
Livrable Selware SP4
Lot 2, June 26, 2008, 18:1

Selfware Self-management of JMS-based applications

S. Bouchenak (INRIA)
F. Boyer (INRIA)
F. Métral (INRIA)
A. Freyssinet (ScalAgent)
J. Philippe (INRIA)
S. Sicard (INRIA)
C. Taton (INRIA)

1



Contents
1 Introduction 3

2 Background: Java Message Service (JMS) 4

3 Clustered Queues 4

4 Clustered queue load-balancing 5
4.1 Con�guration of clients connections . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 Standard queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.2 Clustered queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 A self-optimizing clustered queue 10
5.1 Control rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2.1 System events and controls . . . . . . . . . . . . . . . . . . . . . . . 11

6 Implementation Details 13
6.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 The control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2.1 LBConnectionFactory . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2.2 ClusterManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Evaluation 14
7.1 Load-balancing optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Dynamic provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Conclusion for the measurements . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Conclusion 19

9 Annex 21
9.1 Fractal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.2.1 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.2.2 JNDI Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.2.3 Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.2.4 Cluster Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2.5 Destinations and Users . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.2.6 Connection Factory and Cluster Connection Factory . . . . . . . . . 29

2



1 Introduction
Autonomic computing, which aims at the construction of self-managing and self-adapting
computer systems, has emerged as an important goal for many actors in the domain of
large scale distributed environments and applications. This approach more precisely aims
at providing systems and applications with self-management capabilities, including self-
con�guration (automatic con�guration according to a speci�ed policy), self-optimization
(continuous performance monitoring), self-healing (detecting defects and failures, and tak-
ing corrective actions), and self-protection (taking preventive measures and defending
against malicious attacks). Following this approach, the Selfware project aims at pro-
viding an infrastructure for developing autonomic management software. An important
aspect of this infrastructure is the adoption of an architecture-based control approach as
described in the SP1-L1 document, meaning that the control loops that regulate the system
have the ability to introspect the current software architecture of the managed system, as
well as they have the ability to modify (i.e. recon�gure) this architecture.

The objective of this document is to describe self-optimization and self-repair of JMS-
based, or more generally MOM applications in the context of the Selfware platform. MOM
applications rely on messages as the single structure for communication, coordination and
synchronization, thus allowing asynchronous execution of components. Reliable communi-
cation is guaranteed by message queueing techniques that can be con�gured independently
from the programming of software components. The Java community has standardized an
interface for messaging (JMS).

This document more precisely analyses the performance of a MOM (JMS) and proposes
a self-optimization algorithm to improve the performance of the MOM infrastructure. This
mechanism is based on a queue clustering solution : a clustered queue is a set of queues
each running on di�erent servers and sharing clients.

Note: as the work on self-repair is a bit late, its description is postponed to a future
version of this delivrable.

This paper targets the optimization of these clustering mechanisms. This optimization
takes place in two parts: (i) the optimization of the clustered queue load-balancing and
(ii) the dynamic provisioning of a queue in the clustered queue. The �rst part allows the
overall improvement of the clustered queue performance while the second part optimizes
the resource usage inside the clustered queue. Thus the idea is to create an autonomic
system that:

• fairly distributes client connections among the queues belonging to the clustered
queue,

• dynamically adds and removes queues in the clustered queue depending on the load.
This would allow us to use the adequate number of queues at any time.

As the work on self-repair is a bit late, its description is postponed to a future version
of this delivrable.

This document is organized as follow: Sections 2 and 3 present the context of this work.
Section 4 details the di�erent cases that may occur with a clustered queue. Sections 5 and
6 present the control rules and the control loop. Section 7 shows performance evaluation.
Finally section 8 draws a conclusion and outlines future work.

3



2 Background: Java Message Service (JMS)
JMS is part of Sun's J2EE platform. It provide a programming interface (API) to in-
terconnect di�erent applications through a messaging middleware. The JMS architecture
identi�es the following elements:

• JMS provider: an implementation of the JMS interface for a Message Oriented
Middleware (MOM). Providers are implemented as either a Java JMS implementation
or an adapter to a non-Java MOM.

• JMS client: a Java-based application or object that produces and/or consumes
messages.

• JMS producer: a JMS client that creates and sends messages.

• JMS consumer: a JMS client that receives messages.

• JMS message: an object that contains the data being transferred between JMS
clients.

• JMS queue: a staging area that contains messages that have been sent and are
waiting to be read. As the name queue suggests, the messages are delivered in the
order they are sent. A message is removed from the queue once it has been read.

• JMS topic: a distribution mechanism for publishing messages that are delivered to
multiple subscribers.

• JMS connection: A connection represents a communication link between the ap-
plication and the messaging server. Depending on the connection type, connections
allow users to create sessions for sending and receiving messages from a queue or
topic.

• JMS session: Represents a single-threaded context for sending and receiving mes-
sages. A session is single-threaded so that messages are serialized, meaning that
messages are received one-by-one in the order sent.

For our experiments we chose JORAM (Java Open Reliable Asynchronous Messaging).
It is open source software released under the LGPL license which incorporates a 100% pure
Java implementation of JMS. JORAM adds interesting extra features to the JMS API such
as the clustered queue mechanisms. The following section describes the mechanism of queue
clustering.

3 Clustered Queues
The clustered queue feature provides a load balancing mechanism. A clustered queue is a
cluster of queues (a given number of queue destinations knowing each other) that are able
to exchange messages depending on their load.

Each queue of a cluster periodically reevaluates its load factor and sends the result to
the other queues of the cluster. When a queue hosts more messages than it is authorized

4



Figure 1: A queue cluster

to do, and according to the load factors of the cluster, it distributes the extra messages to
the other queues. When a queue is requested to deliver messages but is empty, it requests
messages from the other queues of the cluster. This mechanism guarantees that no queue
is hyper-active while some others are lazy, and tends to distribute the work load among
the servers involved in the cluster. The �gure above shows an example of a cluster made
of two queues. An heavy producer accesses its local queue (queue 0) and sends messages.
The queue is also accessed by a consumer but requesting few messages. It quickly becomes
loaded and decides to forward messages to the other queue (queue 1) of its cluster, which
is not under heavy load. Thus, the consumer on queue 1 also gets messages, and messages
on queue 0 are consumed in a quicker way.

4 Clustered queue load-balancing
We present in this section the key parameters that in�uence the behavior and the perfor-
mance of a clustered queue. In the �rst part, we show the impact of the distribution of
clients connections on the performance; in the second part, we provide some details about
resource provisioning.

5



4.1 Con�guration of clients connections
4.1.1 Standard queue
A standard single queue Qi is connected to Ni message producers that induce a message
production rate pi, and to Mi message consumers that induce a message consumption rate
ci. The queue length li denotes the number of messages waiting to be read in the queue;
li is always positive and obeys to the law :

∆li = pi − ci

Figure 2: Standard JMS queue Qi

Depending on the ratio between message production and message consumption, three
cases are possible:

• ∆li = 0: message production and message consumption annihilate themselves and
queue length li is constant. Queue Qi is said to be stable.

• ∆li > 0: there is more message production than message consumption. Queue Qi will
grow and eventually saturate as the queue length li gets too big. Queue Qi is then
unstable and is said to be �ooded. Once the queue saturates, the message production
rate of producers will be limited. The queue then stabilizes with ∆li = 0.

• ∆li < 0: there is more message consumption than message production in the queue.
Queue length li decreases down to 0; the queue is unstable and said to be draining.
Once queue Qi is empty, message consumers will have to wait and become lazy, Qi

will stabilize with ∆li = 0.

The message production and consumption rates are in direct relationships with the
number of message producers and consumers:

pi = f(Ni)
ci = g(Mi)

Thus the stability of a standard single queue is controlled by the ratio between the number
of message producers and the number of message consumers.

6



4.1.2 Clustered queue
Clustered queues are standard queues that share a common pool of message producers and
consumers, and that can exchange message to balance the load. Each queue runs on a
separate server. All the queues of a clustered queue are supposed to be directly connected
to each other. This allows message exchanges between the queues of a cluster in order to
empty �ooded queues and to �ll draining queues.

Figure 3: Clustered queue Qc

The clustered queue Qc is connected to Nc message producers and to Mc message
consumers. Qc is composed of standard queues Qi(i ∈ [1..k]). Each queue Qi is in charge
of a subset of Ni message producers and of a subset of Mi message consumers:

{
Nc =

∑
i Ni

Mc =
∑

i Mi

The distribution of the clients between the queues Qi is described as follows: xi (resp. yi)
is the fraction of message producers (resp. consumers) that are directed to Qi.

{
Ni = xi ·Nc

Mi = yi ·Mc
,

{ ∑
i xi = 1∑
i yi = 1

The standard queue Qi to which a consumer or producer is directed to cannot be changed
after the client connection to the clustered queue. This way, the only action that may
a�ect the client distribution among the queues is the selection of an adequate queue when
the client connection is opened.

The clustered queue Qc is characterized by its aggregate message production rate pc

and its aggregate message consumption rate cc. The clustered queue Qc also has a virtual
clustered queue length lc that aggregates the length of all contained standard queues:

lc =
∑

i

li = pc − cc,

{
pc =

∑
i pi

cc =
∑

i ci

The clustered queue length lc obeys to the same law as a standard queue:

• Qc is globally stable when ∆lc = 0. This con�guration ensures that the clustered
queue is globally stable. However Qc may observe local unstabilities if one of its
queues is draining or is �ooded.

7



• If ∆lc > 0, the clustered queue will grow and eventually saturate; then message
producers will have to wait.

• If ∆lc < 0, the clustered queue will shrink until it is empty; then message consumers
will also have to wait.

We now suppose that the clustered queue is globally stable, and we list various scenarios
that illustrate the impact of client distribution on performance.

Optimal client distribution of the clustered queue Qc is achieved when clients are
fairly distributed among the k queues Qi. Assuming that all queues and hosts have equiv-
alent processing capabilities and that all producers (resp. consumers) have equivalent mes-
sage production (resp. consumption) rates (and that all produced messages are equivalent
: message cost is uniformly distributed), this means that:

{
xi = 1/k
yi = 1/k

,

{
Ni = Nc

k ,

Mi = Mc
k

In these conditions, all queues Qi are stable and the queue cluster is balanced. As a
consequence, there are no internal queue-to-queue message exchanges, and performance is
optimal. Queue clustering then provides a quasi-linear speedup.

The worst clients distribution appears when one queue only has message producers
or only has message consumers. In the example depicted on Figure 3, this is realized when:

{
x1 = 1
y1 = 0

,

{
x2 = 0
y2 = 1

,

{
N1 = Nc

M1 = 0
,

{
N2 = 0
M2 = Mc

Indeed, this con�guration implies that the whole message production is directed to queue
Q1. Q1 then forwards all messages to Q2 that in turn delivers messages to the message
consumers.

Local instability is observed when some queues Qi of Qc are unbalanced. This is char-
acterized by a mismatch between the fraction of producers and the fraction of consumers
directed to Qi:

xi 6= yi

In the example showed in Figure 3, Qc is composed of two standard queues Q1 and Q2.
A scenario of local instability can be envisioned with the following clients distribution:

{
x1 = 2/3
y1 = 1/3

,

{
x2 = 1/3
y2 = 2/3

This distribution implies that Q1 is �ooding and will have to enqueue messages, while Q2

is draining and will see its consumer clients wait. However the queue cluster Qc ensures
the global stability of the system thanks to internal message exchanges from Q1 to Q2.

8



A stable and unfair distribution can be observed when the clustered queue is globally
and locally stable, but the load is unfairly balanced within the queues. This happens when
the client distribution is non-uniform.

In the example presented in Figure 3, this can be realized by directing more clients to
Q1 than Q2: {

x1 = 2/3
y1 = 2/3

,

{
x2 = 1/3
y2 = 1/3

In this scenario, queue Q1 processes two third of the load, while queue Q2 only processes
one third. Suc situation can lead to bad performance since Q1 may saturates while Q2 is
lazy.

It is worthwhile to indicate that these scenarios may all happen since clients join and
leave the system in an uncontrolled way. Indeed, the global stability of a (clustered)
queue is under responsability of the application developper. For instance, the queue can
be �ooded for a period; we then assume that it will get inverted and draining after, thus
providing global stability over time.

4.2 Provisioning
The previous scenario of stable and non-optimal distribution raises the question of the
capacity of a queue.

The capacity Ci of standard queue Qi is expressed as an optimal number of clients.
The queue load Li is then expressed as the ratio between its current number of clients and
its capacity:

Li =
Ni + Mi

Ci

• Li < 1: queue Qi is underloaded and thus lazy; the message throughput delivered by
the queue can be improved and ressources are wasted.

• Li > 1: queue Qi is overloaded and may saturate; this induces a decreased message
throughput and eventually leads to thrashing.

• Li = 1: queue Qi is fairly loaded and delivers its optimal message throughput.

These parameters and indicators are transposed to queue clusters. The clustered queue
Qc is characterized by its aggregated capacity Cc and its global load Lc:

Cc =
∑

i

Ci , Lc =
Nc + Mc

Cc
=

∑
i Li · Ci∑

i Ci

The load of a clustered queue obeys to the same law as the load of a standard queue.
However a clustered queue allows us to control k, the number of inside standard queues,

and thus to control its aggregated capacity Cc =
∑k

i=1 Ci. This control is indeed operated
with a re-evaluation of the clustered queue provisioning.

• When Lc < 1, the clustered queue is underloaded: if the clients distribution is
optimal, then all the standard queues inside the cluster will be underloaded; however,
as the client distribution may be non-optimal, some of the single queues may be

9



overloaded, even if the cluster is globally lazy. If the load is too low, then some
queues may be removed from the cluster.

• When Lc > 1, the clustered queue is overloaded: even if the distribution of clients
over the queues is optimal, there will exist at least one standard queue that will be
overloaded. One way to handle this case is to re-provision the clustered queue by
inserting one or more queues into the cluster.

5 A self-optimizing clustered queue
In this section, we present the design of an autonomic ability which targets the optimization
of a clustered queue. The optimization takes place in two steps : (i) the optimal load-
balancing of a clustered queue, and (ii) the dynamic provisioning of queues in a clustered
queue.

The �rst part allows the overall improvement of the clustered queue performance while
the second part optimizes the queue resource usage inside the clustered queue. Thus the
idea is then to create an autonomic system that :

• fairly distribute client connections to the pool of server hosts in the clustered queue,

• dynamically adds and removes queues in a clustered queue depending on the load.
That would allow us to use the adequate number of queues at any time.

The implementation of these optimizations relies on the model of clustered queue per-
formance which has been presented in the previous sections.

5.1 Control rules
The global clients distribution D of the clustered queue Qc is captured by the fractions of
message producers xi and consumers yi. The optimal clients distribution Dopt is realized
when all queues are stable (∀i xi = yi) and when the load is fairly balanced over all
queues (∀i, j xi = xj , yi = yj). This implies that the optimal distribution is reached when
xi = yi = 1/k.

D =




x1 y1
... ...

xk yk


 , Dopt =




1/k 1/k
... ...

1/k 1/k




Local instabilities are characterized by a mismatch between the fraction of message
producers xi and consumers yi on a standard queue. The purpose of this rule is the stability
of all standard queues so as to minimize internal queue-to-queue message transfert.

(R1) xi > yi: Qi is �ooding with more message production than consumption and should
then seek more consumers and/or fewer producers.

(R2) xi < yi: Qi is draining with more message consumption than production and should
then seek more producers and/or fewer consumers.

10



Load balancing rules control the load applied to a single standard queue. The goal is
then to enforce a fair load balancing over all queues.
(R3) Li > 1: Qi is overloaded and should avoid accepting new clients as it may degrade

its performance.

(R4) Li < 1: Qi is underloaded and should request more clients so as to optimize resource
usage.

Global provisioning rules control the load applied to the whole clustered queue. These
rules target the optimal size of the clustered queue while the load applied to the system
evolves.
(R5) Lc > 1: the queue cluster is overloaded and requires an increased capacity to handle

all its clients in an optimal way.

(R6) Lc < 1: the queue cluster is underloaded and could accept a decrease in capacity.

5.2 Algorithm
This section presents an algorithm for the self-optimization of queue clustering systems. As
a �rst step we do not allow the modi�cation of the underlying middleware. This constraint
restricts the control mechanisms that we can use to implement the autonomic behaviour.

5.2.1 System events and controls
Without modi�cation, the underlying JMS middleware does not provide facilities such
as session migration that would allow us to migrate clients from one queue to another.
However clustered queue systems allow the control of the queue that will handle a new
message producer (resp. consumer). This control translated in the model terms means
that some xi (resp. yi) will be increased, and we have the choice for i.

On the contrary, a message producer (resp. consumer) that leaves the system induces
an unavoidable and uncontrolled decrease in some xi (resp. yi).

Thus a clustered queue system generates 4 types of events that we can use to control
and optimize the system:

join(Producer) join(Consumer)
leave(Producer, Qi) leave(Consumer, Qi)

The control rules must then be implemented as handlers to these events. The algorithms
that control the distribution of clients and the queue cluster provisioning are depicted in
Algorithms 1 and 2.

The ElectQueue(ClientType) function chooses the queue that is most far away from the
targeted client distribution. The elected queue Qi then maximizes the gap to the optimal.
When considering a new client that is a message producer (resp. consumer), the gap is
evaluated with 1/k − xi (resp. with 1/k − yi). Thus Qi satis�es:

{
xi = minj xj (when ClientType = Producer)
yi = minj yj (when ClientType = Consumer)

11



Algorithm 1 Client joining algorithm
on join(ClientType ∈ {Producer, Consumer}, Qc)
if (Lc ≥ 1) then
// Queue cluster will be overloaded
// An additional queue is required
Qk+1 ← NewQueue()
AddQueue(Qc, Qk+1)

end if
Qi = ElectQueue(Qc, ClientType)
return CreateSession(ClientType,Qi)

Algorithm 2 Client leaving algorithm
on leave(ClientType ∈ {Producer, Consumer}, Qi ∈ Qc)
if (IsMarked(Qi, �to be removed�) and IsEmpty(Qi) then

RemoveQueue(Qc, Qi)
DestroyQueue(Qi)

end if
if (Lc < 1) then

Qi = ElectRemovableQueue(Qc)
if Qi 6= null then

Mark(Qi, �to be removed�)
end if

end if

12



The ElectRemovableQueue(Qc) chooses one queue that can be removed from the queue
cluster. A queue cannot be removed on demand since it may still have clients connected to
it: a queue can only be removed when its last client decides to leave. Thus the removal of a
queue Qi will need two steps: (1) Qi is marked �to be removed� and no more clients will be
addressed to it; (2) when Qi's last client leaves, Qi can then be removed from the cluster.
Moreover, even if Qc is underloaded, queue Qi should not be removed if its removal let Qc

be overloaded. Thus the condition to allow Qi's removal is:

Ci ≤ Cc − (Nc + Mc)

The following section gives implementation details about these algorithms.

6 Implementation Details
The following section brie�y explains the implementation principles of our self-optimization
algorithm on top of JORAM. Details on how JORAM has been wrapped within the SELF-
WARE platform are given at the end of this document, in the Annex part.

6.1 Requirements
To implement a self-managed queue cluster using the autonomic computing design princi-
ples require the following management capabilities:

• to know the current number of message producers and consumers,

• to know where the servers are deployed, where the queues are deployed and what is
their con�guration,

• to route a new client connection to the best queue to reach the optimal,

• to detect the overload or the underload of a queue cluster,

• to allocate a new server to create a new queue,

• to add and remove a queue in a server.

6.2 The control loop
To simplify, we will consider that clients create only one session by connection. By doing
this we assimilate the creation of sessions and the creation of connections. Assuming this,
the �rst prototype is achieved by wrapping the standard JMS ConnectionFactory by a
"LBConnectionFactory" (where LB stands for Load Balancing).

6.2.1 LBConnectionFactory
As the client gets the connection factory through JNDI, it gets the LBConnectionFactory
instead. This is the main non-functionnal hook in the system that allows to control the dis-
tribution of producers and consumers among servers. This component o�ers the following
methods:

13



createConnection(...) takes the type of the client as a parameter (Producer or Con-
sumer). To create the connection with the right server, it requests a component
called �ClusterManager� which provisions (�resizes�) the cluster and elects a server
according to the current state of the system (the servers, the load of each queue in
terms of producers and consumers).

closeConnection(...) e�ectively closes the connection to the server and noti�es the Clus-
terManager so it can decrease the number of queues in the cluster if necessary.

6.2.2 ClusterManager
This component stores the state of the global system, i.e. the number of servers currently
used, the number of clients connected to each server, their type. The state changes as
client requests are received from the LBConnectionFactory. The di�erent requests are:

• a consumer wants a connection;

• a producer wants a connection;

• a consumer wants to close a connection on server Qi;

• a producer wants to close a connection on server Qi.

In the �rst two cases, the ClusterManager elects a server taking into account the capac-
ities in terms of clients. If the cluster is evaluated to be full of producers or consumers,
the LBClusterManager uses the procedures NewQueue() and AddQueue() to launch a
JORAM server on a free host and to create a queue linked to the cluster on that server. Of
course, the cluster manager will update its internal image of the global system according
to this.

7 Evaluation
A series of experiments was run to assess the performance of JORAM. Rather than

�nding an absolute maximum, these experiments were aimed at �nding the relevant factors
impacting the performance of JORAM queues. The focus was on assessing the usefulness
of using queue clusters instead of single queues.

Environment The experiments presented below were run on a cluster of Mac Mini com-
puters with the following speci�cations:

• Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM DDR2 (667 MHz frontal
bus)

• Java J2SDK1.4.2_13, JORAM 4.3.21

• Ethernet Gigabit network

14



In each experiment, the measurements were taken with JMX probes located on a com-
puter outside the cluster. Each JORAM queue ran a JMX server which was accessed by
one of the JMX probes. The monitored attributes on the queue were NbMsgsDeliverSince-
Creation which is the number of messages read by consumers on the queue since its creation
and MessageCounter which is the number of messages presently waiting in the queue. The
JMX probes were reading these attributes every second.

In the following experiments, each JORAM queue was located on a distinct node. The
queues were running in a persistent con�guration. The producers and consumers were
transactional with a commit between each message. The Java Virtual Machine hosting
each queue was able to use 1536 MBytes of memory. The Garbage Collector was disabled
to prevent random hits on performance. The size of the JMS messages used was 1 KBytes.
The network was not considered to be meaningful factor in these experiments.

To obtain meaningful results, each experiment was run three times. The charts were
constructed using the average of the three tests. The average throughput was calculated
excluding the �rst �ve and last �ve seconds as a way to only account for the stable part of
the process.

The number of waiting messages factor This experiment aims at showing the impact
of the number of messages waiting in the queue on the performance. In a �rst step,
producers write 1500 messages in a single queue, while in a second step, consumers read
these messages from the queue until it is empty. Figure 4 shows this experiment. We
observe that the number of messages waiting in the queue has a strong direct impact on
the performance: the message processing rate of the queue decreases as the queue length
grows.

Moreover we observe that the performance of the queue is noticeably higher for message
production than for message consumption. Indeed, the next experiments �gure out the
optimal ratio between message producers and message consumers to assign to a single queue
in order to ensure its stability. In these experiments, a single message producer injects 15000
messages into the queue, and one or more message consumers read the messages. Figure 5
presents the results when the queue is assigned a single message producer and a single
message consumer. In this con�guration, the queue is strongly unstable with about two
times more message production than consumption. This leads to a growing queue length,
hence reduced performance. Figure 6 presents the results when the queue is loaded with
one message producer and two message consumers. In this scenario, the queue is stable
with equivalent message production and consumption rates. The queue length remains low,
and thus the performance are stable. An experiment with one message producer and third
message consumers shows a very similar queue behaviour. From these experiments, we
deduce that the optimal clients ratio is one message producer for two message consumers.

Single queue limit In order to assess the interest of having a cluster queue instead of a
single queue, we need to measure the highest throughput a single queue can reach with the
previously described parameters. We made multiple measurements with a varying number
of producers and consumers accessing a single queue. As explained before, for a given
number of producers, the ratio to obtain the best throughput was always one producer for
two consumers. These measurements are summed up on Figure 7. These results account

15



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80
 0

 500

 1000

 1500

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

message production (messages/ms)
message consumption (messages/ms)

# of enqueued waiting messages

Figure 4: Impact of the Waiting Messages on the Performance

for the strong interest in dynamic provisioning and optimization of the load-balancing
of clustered queues in order to always provide the best clustered queue size and clients
distribution for best performance.

7.1 Load-balancing optimization
The following presents an evaluation of the queue cluster load-balancing optimization that
fairly distributes client connections among the queues. For this evaluation, we expose a
queue cluster composed of two queues to 4 messages producers and 8 message consumers.
A single message producer emits 10000 messages, while a message consumer reads 5000
messages. This con�guration ensures that the queue cluster is stable. Figure 8 presents
the results of this experiment when the queue cluster is driven with the standard JORAM
load-balancing strategy, while �gure 9 presents these results when the cluster is driven
by our optimized load-balancer. When using the original load-balancing strategy, we
observe a noticeable unstability with a higher message production rate than the message
consumption rate (see Figure 8). This behaviour is the consequence of a bad distribution of
the clients over the internal queues of the cluster, which generates local instabilities that are
hardly compensated by the internal queue-to-queue message exchange mechanism. This
directly threatens the queue cluster performance which is then suboptimal, with less than
0.3 messages/ms. In comparison, when using our dynamic load-balancing optimization,

16



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250
 0

 2000

 4000

 6000

 8000

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 5: Behaviour of a single queue with one message producer and one message consumer

the queue cluster presents a very stable and balanced behaviour. Indeed, the message
production rate and the message consumption rate both reach 0.35 messages/ms.

7.2 Dynamic provisioning
We now consider the evaluation of the dynamic provisioning algorithm which dynamically
adapts the number of queues inside a queue cluster depending on the load. The workload
applied to the queue cluster consists in 5 message producers and 10 message consumers.
As in the previous experiment, a message producer generates 10000 messages while a
message consumer gets 5000 messages. To generate an increasing workload, the clients are
created gradually, one at a time, and new client creations are separated with a delay of
10s. The queue cluster is kept stable by creating clients so as to respect a ratio of two
message consumers for one message producer. The queue cluster initially contains one
single standard queue.

Figure 10 shows the behaviour of the queue cluster under a static provisioning policy,
while �gure 11 presents its behaviour under dynamic provisioning. When statically pro-
visioning, the queue cluster contains one single queue during the entire experimentation,
no matter how many clients are connected to it. The queue cluster stabilizes quickly after
the second step around time 50s, with message production and consumption rates of about
1.9 messages/ms until the end of the experiment. When the queue cluster is dynamically

17



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250
 0

 1

 2

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 6: Behaviour of a single queue with one message producer and two message consumers

provisioned, the queue cluster behaves as in the previous experiment as long as the capacity
of the single queue is su�cient to absord the workload. Then, arount time 120s, as the
workload exceeds the capacity of a single queue, the cluster is provisioned with a second
queue, to which new clients are directed. As expected, the performance of the queue cluster
doubles, jumping from 1.9 messages/ms to 3.7 messages/ms.

7.3 Conclusion for the measurements
These measurements show some interesting points. In a single queue, the critical factor
impacting the performance is the number of messages waiting in the queue. Increasing the
number of producers and consumers on a single queue leads to an increase in performance
which is not linear. Furthermore a ceiling throughput is reached when the number of clients
corresponds to the capacity of the queue.

In a cluster queue, the balance of the cluster and the stability of the internal queues
are extremely important. Even a slight instability between the queues strongly decreases
the overall throughput. The instability seems to lead to an increase in the number of
messages waiting in the queues. In contrast of a single queue, adding queues in a stable
and well-balanced cluster leads to a linear increase in performance.

18



 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30  35  40

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

Number of clients

Average throughput (messages/ms)

Figure 7: Capacity of a stantard single queue

8 Conclusion
Providing a scalable and e�cient Message Oriented Middleware is an important topic

for today's computing environments. This documentx analyses the performance of a Mes-
sage Oriented Middleware and proposes, in the context of the Selfware platform, a self-
optimization algorithm to improve the e�ciency of the MOM infrastructure.

This optimization takes place in two parts: (i) the optimization of the clustered queue
load-balancing and (ii) the dynamic provisioning of a queue in the clustered queue. The
�rst part allows the overall improvement of the clustered queue performance while the
second part optimizes the resource usage inside the clustered queue.

We describe (i) the key parameters impacting the performance of the MOM and (ii) the
rules that control these parameters for optimal performances. This paper also presents
an evaluation that shows the impact of these parameters on the performances and the
behavior of dynamically provisioned clustered queue.

Currently, the control loop has a very basic actuator to drive a client connection to a
speci�c queue. The advantage of this actuator is its simplicity. However, the control loops
cannot recon�gure the client connection during a session. Part of our future work is about

19



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200
 0

 2000

 4000

 6000

 8000

 10000

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 8: Standard Joram queue cluster load-balancing strategy

providing a more powerful actuator. This actuator will provide the control loop with the
ability to migrate a client connection when necessary. This will require a mechanism to
move session data on other queue.

20



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200
 0

 10

 20

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 9: Optimized queue cluster load-balancing

9 Annex
9.1 Fractal Architecture
To modelize as best as possible the behaviour of the Joram architecture and to stay as
close as possible to reality, we have chosen the Fractal architecture of �gure 12.

The highest level component is the domain. It is constituted of a set of servers, them-
selves constituted of users, topics and queues components. These components are wrappers
of Joram elements.

Components representing cluster queue and cluster topic are at the same level as the
domain. They contain all the queues and topics that are part of the cluster. It is useful to
notice that these components are not new components (re-created by cluster component)
but that they are shared. Indeed, they are already sub-components of servers.

Moreover, at the same level as the domain is a component wrapping a JNDI registry.
This component wrapps the Joram JNDI registry used by all servers to bind destinations
and cluster queues.

Finally, to represent the graph of a hierarchical topic, we use bindings between the
several components part of the hierarchy. A topic component also has a client interface

21



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200  250  300  350
 0

 25

 50

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 10: Static provisioning of a clustered queue

that can be bound to an other topic component which will be its father in the hierarchy.

9.2 Instrumentation
To deploy Joram applications on Jade, some wrappers and controllers that specialize com-
posite components have been developped.

9.2.1 Domains
A Joram domain is represented by a simple Fractal composite component.

9.2.2 JNDI Registry
All servers and cluster queues components are bound to this JNDI component because
they need a direct access to the registry to bind destinations and connection factories. The
JNDI component is directly bound in the Fractal RMI registry with the name JndiRegistry.
We also suppose that there is only one JNDI registry per Joram architecture deployed with
Jade.

The JNDI interface listed below presents methods that provide the JNDI server host
and port.

22



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200  250  300
 0

 100

 200

 300

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

# 
of

 e
nq

ue
ue

d 
w

ai
tin

g 
m

es
sa

ge
s

Time (s)

# of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 11: Dynamically provisioned clustered queue

pub l i c i n t e r f a c e Jnd i I n t e r f a c e {
pub l i c S t r ing getHost ( ) ;
pub l i c S t r ing getPort ( ) ;

}

9.2.3 Servers
A Joram server is represented by a Fractal composite component. Its content controller has
been overridden to add some speci�c treatments when we add or remove a queue, a topic
or a user. For example, if we choose to add a queue, the addFcSubComponent method
starts the queue component and then calls the setProperties method of its queue interface
(this is in the setProperties method that the queue is bound in the JNDI registry).

This composite has a client interface named jndi that is bound to the component
wrapping the JNDI registry. So, the composite keeps a reference to the JNDI and if it has
to bind an object, can do it easily.

That's why, if we restart the JNDI server on an other host during execution (in a case of
repair), we just have to update the binding to make the server able to bind objects. With
this solution, the user doesn't need to give the host and port of JNDI server as parameters
when he starts a server. The FScript command to create a server introspects the Fractal

23



Domain D0

ClusterQueue

queue 1

queue 2

user

user

Server 1

Server 0

topic news

topic sports

topic business

hierarchical topic

JNDI Registry

Figure 12: Fractal architecture

RMI registry to �nd the object named JndiRegistry and binds the server composite to it.

Moreover, this composite life cycle has been overridden to link the Fractal and legacy
life cycles. So, starting the component at Fractal level leads to starting the Joram server.

In addition, starting a Joram server requires speci�c actions. It must be, in the classpath
an a3servers.xml �le describing the static architecture of the servers we want to deploy.
This �le and its particular structure is mandatory to start a server. It's only when this �le
is well written that a server can know its con�guration and can start. As we can't know,
at the begining, which architecture will be deployed, we have to update dynamically this
�le during execution.

If we want to deploy more than one server, it's mandatory to create a domain. It is done
by using a connection to the AdminModule of the server previously created, and by calling
the addDomain method. This call updates the Joram architecture con�guration with the
domain description. Then, the speci�c life cycle controller updates the a3servers.xml �le
by overwritting it with the AdminModule con�guration updated with the new domain.

24



JNDI registry Primitif

LCCSCBCNC GAC

NC: Name Controller

GAC: Generic Attribute Controller

BC: Binding Controller

SC: Super Controller

LCC: LifeCycle Controller

jndi

Figure 13: Fractal primitive JNDI registry component

It's nearly the same if we want to add a new server to the domain. We have to connect
to the platform AdminModule and call the addServer method. This call doesn't start the
new server, but updates the AdminModule con�guration with the new server con�guration.
The new server is thus able to know its own and other servers con�guration. Then, the
speci�c life cycle controller updates the a3servers.xml �le and the new server can start (at
Joram level).

But, two cases must be distinguished : if the server is the �rst of the platform or if it
is just a new server in the domain. According to that, the server start is di�erent.

If we create the �rst server, we have to:

• Create the server Fractal component.

• Create a well-known a3servers.xml �le with the �rst server description updated with
its own parameters. This �le doesn't declare any domain.

• Start the Joram server.

• If the server is part of a domain, update the AdminModule con�guration to create a
domain.

• Update the a3servers.xml �le with the AdminModule con�guration.

If we just add a server to an existing domain containing other servers, we have to:

• Create the server Fractal component.

25



Joram Server Composite

JS LCCBC SC JS CCNC GAC

NC: Name Controller

GAC: Generic Attribute Controller

JS CC: Joram Server Content Controller

SC: Super Controller

BC: Binding Controller

JS LCC: Joram Server LifeCycle Controller

jndi

Figure 14: Fractal composite Joram server

• Find a existing server part of the domain that the new server want to join. Connect
to its AdminModule and call the addServer method.

• Update the a3servers.xml �le with the AdminModule con�guration.

• Start the Joram server.

In the server life cycle controller, the distinction between the �rst server and the others
is made by instrospection. When a server component is created, the Fractal architecture
is introspected to �nd if there is already one server component. According to that, the
component can specify its start actions.

So, if the server to create is the �rst server, the life cycle will follow these steps:

• Introspect the Fractal architecture to �nd other servers.

• Create a weel-known a3servers.xml �le with the �rst server description updated with
its own parameters. This �le doesn't declare any domain.

• Start the Joram server.

• If a domain name attribute exists, connect to the AdminModule and call the AddDo-
main method.

• Update the a3servers.xml �le using the AdminModule.

and if the server to create is only one server to add to an already existing domain that
already has servers, the life cycle will follow these steps:

26



• Introspect the Fractal architecture to �nd other servers.

• Connect to the AdminModule and call the addServer method to update the platform
con�guration.

• Update the a3servers.xml �le using the AdminModule.

• Start the Joram server.

Note: According to Joram speci�cation, we have to deploy one unique Joram server per
Java Virtual Machine. It is also impossible to start 2 servers in one Java process. That's
why we advise to use one Jade node for each server to deploy.

9.2.4 Cluster Queue
Queues and Topics Clusters are represented by composite components specialized with a
speci�c content controller. The particularity of these components is that they don't re-
create the components they contain (when we add a queue to a cluster for example, the
queue component is not re-created) but that they share them with the composites repre-
senting the servers. So, cluster components just surround topics or queues they contain.

Cluster Queue Composite

LCCSCCQ CCNC CC GAC

NC: Name Controller

BC: Binding Controller

CQ CC: Cluster Queue Content Controller

SC: Super Controller

CQ GAC: Cluster Queue Generic Attribute Controller

jndi

BC

LCC: Life Cycle Controller

Figure 15: Cluster queue Fractal model

Two FScript scripts allow to manage cluster queues. One to create the cluster queue
component and another one to add destinations to the cluster queue. The �rst script
creates a Fractal component representing the cluster and binds it in the Fractal RMI
registry. Moreover, it gets the JNDI registry component in the Fractal RMI registry and
binds it to the cluster queue component.

27



In the case of a cluster queue, we have to bind a Joram cluster queue object in the
JNDI registry. This particular object is created and binded for the �rst time, when we add
the �rst queue to the cluster. That's why the cluster queue content controller has been
overridden.

Moreover, basic Julia's implementation doesn't authorize to remove a composite sub-
component if the composite isn't stopped. As we need to authorize this particular case in
our application, we have specialized the content controller by removing this check.

Finally, each time we add (or remove) a queue to (or from) the cluster, the cluster
queue object bound in the JNDI registry must be updated. This is done in the AddFcSub-
Component (or RemoveFcSubComponent) method of the overridden content controller.

9.2.5 Destinations and Users
Queues, topics and users are modelized as Fractal primitive components. They have a
speci�c functional interface that allows to access their application wrapper.

User Primitif

LCCSCBCNC GAC

user

Queue Primitif

LCCSCBCNC GAC

queue

Topic Primitif

LCCSCBCNC GAC

topic parent

NC: Name Controller

GAC: Generic Attribute Controller

BC: Binding Controller

SC: Super Controller

LCC: LifeCycle Controller

Figure 16: Fractal model for Joram elements

28



They are contained in the composite representing the Joram server. Moreover, topics
and queues can be shared between servers and clusters and so, surrounded by the composite
representing a cluster.

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

import org . objectweb . jasmine . jade . u t i l . JadeException ;
import org . objectweb . joram . c l i e n t . jms . Queue ;

pub l i c i n t e r f a c e QueueInter face {
pub l i c Queue getQueue ( ) ;
pub l i c void s e tP r op e r t i e s ( ) throws JadeException ;
pub l i c S t r ing getMyServerSID ( ) ;

}

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

import org . objectweb . jasmine . jade . u t i l . JadeException ;
import org . objectweb . joram . c l i e n t . jms . Topic ;

pub l i c i n t e r f a c e Top i c In t e r f a c e {
pub l i c Topic getTopic ( ) ;
pub l i c void s e tP r op e r t i e s ( ) throws JadeException ;
pub l i c void unsetParent ( ) ;
pub l i c void se tCh i ld InHie ra rchy ( St r ing topicName , Top i c In t e r f a c e t i ) ;
pub l i c void unsetChi ldInHierarchy ( St r ing topicName ) ;

}

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

import org . objectweb . joram . c l i e n t . jms . admin . User ;

pub l i c i n t e r f a c e Use r In t e r f a c e {
pub l i c User getUser ( ) ;

}

9.2.6 Connection Factory and Cluster Connection Factory
In addition to cluster queue, Joram introduces the concept of cluster connection factory.
A cluster connection factory is composed of a set of connection factories.

Like a cluster queue, a client who wants to create a connection, just needs to get the
cluster connection factory. He is then route on a particular connection factory, thanks to
optimization criteria.

Cluster connection factories are composites components and connection factories are
primitives one, shared by servers and cluster connection factories components.

29



References
[1] Appleby, K., Fakhouri, S.A., Fong, L.L., Goldszmidt, G.S., Kalantar, M.H., Krish-

nakumar, S., Pazel, D.P., Pershing, J.A., Rochwerger, B.: OcÃ c©ano-SLA based
management of a computing utility. In: Proceedings of Integrated Network Manage-
ment. (2001) 855�868

[2] Norris, J., Coleman, K., Fox, A., Candea, G.: OnCall: Defeating spikes with a free-
market application cluster. In: 1st International Conference on Autonomic Computing
(ICAC'04), New York, NY, USA (May 2004) 198�205

[3] Soundararajan, G., Amza, C.: Autonomic provisioning of backend databases in dy-
namic content web servers. Technical report, Department of Electrical and Computer
Engineering, University of Toronto (2005)

[4] Soundararajan, G., Amza, C., Goel, A.: Database replication policies for dynamic
content applications. In: First EuroSys Conference (EuroSys 2006), Leuven, Belgium
(April 2006)

[5] Urgaonkar, B., Shenoy, P.: Cataclysm: Handling extreme overloads in internet ser-
vices. Technical report, Department of Computer Science, University of Massachusetts
(November 2004)

[6] Urgaonkar, B., Shenoy, P.J.: Cataclysm: policing extreme overloads in internet ap-
plications. In: Proceedings of the 14th international conference on World Wide Web,
(WWW'05), Chiba, Japan (May 2005) 740�749

[7] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier
internet applications. In: Proceedings of the 2nd IEEE International Conference on
Autonomic Computing (ICAC'05), Seattle (June 2005)

[8] Urgaonkar, B., Paci�ci, G., Shenoy, P., Spreitzer, M., Tantawi, A.: Analytic modeling
of multitier internet applications. ACM Transaction on the Web 1(1) (2007) 2

[9] Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data
centers using online measurements. In: Proceedings of the Eleventh IEEE/ACM
International Workshop on Quality of Service (IWQoS 2003), Monterey, CA (June
2003)

[10] Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dy-
namic resource provisioning of multi-tier applications. In: ICAC '07: Proceedings of
the Fourth International Conference on Autonomic Computing, Jacksonville, Florida,
USA (June 2007) 27

[11] Stewart, C., Shen, K.: Performance modeling and system management for multi-
component online services. In: NSDI'05: Proceedings of the 2nd conference on Sym-
posium on Networked Systems Design & Implementation. (2005) 71�84

30



[12] Urgaonkar, B., Paci�ci, G., Shenoy, P.J., Spreitzer, M., Tantawi, A.N.: An analyt-
ical model for multi-tier internet services and its applications. In: Proceedings of
the International Conference on Measurements and Modeling of Computer Systems
(SIGMETRICS'05), Ban�, Alberta, Canada (June 2005) 291�302

[13] Henjes, R., Menth, M., , Zepfel, C.: Throughput performance of java messaging
services using websphereMQ. In: 5th International Workshop on Distributed Event-
Based Systems (DEBS), Lisboa, Portugal (7 2006)

[14] Menth, M., Henjes, R.: Analysis of the message waiting time for the �oranoMQ
JMS server. In: 26th International Conference on Distributed Computing Systems
(ICDCS), Lisboa, Portugal (7 2006)

[15] Chen, S., Green�eld, P.: Qos evaluation of jms: An empirical approach. In: HICSS '04:
Proceedings of the Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS'04) - Track 9, Washington, DC, USA, IEEE Computer
Society (2004) 90276.2

31


