigation and selection language used to intrdspexctal system at runtime called FPath. In the
Selfware platform, constraints can be specifiedh koot the global architecture of clusters and oemgiv
nodes in clusters. Some examples constraints we itlantified are the followings:

On a cluster:
- Uniqueness of a JONAS instance name in a ddmain
- Uniqueness of a master instance in a domain to gesiie cluster.
- Separation between Web and EJB tiers on differedés.

On a node:

- System resource availability (memory, CPU): a giwemfiguration of JOnAs and/or a
given application may require a minimum garanteedunt of resources to execute.

- Unigueness of network ports between JOnAS instances
- Maximum/minimum number of JONAS instances on a saoue.

The Reconfiguration Service is used to dynamically reconfigure the system witie
reconfiguration script language FScript. The intetgr of FScript is combined to a transactional
monitor to ensure ACID properties of dynamic reagunfations. If a reconfiguration violates some

% A domain represents an administration perimetataining management targets like servers and chiste

12
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constraints in the target system, the reconfigomais cancelled, which means that the transacson i
aborted (rollbacked) and the system is reset inlags consistent architectural state before the
execution of the faulty reconfiguration by undoadgreconfiguration operations.

3.4.2 Scenarioimplementation

We choose to repair a memory overload in a JOnAgmnte which can leads to a JVM crash by
rebooting the server (i.e. the JVM) locally. We jutocal constraint on each node of the cluster
related to the minimum quantity of available memwayich is needed when restarting a server on the

node.
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Figure 7.Architecture of the Self-repair management
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The main autonomic control loop (¢figure 7) used to repair the transient failuredsposed of

the following elements:

* Sensors: the MBeanCmd tool provided by JASMINeseduto monitodOnAS instances in
the cluster and allows to catch OutOfMemoryExceptlamown by failed JVMs.

» Controller: the Reboot Manager subscribes to JIMéhevthrown by MBeanCmd and when it is
notified of a memory overload, it decides to rehibet failed application server.

* Actuators:

the Reconfiguration Service executes the

repair

reconfiguration. The transaction is formed of tbkofving reconfiguration operations:

1.

component that wraps the actual server ;

running, hence the need to really kill the server ;

reboot the failed server instance on the same machi

plan as a transactional
stop the server instance: in fact, invoke the “stgeration of the LifeCycleController of the

kill the server instance: after the previous step,server is in a ‘stopped’ state but it is still
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In the commit phase, at the very end of the trar@acthe Constraint Checking Service (a sub-
element of the reconfiguration service) makes sotegrity constraints are satisfied. In our case, i

checks that the available memory on the node ivaltee minimum threshold given by the node
constraint,

- if yes, the complete self-repair scenario has lexecuted to its end ;

- if not the Reconfiguration Service cancels the repair action and notifies the
(human) administrator of the constraint violationddahe consequent impossible re-
instantiation of the server on this node. A possiitension of this scenario would
be to react to the constraint violation by buildagew repair plan. For instance,
the controller could try to re-instantiate the ddilserver on another node where
more memory is available.

3.5 Sdf-optimization of Java EE 5 Application Server

On this platform we mainly focus on self-benchmagkbf Java EE application server and self-
optimization of load-balancers. The reason to chaoigenvironment was motivated by the recent
availability of new versions of load-balancers@b and ejb levels), much more dynamic. JOnAS 5,
by supporting these new load-balancers, easesapiginization by the autonomic manager.

3.5.1 Introduction

In a multi-tiers application, two levels of configtion can be considered to enhance its
performance (i.e. throughput-latency ra{i®4]:

1. Architectural configuration by adding/removing riepk

By replicating application servers, the load canbbé&nced on each replica. So by adding
replicas, more clients can be satisfied and theutjitput will be increased. If each level is
independent and its replication can be managedaepa it is important to notice that the load
can spread to other tiers. So if a bottleneck sxagtthe back-end of the architecture (e.g. a
database), this approach can congest the entstecland decrease the laterfeigure 8 illustrates
such not scalable architectural configuration. §heue symbolizes the pool of connections and
the grey squares represent the busy connectiors.bottleneck, no more free connections are
available, and many incoming connection requegtsvaiting.
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(.
Bottl¢ne
[

G / §
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N
§ (.
Web tier EJB tier Database tier

Multi tiers application

Figure 8. Bottleneck introduced by a bad architectu ral configuration

2. Local configuration by tuning a replica

By increasing the multi-programming level (MPL)afocal node, this one can accept requests
of more clients and increase the throughput. Unfately, making pseudo-parallelism introduced
a cost due to context switches and can flood thg ©@Hinally increase the latenclyigure 9 gives
the performance result according to the MPL setfifite global performance of the database tier

can be, for example, improved by setting the odtMfaL (edge of parabola).
performances
{e.g. throughputiatency)
A

max perf

system behaviour

N

\
~

~
-~

.

parabela

Optimal level of parallelism
Figure 9. Influence of parallelism on performances

Self-benchmarking can help us to determine thedmigurations to get the best performances.

15
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This scenario aims at proposing an auto-optiminatidwo steps:

* At first, the best MPL configuration is determindough self-benchmarking

« At runtime, the load-balancer parameters are agtjustccording to the current load and the
optimal performance indicators identified during tlirst step. Indeed, by knowing capabilities
of replicates, we can improve the use of free nessu

3.5.2 Experimental environment

3.5.21 Themanaged Java EE application server JOnAS5

The SOAPSOO application (cf. secti8r2.2) is deployed on JOnAS 5, the last versiotheflava
EE application server from OW2. Completely rewrnitt® be based on OSGI™ modules, JOnAS 5
implements a service-oriented architecture in fhygieation server itself, enabling the server atsd i
services to be dynamically adapted and extendedndidpg on users’ needs and the constraints of
their environment. The resulting architecture isnatheFigure 10.
Exdmnsions

ddg-ons
Javay EE

Figure 10. JONAS 5 architecture

The main benefits of such architecture for an apgilbn server are:

« Dynamic configuration and re-configuration of sesve
0 Services can be stopped, reconfigured, and startechtime

o On demand incremental services delivery: serviegsle started when required by other
services or applications

« Modularity
0 Services are delivered in « bundles »
o0 Code readability

0 Reduced system footprint by starting only the 8iricequired services and by stopping the
no more required ones

o Explicit dependencies are clearly defined betwesvices

16
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» OSGi other add-ons
0 Remote management
0 Services lifecycle management (incl. versions)
0 Services dependencies management (OBR: OSGi BuRejgssitory)
o Dynamic class loading (flat class loaders)
0 OSGi world accessibility (RFID, probes ...)

3.5.2.2 Wildcat

Wildcat is a generic framework for context awareleations[36]. It provides a simple and
dynamic data-model to represent the execution gbofethe application, and offers a simple API for
the programmers to access this information botlelsygmously and asynchronousjyu(l andpush.
Wildcat allows to scale numerous data-sources aadts:

» Firstly, it hierarchically organizes data-sourceach data-source is attached to a leaf in a
tree structure. Operations on hierarchy are sinddile system usages: data sources are
mount/unmount, data sources are denoted by thesiripahe hierarchy...

» Secondly it embeds a CEP engine (for Complex Efeatessing35]) that can process
large volumes of events.

It features a query language that allows to spestifling windows to group, aggregate, sort, filter
and merge event streams. Thus one can easily exgpyrthetic data and event patterns upon which to
trigger a reconfiguration.

Instances of Wildcat can communicate through RMi galling events, and through JMS for
pushing them. Hence, one can easily examine exgcatintexts of distributed applications.

3.5.2.3 Sdf-benchmarking with Clif

Here, we try to get optimal JOnAS configurationgmaeters for the SOAPSOO web application
through an autonomic benchmarking campaign, befoneally deploying the application. As a matter
of fact, although Selfware is aiming at providirgfsptimizing systems once deployed, deploying a
badly configured web application, hoping it willigkly and accurately self-optimize is certainly @ot
good idea for quality of user experience reasongven for the mere stability of the application.
Thus, the idea is to deploy a pre-optimized appboa and more precisely a self-optimized
application, thanks to the Selfware-based Autobemchitecture, as described[4].

So, we apply to the SOAPSOO web application theoBemch architecture, strategies and

Optimization AM Jonas wrapper: gives control over the um number
of threads
Self JMX
Optimization ﬁ ...............
Jonas probe: gives . it processing time and
ot throughput
Load Injection AM/ME M
+ ey
evaluation wi’
> -4 |
M Supervisor ME HTTP Injectors
: HTTP requests
iy
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algorithm described in SP2-L2 for self-benchmark{sgeFigure 11). As presented in secti8rb.1
andFigure 9, we will try to self-optimize the maximumamber of threads used by JOnAS to process
the incoming request (MPL parameter).

Figure 11. The Autobench architecture appliedtoth e SOAPSOO application over Jonas

To do this, we require these specific elements:

* a JONAS wrapper that enables setting the MPL. Wnepper uses JMX to change JOnAS'
maxThreads parameter. A stop()/start() cycle masagplied to JOnAS' HTTP connector (also
via JMX) in order to take into account the newiegtt

« a CLIF probe for JOnAS, giving load metrics to tlead Injection AM, in order to regulate the
autonomous load injection. This probe gets theagerequest processing time and throughput
from JONAS via IMX;

e a CLIF Http Injector to generate HTTP request orPABSOO. This is already available in the
ISAC scenario module for CLIF;

* a definition of a virtual user behavior for CLIFSAC scenario module. This behavior defines
typical user requests and think times for the SOC@@%pplication. The Load Injection AM will
autonomously adapt the number of active virtuafsiaecording to the observed load.

The Optimization AM generates possible values foe tmaxThreads parameter, trying to
maximize the throughput/latency metric. This metriast be computed and delivered by the Load
Injection AM.

3.5.2.4 The managed load-balancers Apache/JK and CMI

JK load-balancer element is plugged in the Apaclenent. It is localized at server side
(Figure 12.

CMI load-balancer element is embedded in the EJB &l this localized at the client side
(Figure 13).

Load-balancer of web accesses (Apache/JK)

“* An alternative is to rely on the load injectorsisthdeliver similar metrics but also complementargtrics,
from the client perspective (i.e. including thewmetk latency). For instance, load injectors give thinimum,
maximum, standard deviation and average valueHherrésponse times. But these measures are likebe to
polluted by garbage collector occurrences in tlael lmjector JVM. So, we have to experiment both svayore
metrics or more accuracy.
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Web server

Apache/JK

Web server

Client-side Server-side: web tiers

Figure 12. Load-balancer of web accesses

The Selfware system provides a self-optimization naggr supporting some dynamic
optimizations of JK plug-in web load-balancer. Thanager is able to perform a self adjustment of
the load-balancing factors (weights) for each MEnsbrs get different indicators for each ME:
memory, CPU, bandwidth, and many other applicagerver metrics, such as pool size, thread
number, etc. The autonomic manager collects theggtoning data and aggregates the load indicators
(e.g. throughput/latency). Finally, when a loadigatbr raises a given limit, the autonomic manager
determines the new load-balancer factors for eahaktl set them through the actuator.

Load-balancer of EJB accesses (CMI)

~
NS cMmi S
0 Q
S« S
Web server EJB container
N
.
NS cMmi S
o
: X
s G @
EJB container
Web server
Client-side: web tiers Server-side: EJB tiers

Figure 13. Load-balancer of EJB accesses

The Selfware system provides a self-optimization naggr supporting some dynamic
optimizations of the EJB/CMI load-balancer. Its @hitities are:

« Self optimization of load-balancer factors: justJ&s the manager is able to determine and set
the best load-balancing factors for ME accordirggdtirrent load of each ME.

« Self evicting: when the load of a ME becomes ailtithe autonomic manager is able to disable
temporary this one in order to refuse connecti@dsting connections are still served. When
the load of an evicting ME decreases under a thidsthis ME is again enabled.
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The next section describes the implementationisfa#lf-optimization manager.

3.5.25 Implementation details of the self-optimization manager for load-balancers

/ Controller \
Detection & reaction
JK rules '
@ Drools =
Wildcat & :

/ Managed Element

P CMI MBean

Managed Element Managed Element
LB Apache/JK ]
=3 = o

Managed Element Managed Element

—— JOnAS 5
LB EJB Sﬂ:wEaSyBeans J/
[ ) £ /

Figure 14. Implementatlon of a manager for self-opt  imization of load-balancers

Figure 14 describes the main parts of the manager:

e Sensors

Measures are collected by using Wildcat. This arte as a higher layer of sensor which is in
charge of performing a first treatment of measukdsasures are extracted from the following

sources:
o Clif and LeWYS probes (e.g. CPU, network, memoriptever the operating system.

o JMX probes, exposed by the application server, igpogome useful indicators (e.g. pool
size, thread number). The MPL can be computed ttese (from the throughput-latency

ratio).
« Controller

It is implemented by using the rules engine Drodlsis one allows dynamically adding or
removing bundles defining rules and actuators feergload-balancers.

o Detection

Since inserted events are facts, the Drools engses events as input. Detection is
performed, on these events, by using the LHS oéstuLHS (for left-hand side) is the

conditional parts of a rule.

o Reaction

The RHS (for right-hand side) of rules implemerdateons and invoke actuators. RHS is
basically a block that allows dialect specific satitacode to be executed.

* Actuators
Reconfiguration of legacies is performed by usimgrtwrapper components. According to the
load-balancers, these wrappers uses:
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0 A MBean to reconfigure CMI
0 An Ant task to reconfigure JK.

3.5.3 Approach for self-optimization

The scenario can be divided in two successive stapsly, an optimal configuration of MPL is
computed by self-benchmarking. Secondly, load-lmdenare dynamically tuned in order to respect
the performance of each replicate.

3.5.3.1 Lookingfor an optimal configuration by self-benchmarking

As explained in sectioB.5.2.3, our goal is to get the Autobench architectutonomously find
the best setting for JOnAS maxThreads parameterL]MiRe. the maximum number or parallel
request executions in JOnAS. We define the besingeds the value that results in the maximum
throughput/latency metric.

Because of the specificity of this parameter, daliomic search based on an a priori minimum
value and maximum value is not directly applicatbigst, there is no intrinsic maximum possible
value; second, even though we could think of a lemusands threads as a practical limit, it could be
dangerous for the system stability to start withmeamy threads, or even half of them. Remember that
we want to avoid any crash of the System Under ifiestder (1) to implement simpler Load Injection
and Optimization AMs and (2) to go quicker in tleéf49enchmarking campaign

Then, we can think of an algorithm that roughly egivthe necessary bounds, before actually
applying the dichotomic search. The lower boundasreally a problem, since we can at least choose
one (single-threaded server). The upper bound neeate attention, because we have to find a
maximum MPL limit that is actually greater than thtimal MPL value, but also not too far from the
optimal value to avoid instability problems. Moreoywe want to be more efficient (quick) than
successively trying all possible values, incremmentthe MPL step by step from one until the
performance metric (throughput/latency) startsdordase.

To go quick without making any assumption about dnger of magnitude of maximum MPL
value, a possible principle is to successfully dedbe MPL value, make an experiment with this new
value, and to check if the performance metric vgdothan the previous experiment. This is a way to
go quick for linear systems (although the algoritimould never end), but we know that our metric
will reach a maximum and then decrease, possibly (ot necessarily nor strictly) following a
parabolic curve (se€igure 9). In other words, we can assume that #r@opnance metric will
increase more and more slowly, and then decreater fand faster while the MPL grows. In order not
to go far beyond the optimal MPL value, and pogshti®yond the system operating limit, we must
temper the arithmetic progression of the MPL valoea tempering factor, e.g. based on the evolution
of the curve slope between two consecutive points.

More formally, let m be the measured metric for experiment number d, labh MPL be the
maxThreads value for this experiment. The curveesl§,; from point (MPL, m) to point (MPL.,
mi+1) equals (m;-mi)/( MPL.;- MPL;). To temper the arithmetic progression, the MPtrément is
the latest MPL value multiplied by the temperingtfa (S:1/S): MPLi.; = MPL1 X (1 + (S4/S)).

For linear systems, this factor is constant andiksgio one, so we keep doubling the MPL values from
one experiment to the following. For the kind o§®m we are testing, this factor may be very close
one during the first experiments (low MPL valueaihd then progressively decrease, playing the
wanted tempering role. Assuming function f Ff(MPL,) is close to a parabolic function, we can

® We could insert a self-repair manager here, ireotd recover from a SUT crash. However, this wadd a
third AM in the architecture, with an extra conttobp. Coping with these loops would require a mmeplex
orchestration. It would also significantly slow tbelf-benchmarking process since restarting ayfaudtle takes
a significant piece of time. Nevertheless, autormomanagement of several, heterogeneous autononmagees
is an interesting topic for future work directions.
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make the tempering factor more efficient by usisgsguare value. Finally, we get the algorithm give
by Figure 15 and illustrated Wyigure 16.

I/ let mi be the performance metric from experiment number i
// let MPLi be JOnAS' maxThreads value for experime nt number i
I/l the MPL values for the first three iterations ar e manually set
I/l because the tempering factor is undefined

MPL =1

MPL, =2

MPL =4

m = experimental_evaluation(MPL 1)

m, = experimental_evaluation(MPL 2)

S, = (m - M l)/(MPL - MPL 1)

m = experimental_evaluation(MPL 3)

83 = (m 3~ M 2)/(MPL 3~ MPL 2)

i=3

whilem ; >m ;4
MPL,; =MPL ; x(1+ (S i/S i1 ) ?) /] tempered arithmetic increment

m;.; = experimental_evaluation(MPL i+1 )
S =(M - M )/(MPL 44y - MPL ;)
izi+1l
// the maximum bound is MPLi
Il finally, we also get MPLi-2 as a good minimum bo und
I/ then, we can perform a dichotomic search within this range

Figure 15. Tempered arithmetic search algorithm for the MPL bounds

As a side result, if max is the index of the MPLxmaum bound found by the algorithm, we also
get MPLyax2 @s a good minimum bound (MRJ), in the sense that it is closer to the optimalLMP
value than all other values MPiith 0<i< max-2. Note that nothing can be said wHbdPL a1
These results are valid for any function whosewvdgive is monotonic.

performance metric
4 (throughput/latency)
> STOP
the metric grows
along with MPL
A range for dichotomic search
ms
assumption: the function
derivative is monotonic
mz
m1 ..........
1 1 LI | L) LI >
MPL+ MPL3 MPLmax-2 MPLmax Multi Programming Level
MPL, (= MPLain)

Figure 16. lllustration of the bounds search algori thm
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3.5.3.2 Dynamic reconfiguration of the load-balancing algorithm based on the current
activity of cluster nodes

To launch a reconfiguration, the optimization marageeds to detect some abnormal
performances of replicated MEs. By breaking pertotoes of a particular replicated ME, we can
cause a dynamic reconfiguration of the load-bafamalgorithm in order to lighten the request
throughput toward this. Three reasons (non-exof)sigan be considered for differences of
performance between replicated MEs:

» Replicated MEs are heterogeneous.

This case correspond to a local weakness of acedpl ME. Heterogeneity appears in the
following cases:

o When hardware are different.

o When a replicated ME is not dedicated to the appbo.

o When the configuration is not optimal.

An example Figure 17) is when a replicated ME accept few cotioe requests (e.g. due to a

not efficient configuration). Its latency is of ase minimal, but its MPL setting is needlessly low.
Consequently its request throughput is limited tiraaks the performances of this replicated ME.

Chient-side

Figure 17. Overload caused by a weaker replicated M E (numbers are weights)

» Load-balancing is not fair, i.e. the incoming resfseare not equitably distributed.

The performances of a replicated ME can be brokearbimbalance (e.g. by adding some
clients that bypasses the load-balancer &guare 18).
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Client-side Web tier

Figure 18. Overload caused by an imbalance of the |  oad distribution

« Areplicated ME is linked to another overloadedsie

The latency can be increased if the replicated $inked to an overloaded tier (for example a
LDAP as inFigure 19).

)

N

Client-side Web tier LDAP

Figure 19. Overload caused by the link to an overlo  aded LDAP

After having detected an abnormal state (cominghfemy of three reasons), the autonomic
manager will readjust the load-balandeig(re 20).
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(ad

Vs

Client-side Web tier

Figure 20. Reconfiguration of the load-balancer due to the heterogeneity of MEs
We dispose of two kinds of indicators in input bétanalyser (rules engine), which detects
abnormal performances:
o Material resources (CPU, memory, network)
o Software resources (OS, JVM, application server)

Self-benchmarking gives an initial base of optinmalicators for software resources. In this
scenario the base won't be updated and the compptadal MPL, which belongs to the base, is
an input of the analyzer (as a reference value).
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4 Conclusion

This document has described the three scenaribsvre experimented in the Selfware project
regarding autonomic management of J2EE applicatovers.

The first scenario presents a set of autonomic gemsaperforming both the self-repair and the
self-optimization.

The second scenario focuses on an autonomic manageéng repairs according to some given
integrity constraints.

The third scenario focuses on a joint use of setfdmmarking and self-optimization of load-
balancers.
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