Physical memory management

Noel de palma
Jacques Mossiere
Luc Bellissard

1- Physical memory management
2- Algorithms

= Goals

* Provide memory zone to programs
= Manage available memory zone

= Two kinds of memory
- - Physical memory

= Management of the hardware memory
(e.g. RAM)

* Virtual memory

= Provide a memory space larger than
available for user processes

(o919 "6°3) 3ZIS” WANW

aseq ®

Allocated

Know the physical
memory

Track free memory
zone, used zone

Provide free memory
upon program
request

= malloc

Free the zone upon
program request

" free

= Operating system

= Use memory for itself

* Virtual memory management
= User Processes

= Dynamic memory allocation requested by
processes

= Satisfy arbitrary set of allocation and free's.

" Easy without free: set a pointer to the beginning of free
memory

... heap (free memory)

allocation
-

current free position

Problem: free creates holes (fragmentation") Result?

Lots of free space but cannot satis fy big request!

(0 T T I AN O 0]

Data structure to describe the memory and its usage
= Zone description (base@, size, ...)
* Free and/or used zone table

Initialization
= Initialize the data structure

Memory allocation

= Retour the @ of a free zone of contiguous memory of the
given size

= malloc(size) => pointer to the free zone
Memory deallocation

= Release a previous allocated zone

= free(@ zone, size) => error code

aseq ®

(o9 *6'9) IZIS WIANW

xew ©

»

| _
‘_

Free zone

. Next zone
size

Free zone

Free Zone Next zone

Free zone

. Next zone
size

Free zone descriptions are
stored in the free zones

" Free zone size
" @ next free zone

Simple or circular linked list
Allocation

= Inspect the free zone list

= Choose a free zone that fits
the requested size

Various criteria: best fit, first
fit, worst fit, ...

Deallocation

= Merge neighbour free zones

Simple bad case: allocate n, m (n < m) in alternating orders

free all the ns, then try to allocate an n + 1

Example: start with 100 bytes of memory
Alloc 19, 21, 19, 21, 19

Free 19, 19, 19:

alloc 207 Fails! (wasted space = 57 bytes)

= Avantages

= No extra memory (free zone descriptions
stored in the free zones)

= Simple Algorithm
= Disadvantage

= Performances
" Fragmentation

Allocate block of predefined size

X

2" block for a memory size of de 2 -

Allocation principle

= Table of free block
k
* Look for a block of size 2

= Split recursively free block in two blocks of size 2

(buddy) until the block get the right size
De-allocation principle

= Look for the buddy of the free block
= Merge the buddy if possible to provide a bigger one

MEM_SIZE 2max

[
>

Ipitial state

=
M- ® ®
13 :
5 8 o
® I +
° >
TZL[i] : free block--size 2’ 3
Q
o
Free block
table TZL(max)

Free block linked list

MEM_SIZE 2max

- ., ®
® < -
- :
| :
1
° 3
2 max-1 2 max-1
Free block
table TZL(max)

) k
Allocation a block of size p. A <1p<2

MEM_SIZE 2max

- ., ®
® < -
o [Y]
Memo o - 3
Yy 8 Zone libre i
I
2 max-1 2 max-1
Free block
table TZL(max)

Allocation a block of size p. 2k-1<p<2k

MEM_SIZE 2max

g -
Memory @ Zone libre 1

I

2 k 2 k 2 max-2 2 max-1
Allocated
o = N

Free block
table TZL(max)

Allocation a block of size p. 2k-1<p<2k

Example : max size 1024
TAILLE_MEM 2max ,

(10

) ‘

256 256
Free block
table allocated allocated allocated

TZL[max]
o - N o N ® © P
|

Aloway

[y
o
N
H

Questions
Fill the free block table

Free the block of @512, size 256
TAILLE_MEM 2max

\4

A

Aloway

[y
o
N
H

256 256
Free block
table allocated allocated deallocating

TZL[max]

Look for the block to de-allocate
Look for the buddy

Merge with the buddy if 1t 1s free
Update the free block table

Free the block of @512, size 256
TAILLE_MEM 2max

\4

A

Aloway

[
o
N
H

256 256
Free block
table allocated allocated

TZL[max]

Look for the block to de-allocate
Look for the buddy

Merge with the buddy if 1t 1s free
Update the free block table

16 octets memory ?

buddy : @4 Block : @6, size 2*

Question
Efficient solution to compute the buddy @ ?

