

Linking and virtual memory

Noël De Palma
UJF

Thanks to Fabienne Boyer and Arnaud Legrand

Introduction

 Memory is a ressource required by all processes
 Every program need to be loaded in memory to

be running
 Problem

 Address translation
 Symbol → Logical address → physical address

 Memory allocation and exhaustion
 Memory sharing
 Memory protection

Life cycle of a single program

 Absolute
Objet

 Relocatable
Object

Source
file

compiler loader

Machine
data

result

physical addresslogical addresssymbol

Lifecycle of a program assembled
from multiple part

Relocatable
Object Source

compiler

Object
relogeableSource

compiler

Relocatable
Object Source

compiler Linker

Absolute
Object

loader

Library

Physical Address

Relocatable
Object

logical address

logical address

Load-time translation
 Translation between logical and physical adresses

 Determine where process will reside in memory
 Translate all references within program
 Established once for all

 Monoprogramming
 One program in memory
 Easy

 Multiprogramming
 N program in memory
 Compiler and linker do not know the implantation of

processes in memory
 Need to track op-code that must be updated

Simple program binary structure

Text

Data

Symbol
table

Relocation
table

Compile

Text

Data

Symbol
Table

load

0 ?

Complex program binary structure

Text2

Data2

TS2

TR2

Compile
prg2

Text

Data

Symbol
Table

loader

Text1

Data1

TS1

TR1

Compile
prg1

Text2

Data1

TR1

TR2

Text1

Data2

TS1

TS2

lin
ke

r

0

0

0

0

?

Data structure

Hole Addresse Symbol name Symbol Section

Relocation table (track the addresses that must be updated in the code)

Section Relative @ Symbol name

undef

Symbol table

Load-time translation
summary

 Remaining problems
 How to to enforce protection ?
 How to move program once in memory ?
 What if no contiguous free region fits programs
 Can we separate linking from memory

management problems ?

Virtual memory

 Separate linking problem from memory
management

 Give each program its own virtual address
space
 Linker works on virtual addresses
 Virtual address translation done at runtime

 Relocate each load/store to its physical
address

 Require specific hardware (MMU)

Virtual memory

Physical memoryVirtual memory

0

2 m -1
2 n-1

0

P0
P1

P2

 Addresses
translation

Ideally we want to enable n > m and non contiguous allocation

Virtual memory expected benefits

 Programs can be relocated while running
 Ease swap in/swap out

 Enforce protection
 Prevent one app from messing with another's

memory
 Programs can see more memory than exist

 Most of a process's memory will be idle
 Write idle part to disk until needed

1st idea : Base + bound registers
Contiguous allocation of variable size
Two special privileged registers: base and bound
On each load/store:
Check 0 <= virtual address < bound, else trap to kernel
Physical address = virtual address (plus) base

Base + bounds register

 Moving a process in memory
 Change base register

 Context switch
 OS must re-load base and bound register

 Advantages
 Cheap in terms of hardware: only two registers
 Cheap in terms of cycles: do add and compare in parallel

 Disadvantages
 Still contiguous allocation
 Growing a process is expensive or impossible
 Hard to share code or data

Segmentation

 Non contiguous allocation
 Split a program in differents non contiguous

segments of variable size
 Let processes have many base/bound regs

 Address space built from many segments
 Can share/protect memory on segment

granularity
 Must specify segment as part of virtual address

Segmentation

Segmentation mechanisms
 Each process has a segment table

 Each VA indicates a segment and offset:
• Top bits of addr select segment, low bits

select offset

Segmentation example

 4-bit segment number (1st digit), 12 bit offset (last 3)
 Where is 0x0240? 0x1108? 0x265c? 0x3002?

0x1600?

Segmentation trade offs

 Advantages
 Multiple segments per process
 Allows sharing

 Disadvantages
 N byte segment needs n contiguous bytes of

physical memory
 Fragmentation

Remember fragmentation problem

 Fragmentation => inability to use free memory
 Overtime:

 Variable-sized pieces = many small holes (external
fragmentation)

Paging
 Virtual memory is divided into small pages

 Pages are fixed size
 Page is contiguous

 Map virtual pages to physical block
 Non contiguous allocation
 Each process has a separate mapping
 MMU

 OS gains control on certain operations
 Read only pages trap to OS on write
 OS can change the mapping

Paging

 Page table
 Global or per process

Virtual address translation

Problem : translation speed

 Require extra memory references on each load/store
 Cache recently used translations
 Locality principle

 High probability that the next required address is close
 Translation Lookahead Buffer (TLB)

 Fast (small) associative memory which can perform
a parallel search

 Typical TLB
 Hit time : 1 clock cycle
 Miss rate 1%

 TLB management : hardware or software

TLB

 What to do when switch address space ?

 Flush the TLB

 Tag each entry with the process's id

 In general, OS must manually keep TLB valid

 Invalidates a page translation in TLB

Problem : page table size

 Flat page tables are huge
 Example

 4GB of virtual memory (32 bits address)
 4KB pages
 20bits page number, 12 bits offset
 1MB page size :<

Multilevel Page Tables

 Reduce the size of page table in memory
 Structured page tables in 2 or more levels

 All the page tables are not present in memory all the
time

 Some page tables are stored on disk and fetched if
necessary

 Based on a demand paging mechanism

Example: two level pages

Example: Two level pages

On Demand Paging

 Virtual memory > physical memory
 Some pages are not present in memory (X)
 Stored on disk

Physical
memory Virtual

memory 0-4K

4-8K

8-12K
12-16K
16-20K
20-24K
16-20K

0-4K 4-8K

8-12K

2

0

2

1

X

X

X

Page fault

 Access to an absent page
 Presence bit
 Page fault (Trap to OS)

 Page fault management
 Find a free frame

 If there is a free frame; use it
 Select a page to replace
 Save the replaced page on disk if necessary (dirty page)

 Load the page from disk in the physical block
 Update page table
 Restart instruction

 Require a presence bit, a dirty bit, a disk @ in the page table
 Different page replacement algorithms

On Demand Paging

Page replacement algorithms

 Working set model
 Algorithms

 Optimal
 FIFO
 Second chance
 LRU

Working set model
 Disk much, much slower than memory

 Goal: Run at memory, not disk speeds
 90/10 rule: 10% of memory gets 90% of memory refs

 So, keep that 10% in real memory, the other 90% on disk

Optimal page replacement

 What is optimal (if you knew the future)?
 Replace page that will not be used for longest

period of time
 Example

 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals pages: 1

2
3
4

1

2
3
5

4

2
3
5

6 pages faults

FiFo

 Evict oldest page in system
 Example

 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals frames:

1

2
3
4

5

2
3
4

5

1
3
4

5

1
2
4

5

1
2
3

4

1
2
3

4

5
2
3

10 page faults

LRU page replacement

 Approximate optimal with least recently used
 Because past often predicts the future

 Example
 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals frames:

1

2
3
4

1

2
5
4

1

2
5
3

1

2
4
3

5

2
4
3

8 page faults

LRU implementation

 Expensive
 Need specific hardware

 Approximate LRU in software
 The aging algorithm

 Add a counter for each page (the date)
 On a page access, all page counters are

shifted left, inject 1 for the accessed
page, else 0

 On a page fault, remove the page with
the lowest counter

Aging : example
Accès Date

Page0
Date
Page1

Date
Page2

Ordre
pages /date

000 000 000

Page 0 100 000 000 P0,P1=P2

Page 1 010 100 000 P1,P0,P2

Page 2 001 010 100 P2,P1,P0

Page 1 000 101 010 P1,P2,P0

P0 is the oldest

Second chance

 Simple FIFO modification
 Use an access bit R for each page

 R = 0 : page not referenced
 Periodically reset by hardware

 Inspect the R bit of the oldest page
 If 0 : replace the page
 If 1 : clear the bit, put the page at the end of

the list

Page buffering

 Naïve paging
 Page replacement : 2 disk IO per page fault

 Reduce the IO on the critical path
 Keep a pool of free frames

 Fetch the page in the already free page

Paging

 Separate linking from memory concern
 Simplifies allocation, free and swap
 Eliminate external fragmentation
 May leverage internal fragmentation

