
Systems Architecture
 Advances & Challenges

Sacha Krakowiak
Université de Grenoble

31 Oct. 2011
1° Workshop LICIA

© 2011, S. Krakowiak Systems Architecture

Systems Architecture

! Architecture
the art of designing and constructing buildings
the art of creating and organizing forms towards a function, in the
presence of constraints

2

© 2011, S. Krakowiak Systems Architecture

Systems Architecture

! Architecture
the art of designing and constructing buildings
the art of creating and organizing forms towards a function, in the
presence of constraints

! Computing Systems Architecture
A model that describes the structure and behavior of a system in
terms of elements and relationships
A method for building a system according to given specifications

Christopher Alexander, Notes on the Synthesis of Form, Harvard University Press, 1964

2

© 2011, S. Krakowiak Systems Architecture

Some tools of the architectʼs trade

! (Meta) principles
Generic rules that may take various concrete forms
 Abstraction (e.g., hierarchy of abstract machines)
 Separation of concerns
 (e.g., separation between policy / mechanisms, interface / implementation)

 Economy (e.g., optimizing the frequent case, end-to-end principle)
 …

3

© 2011, S. Krakowiak Systems Architecture

Some tools of the architectʼs trade

! (Meta) principles
Generic rules that may take various concrete forms
 Abstraction (e.g., hierarchy of abstract machines)
 Separation of concerns
 (e.g., separation between policy / mechanisms, interface / implementation)

 Economy (e.g., optimizing the frequent case, end-to-end principle)
 …

! Paradigms
Paradigm: a design, organization scheme, or structure applicable to
a wide class of situations, that may serve as an example, in both
senses of the term

an illustration of an approach
a model to follow

3

© 2011, S. Krakowiak Systems Architecture

Some paradigms of systems architecture

! Virtualization
giving a concrete form to an ideal object
multiplexing a real object

4

© 2011, S. Krakowiak Systems Architecture

Some paradigms of systems architecture

! Virtualization
giving a concrete form to an ideal object
multiplexing a real object

! Composition and decomposition
separating concerns
 (individual design / assembly)
reusing design and implementation efforts
facilitating evolution and maintenance

4

© 2011, S. Krakowiak Systems Architecture

Some paradigms of systems architecture

! Virtualization
giving a concrete form to an ideal object
multiplexing a real object

! Composition and decomposition
separating concerns
 (individual design / assembly)
reusing design and implementation efforts
facilitating evolution and maintenance

! Self-adaptation and reflection
reacting to change (both expected and unexpected)
optimizing quality criteria

4

© 2011, S. Krakowiak Systems Architecture

Some paradigms of systems architecture

! Virtualization
giving a concrete form to an ideal object
multiplexing a real object

! Composition and decomposition
separating concerns
 (individual design / assembly)
reusing design and implementation efforts
facilitating evolution and maintenance

! Self-adaptation and reflection
reacting to change (both expected and unexpected)
optimizing quality criteria

4

Formalization,
proof

a “transversal”
concern

© 2011, S. Krakowiak Systems Architecture

The two faces of virtualization

5

! Ascending (abstraction)
A tool for resource sharing
Creating “high level” resources
Multiplexing “low level” resources

exported
interface

existing
interface

© 2011, S. Krakowiak Systems Architecture

The two faces of virtualization

! Descending (refinement)
A design tool
From specification to implementation
Hierarchy of abstract machines

5

! Ascending (abstraction)
A tool for resource sharing
Creating “high level” resources
Multiplexing “low level” resources

existing
interface

expected
interface

exported
interface

existing
interface

© 2011, S. Krakowiak Systems Architecture

The two faces of virtualization

! Descending (refinement)
A design tool
From specification to implementation
Hierarchy of abstract machines

5

Visible interface, hidden implementation
Transforming interfaces (possibly)
Preserving invariants

! Ascending (abstraction)
A tool for resource sharing
Creating “high level” resources
Multiplexing “low level” resources

existing
interface

expected
interface

exported
interface

existing
interface

© 2011, S. Krakowiak Systems Architecture

A brief history of virtualization

6

Virtual
memory

Process
(virtual

processor)
Virtual

machine
(IBM CP)

JVM
(MV Java)

DISCO
(virtual
cluster)

Stable storage

VM/370 Cloud
Computing

XenVMware

CLI
(.Net)

THE

overlay
networks

1960 1970 1980 1990 20102000

Hardware
Abstraction
Layer (HAL)

IBM S/38 Windows NT

P-code
(Pascal VM)

Smalltalk VM

UNCOL

! What can be virtualized?
a resource
a machine
a network
an execution environment
…

© 2011, S. Krakowiak Systems Architecture

Virtualizing a resource: stable storage

B. W. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage System, unpublished
technical report, Xerox PARC, June 1979, 25 pp.

7

Read Write

Physical disk [Failure
hypotheses]

observation

© 2011, S. Krakowiak Systems Architecture

Virtualizing a resource: stable storage

B. W. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage System, unpublished
technical report, Xerox PARC, June 1979, 25 pp.

7

CarefulGet

Careful disk [invariants]

CarefulPut

eliminates
transient
failures

Read Write

Physical disk [Failure
hypotheses]

observation

© 2011, S. Krakowiak Systems Architecture

Virtualizing a resource: stable storage

B. W. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage System, unpublished
technical report, Xerox PARC, June 1979, 25 pp.

7

CarefulGet

Careful disk [invariants]

CarefulPut

eliminates
transient
failures

Read Write

Physical disk [Failure
hypotheses]

observation

Stable disk

StableGet
StablePutCleanup

[invariants]

resists
non-catastrophic

failures

© 2011, S. Krakowiak Systems Architecture

Virtualizing a resource: stable storage

B. W. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage System, unpublished
technical report, Xerox PARC, June 1979, 25 pp.

7

B. W. Lampson, “Atomic Transactions”, in Distributed Systems—Architecture and Implementation, ed.
Lampson, Paul, and Siegert, LNCS 105, Springer, 1981, pp. 246-265.

CarefulGet

Careful disk [invariants]

CarefulPut

eliminates
transient
failures

Read Write

Physical disk [Failure
hypotheses]

observation

Stable disk

StableGet
StablePutCleanup

[invariants]

resists
non-catastrophic

failures

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

“Classic” virtual machines

8

Physical
machine
interface

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

“Classic” virtual machines

8

Appli.

OS OS

Appli. Appli. …

Physical
machine
interface

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

“Classic” virtual machines

8

Appli.

OS OS

Appli. Appli. …

Physical
machine
interface

! The hypervisor, a super-OS
Presents a uniform interface to virtual machines (VMs)
Manages (and protects) physical resources
Encapsulates internal state of VMs
A critical component

Isolation
Failures
Security

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

“Classic” virtual machines

8

James E. Smith, Ravi Nair, Virtual
Machines, Morgan Kaufmann, 2005

Virtualization Technologies, IEEE
Computer, May 2005

Appli.

OS OS

Appli. Appli. …

Physical
machine
interface

! The hypervisor, a super-OS
Presents a uniform interface to virtual machines (VMs)
Manages (and protects) physical resources
Encapsulates internal state of VMs
A critical component

Isolation
Failures
Security

© 2011, S. Krakowiak Systems Architecture

Virtual machines : how it works

9

Trap

Physical machine

OS

Application

System
mode

User mode

Trap
Privileged

instructions
Privileged

instructions

Interrupt

© 2011, S. Krakowiak Systems Architecture

Virtual machines : how it works

9

Trap

Physical machine

OS

Application

System
mode

User mode

Trap
Privileged

instructions

Physical machine

State
VM1

OS

Application

State
VM2Trap

Privileged
instructions

Hypervisor

I/O
Interrupts
Virtual memory
 …

Privileged
instructions

Interrupt

© 2011, S. Krakowiak Systems Architecture

Virtual machines : how it works

! A problem …
On current machines (IA-32, etc.), the effect of some instructions
depends on the current mode (system or user)
An ISA containing such instructions cannot be virtualized!

9

Trap

Physical machine

OS

Application

System
mode

User mode

Trap
Privileged

instructions

Physical machine

State
VM1

OS

Application

State
VM2Trap

Privileged
instructions

Hypervisor

I/O
Interrupts
Virtual memory
 …

Privileged
instructions

Interrupt

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

Modified
interface

Virtual machines

10

Appli.

Unix
modified

Windows
modified

Appli. Appli.

! How to escape the problem of multi-mode instructions?
Paravirtualization: changing the hypervisorʼs interface

Replace non-virtualizable instructions
The interface is no longer that of the physical machine
Therefore OSs must be modified!

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

Modified
interface

Virtual machines

10

Appli.

Unix
modified

Windows
modified

Appli. Appli.

HAL-U HAL-W

! How to escape the problem of multi-mode instructions?
Paravirtualization: changing the hypervisorʼs interface

Replace non-virtualizable instructions
The interface is no longer that of the physical machine
Therefore OSs must be modified!
In practice, only the HAL
 (Hardware Abstraction Layer)
 needs to be modified

© 2011, S. Krakowiak Systems Architecture

Physical machine

Hypervisor

…
MV1 MV2

Modified
interface

Virtual machines

10

Appli.

Unix
modified

Windows
modified

Appli. Appli.

HAL-U HAL-W

! How to escape the problem of multi-mode instructions?
Paravirtualization: changing the hypervisorʼs interface

Replace non-virtualizable instructions
The interface is no longer that of the physical machine
Therefore OSs must be modified!
In practice, only the HAL
 (Hardware Abstraction Layer)
 needs to be modified

Dynamic translation of
binary code:

Replacing non-virtualizable
 instructions in real time

In the future:
New processors will be designed for virtualization

© 2011, S. Krakowiak Systems Architecture

Cellular Disco (Hypervisor)

Virtual clusters

physical level
UC UC UC UC UC UC UC UC

Interconnection network (+ shared memory)

OS OS Operating System

Application Application App App

VM VMVM

11

© 2011, S. Krakowiak Systems Architecture

Cellular Disco (Hypervisor)

Virtual clusters

K. Govil, D. Teodosiu, Y. Huang, M. Rosenblum. Cellular Disco: Resource Management Using
Virtual Clusters on Shared-Memory Multiprocessors, ACM Trans. on Computer Systems, 18(3),
Aug. 2000

physical level
UC UC UC UC UC UC UC UC

Interconnection network (+ shared memory)

OS OS Operating System

Application Application App App

VM VMVM

failure
isolation

limits

11

© 2011, S. Krakowiak Systems Architecture

Cloud computing

! An old vision …
“… computing may someday be organized as a public utility just as
the telephone system is a public utility”
 John McCarthy, 1961

! … close to being achieved?
! Virtualizing on a large scale

hardware: Infrastructure as a Service (Amazon EC2)

execution environment: Platform as a Service (Microsoft Azure)

application support: Software as a Service (Google Docs)

! A new economic model …
… but potential problems

! An open research area

12

© 2011, S. Krakowiak Systems Architecture

Questions on Clouds

13

! What is new, anyway?

© 2011, S. Krakowiak Systems Architecture

Questions on Clouds

13

D. Owens, “Securing Elasticity
in the Cloud”, Comm. of the
ACM, vol. 53, no 6, June 2010

! What is new, anyway?
“Elasticity”: the client pays what he uses, fine grain accounting

For the client: economy, no risk of over- / under-provisioning, potentially
unlimited capacity

For the provider: gain (scale effect, statistical multiplexing, amortizing
investments)

Reactivity to variations of the load

© 2011, S. Krakowiak Systems Architecture

Questions on Clouds

13

D. Owens, “Securing Elasticity
in the Cloud”, Comm. of the
ACM, vol. 53, no 6, June 2010

! What is new, anyway?
“Elasticity”: the client pays what he uses, fine grain accounting

For the client: economy, no risk of over- / under-provisioning, potentially
unlimited capacity

For the provider: gain (scale effect, statistical multiplexing, amortizing
investments)

Reactivity to variations of the load

! What risks and problems?
Technical limits: evolution, large scale, latency
Loss of control over data (location, security, …)
No significant cost reduction without sacrificing

performance guarantees
availability guarantees
security guarantees

D. Durkee, “Why Cloud Computing Will Never Be
Free”, Comm. of the ACM, vol. 53, no 5, May 2010

© 2011, S. Krakowiak Systems Architecture

Virtualization in embedded systems

! Specific constraints
Increasingly complex applications
Need to:

Control performance
Reduce the size of the trusted base

14

© 2011, S. Krakowiak Systems Architecture

Virtualization in embedded systems

! Specific constraints
Increasingly complex applications
Need to:

Control performance
Reduce the size of the trusted base

! A new life for microkernels
The microkernel as low-level hypervisor
Customized operating systems for specific applications

“Virtual devices” (a device + its customized OS)

Device drivers need not be in the trusted base
Critical components may be isolated in VMs

14

G. Heiser, “The Role of Virtualization in Embedded Systems”, Proc. First Workshop on Isolation
and Integration in Embedded Systems (IIESʼ08), pp 11-16, April 2008

© 2011, S. Krakowiak Systems Architecture

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

© 2011, S. Krakowiak Systems Architecture

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

abstract
specification

Haskell
prototype

design

Simulator

© 2011, S. Krakowiak Systems Architecture

Isabelle/HOL

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

executable
specification

automatic
generation

abstract
specification

Haskell
prototype

design

© 2011, S. Krakowiak Systems Architecture

Isabelle/HOL

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

refinment
proof

Isabelle/HOL

executable
specification

automatic
generation

abstract
specification

Haskell
prototype

design

© 2011, S. Krakowiak Systems Architecture

Isabelle/HOL

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

refinment
proof

Isabelle/HOL

optimized
C code

refinement
proof

executable
specification

automatic
generation

abstract
specification

Haskell
prototype

design

© 2011, S. Krakowiak Systems Architecture

Isabelle/HOL

Gerwin Klein et al., “seL4: Formal Verification of an Operating-System Kernel”, Communications
of the ACM, vol. 53, no 6, pp. 107-115, June 2010

15

A trusted microkernel

! A version of the L4 microkernel
A virtual machine providing a simplified
image of the hardware

! Difficulties
Asynchronism
Memory management (pointers)
Direct access to hardware functions
(MMU, …)

! seL4, base for a “microvisor”
OKL4 (Open Kernel Labs)
Installed base: one billion …

refinment
proof

Isabelle/HOL

optimized
C code

refinement
proof

executable
specification

automatic
generation

abstract
specification

Haskell
prototype

design

© 2011, S. Krakowiak Systems Architecture

 Advances and challenges for virtualization

! Virtualization born again and extended
From clouds to embedded systems
“De-materialized” platforms and applications

Portable across supports and locations

Tools for global resource management
An environment for experiments

16

© 2011, S. Krakowiak Systems Architecture

 Advances and challenges for virtualization

! Virtualization born again and extended
From clouds to embedded systems
“De-materialized” platforms and applications

Portable across supports and locations

Tools for global resource management
An environment for experiments

! Challenges
For the user

Control over management and data
Guarantees of availability and security

For the designer
Modeling and verification of hypervisors
Autonomous administration of large infrastructures
Managing multiple virtual environments

16

© 2011, S. Krakowiak Systems Architecture 17

Composition (and decomposition)

! A deceptively simple objective …
Composing a system from elementary pieces
Reusable and interchangeable elements (“standard replacement”)
Visible interface, hidden implementation

M. D. McIlroy (1968) “Mass Produced
Software Components”, in P. Naur and
B. Randell, eds., Software Engineering,
NATO Science Committee

© 2011, S. Krakowiak Systems Architecture 17

Composition (and decomposition)

! A deceptively simple objective …
Composing a system from elementary pieces
Reusable and interchangeable elements (“standard replacement”)
Visible interface, hidden implementation

! … but a road fraught with pitfalls
Conceptual

Model(s)
Expressing global description
Guarantees

Practical
Configuration and deployment
Evolution management
Infrastructures

M. D. McIlroy (1968) “Mass Produced
Software Components”, in P. Naur and
B. Randell, eds., Software Engineering,
NATO Science Committee

© 2011, S. Krakowiak Systems Architecture

Properties of composition

! Composability
The properties of each
component are preserved
in the compound system

18

© 2011, S. Krakowiak Systems Architecture

Properties of composition

! Composability
The properties of each
component are preserved
in the compound system

18

Respecting rules of “correct
assembly”

Separating interface from
implementation

© 2011, S. Krakowiak Systems Architecture

Properties of composition

! Composability
The properties of each
component are preserved
in the compound system

! Compositionality
The properties of a compound
system may be derived from
those of the components and
from the assembly rules

18

Respecting rules of “correct
assembly”

Separating interface from
implementation

© 2011, S. Krakowiak Systems Architecture

Properties of composition

! Composability
The properties of each
component are preserved
in the compound system

! Compositionality
The properties of a compound
system may be derived from
those of the components and
from the assembly rules

18

Respecting rules of “correct
assembly”

Separating interface from
implementation

Expressing semantics

Run-time guarantees

A formal model for composition

Much, much
harder!

© 2011, S. Krakowiak Systems Architecture

A brief history of (de)composition

19

subroutines
procedures

1960 1970 1980 1990 2000 2010

Modula
Mesa

Simula-67

AdaClu

Smalltalk-80

information
hiding

programming
in the large

mass-produced
software components software architecture: an

emerging discipline

RM-ODP

ADLs

Component
models

RPC

binding
factory

(Re)configuration
formalization
types, proofs

MILs

Conic, Darwin,
Wright, Rapide, … ACME, ADML, ArchJava …

COM, DCOM, .Net

Fractal, Koala,
Ptolemy, UML 2, BIP,

…

Web Services
OSGiSOM

EJB

Abstract
types

dynamic ADLs

Objects

pipes Unix
ActorsData flow Synchronous

languages
Hybrid

systems

© 2011, S. Krakowiak Systems Architecture

Architecture of compound systems

20

Component
Component

Component

ConnectorInterface

© 2011, S. Krakowiak Systems Architecture

Architecture of compound systems

20

Configuration

Component
Component

Component

ConnectorInterface

© 2011, S. Krakowiak Systems Architecture

Architecture of compound systems

20

Configuration

Component
Component

Component

ConnectorInterface

provided required

input
flow

output
flow

© 2011, S. Krakowiak Systems Architecture

Architecture of compound systems

! Execution flow or data flow
Similarities

Hardware or software components
A configuration is a component
Interfaces are typed

Differences
Role of interfaces or ports
Interaction models (sequential, parallel)

Synchronous, rendez-vous, events, etc.

20

Configuration

Component
Component

Component

ConnectorInterface

provided required

input
flow

output
flow

© 2011, S. Krakowiak Systems Architecture

Architecture of compound systems

! Execution flow or data flow
Similarities

Hardware or software components
A configuration is a component
Interfaces are typed

Differences
Role of interfaces or ports
Interaction models (sequential, parallel)

Synchronous, rendez-vous, events, etc.

20

Configuration

Component
Component

Component

ConnectorInterface

provided required

input
flow

output
flow

Global description
Implicit (dependencies)
Explicit (Architecture Description

Language, ADL)

Role of connectors
Perform binding
 A complex operation in distributed systems

Manage interaction
 Specially in parallel models

© 2011, S. Krakowiak Systems Architecture

Reconfiguration

! What is (dynamic) reconfiguration?
Changing the composition and/or structure of a system at run time

add/remove a component, move a component, change bindings, modify
attributes, …

21

© 2011, S. Krakowiak Systems Architecture

Reconfiguration

! What is (dynamic) reconfiguration?
Changing the composition and/or structure of a system at run time

add/remove a component, move a component, change bindings, modify
attributes, …

! Why reconfiguration?
Maintenance, optimization, inserting probes for measurement,
reacting to failures, overload, attacks, …
A natural operation for mobile devices, sensor networks, etc.

21

© 2011, S. Krakowiak Systems Architecture

Reconfiguration

! What is (dynamic) reconfiguration?
Changing the composition and/or structure of a system at run time

add/remove a component, move a component, change bindings, modify
attributes, …

! Why reconfiguration?
Maintenance, optimization, inserting probes for measurement,
reacting to failures, overload, attacks, …
A natural operation for mobile devices, sensor networks, etc.

! Good practice
Architecture-driven reconfiguration

Using reflection
Consistency management

Preserving invariants
Minimal perturbation

21

meta-level

base level

Management
interface

© 2011, S. Krakowiak Systems Architecture

Formalizing composition: three examples

! Check the validity of the construction of a compound
system (composability)

Configuration of an assembly of components

! Check the validity of the execution of a compound
system (compositionality)

Application of typing rules

! Check the validity of the evolution of a compound
system

Reconfiguration

22

M. Léger, Th. Ledoux, Th. Coupaye. Reliable Dynamic
Reconfigurations in a Reflective Component Model, Proc.
CBSE 2010, LNCS 6092, pp. 74-92, Springer Verlag

Reference: http://www.edos-project.org/

http://www.edos-project.org
http://www.edos-project.org

© 2011, S. Krakowiak Systems Architecture

Compositionality in Dream

Dream: a framework for building communication middleware
A message is a sequence of named fields. Example:

[Name: "test"] [TS: 10] [IP: 156.875.34.12]
A message transits between components that operate on it

Typical operations: add, delete, consult a field
Illegal operations (trigger a run-time error)

add an existent field, delete or consult a non-existent field

23

M. Leclercq, V. Quéma, J.-B. Stefani, "DREAM: A Component Framework for Constructing Resource-
Aware, Configurable Middleware," Distributed Systems Online, IEEE , 6:9, Sept. 2005

© 2011, S. Krakowiak Systems Architecture

Compositionality in Dream

Dream: a framework for building communication middleware
A message is a sequence of named fields. Example:

[Name: "test"] [TS: 10] [IP: 156.875.34.12]
A message transits between components that operate on it

Typical operations: add, delete, consult a field
Illegal operations (trigger a run-time error)

add an existent field, delete or consult a non-existent field

23

M. Leclercq, V. Quéma, J.-B. Stefani, "DREAM: A Component Framework for Constructing Resource-
Aware, Configurable Middleware," Distributed Systems Online, IEEE , 6:9, Sept. 2005

Duplicator

ReadTS

AddTS

(X)
(X)

(X)
channels

© 2011, S. Krakowiak Systems Architecture

Compositionality in Dream

Dream: a framework for building communication middleware
A message is a sequence of named fields. Example:

[Name: "test"] [TS: 10] [IP: 156.875.34.12]
A message transits between components that operate on it

Typical operations: add, delete, consult a field
Illegal operations (trigger a run-time error)

add an existent field, delete or consult a non-existent field

23

M. Leclercq, V. Quéma, J.-B. Stefani, "DREAM: A Component Framework for Constructing Resource-
Aware, Configurable Middleware," Distributed Systems Online, IEEE , 6:9, Sept. 2005

error if TS
absent from X

error if TS
present in X

Duplicator

ReadTS

AddTS

(X)
(X)

(X)
channels

© 2011, S. Krakowiak Systems Architecture

Compositionality in Dream

Dream: a framework for building communication middleware
A message is a sequence of named fields. Example:

[Name: "test"] [TS: 10] [IP: 156.875.34.12]
A message transits between components that operate on it

Typical operations: add, delete, consult a field
Illegal operations (trigger a run-time error)

add an existent field, delete or consult a non-existent field

Java types do not allow these checks

23

M. Leclercq, V. Quéma, J.-B. Stefani, "DREAM: A Component Framework for Constructing Resource-
Aware, Configurable Middleware," Distributed Systems Online, IEEE , 6:9, Sept. 2005

error if TS
absent from X

error if TS
present in X

Duplicator

ReadTS

AddTS

(X)
(X)

(X)
channels

© 2011, S. Krakowiak Systems Architecture

Dream Types

! Example

24

Duplicator

ReadTS

AddTS

(tsChunk: pre(TS); Y)

(tsChunk: pre(TS); Y)

(tsChunk: abs(TS); Z)

(tsChunk: pre(TS); Z)

(X)
(X)

(X)
abs or list of fieldschannels

© 2011, S. Krakowiak Systems Architecture

Dream Types

! Example

24

Typing Component-Based Communication Systems. M.
Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani.
In Proc. 11th Formal Methods for Open Object-Based
Distributed Systems (FMOODS) & 29th Formal
Techniques for Networked and Distributed Systems
(FORTE), June 2009.

Relies on a new process calculus,
with a type inference algorithm

Duplicator

ReadTS

AddTS

(tsChunk: pre(TS); Y)

(tsChunk: pre(TS); Y)

(tsChunk: abs(TS); Z)

(tsChunk: pre(TS); Z)

(X)
(X)

(X)
abs or list of fieldschannels

http://sardes.inrialpes.fr/%7Easchmitt/papers/Lienhardt2009Typing-Component-Bas.pdf
http://sardes.inrialpes.fr/%7Easchmitt/papers/Lienhardt2009Typing-Component-Bas.pdf

© 2011, S. Krakowiak Systems Architecture

Dream Types

! Example

24

Resolve
(X) = (tsChunk: pre(TS); Y)
(X) = (tsChunk: abs(TS); Z)

which is impossible
The system may not be correctly
typed, and will fail at run time

Typing Component-Based Communication Systems. M.
Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani.
In Proc. 11th Formal Methods for Open Object-Based
Distributed Systems (FMOODS) & 29th Formal
Techniques for Networked and Distributed Systems
(FORTE), June 2009.

Relies on a new process calculus,
with a type inference algorithm

Duplicator

ReadTS

AddTS

(tsChunk: pre(TS); Y)

(tsChunk: pre(TS); Y)

(tsChunk: abs(TS); Z)

(tsChunk: pre(TS); Z)

(X)
(X)

(X)
abs or list of fieldschannels

http://sardes.inrialpes.fr/%7Easchmitt/papers/Lienhardt2009Typing-Component-Bas.pdf
http://sardes.inrialpes.fr/%7Easchmitt/papers/Lienhardt2009Typing-Component-Bas.pdf

© 2011, S. Krakowiak Systems Architecture

Advances and challenges for composition

! Advances
Components, software architectures
Patterns and frameworks for composition
A step towards formalization

25

© 2011, S. Krakowiak Systems Architecture

Advances and challenges for composition

! Advances
Components, software architectures
Patterns and frameworks for composition
A step towards formalization

! Challenges
Formal bases
Multiple models and languages

maybe unavoidable …

Hardware-software integration
Compositionality

specially: performance, synchronization, physical time

Large scale systems

25

 X

© 2011, S. Krakowiak Systems Architecture

Self-adaptive systems

! Why self-adaptive systems?
Preserving integrity and quality of service of a system …
… in a changing and unpredictable environment

Requirements
Load
Failures
Attacks

26

© 2011, S. Krakowiak Systems Architecture

Self-adaptive systems

! Why self-adaptive systems?
Preserving integrity and quality of service of a system …
… in a changing and unpredictable environment

Requirements
Load
Failures
Attacks

! Approaches to self-adaptation
Centralized

Global behavior is imposed
Model: control theory, feedback loop

Decentralized
Global behavior is determined by local interactions
Model: biological systems

26

© 2011, S. Krakowiak Systems Architecture

A brief history of self-adaptable computing systems

1960 1970 1980 1990 2000 2010

Adaptive
routing

Multi-agent
systems

“Autonomic
computing”

Ant colonies

Epidemic
algorithms

Peer to peer
networks

Sensor
networks

QoS in
networks

Admission
control

Fault
tolerance

Reconfigurable
computers

Reconfigurable
programs

Aspect-oriented
programming

Reflective
systems

Ethernet

Architecture-
driven

adaptation

Applying
feedback control

Energy
management

Aloha

Load leveler

© 2011, S. Krakowiak Systems Architecture

Self-adaptation through feedback

28

Intended
behavior

Analysis
Decision
Action

Controlled
system

Control system

actuators

sensors

© 2011, S. Krakowiak Systems Architecture

Self-adaptation through feedback

28

Intended
behavior

Analysis
Decision
Action

Controlled
system

Control system

actuators

sensors

Model of the
controlled

system

Model of
the load

load

© 2011, S. Krakowiak Systems Architecture

Self-adaptation through feedback

For a computing system, how to define
The intended behavior?
The sensors?
The actuators?
The models?
The decision strategy?

28

Intended
behavior

Analysis
Decision
Action

Controlled
system

Control system

actuators

sensors

Model of the
controlled

system

Model of
the load

load

© 2011, S. Krakowiak Systems Architecture

Self-adaptation through feedback

For a computing system, how to define
The intended behavior?
The sensors?
The actuators?
The models?
The decision strategy?

28

Action domains
Quality of service
Fault tolerance
Security
Configuration

Intended
behavior

Analysis
Decision
Action

Controlled
system

Control system

actuators

sensors

Model of the
controlled

system

Model of
the load

load

A general heuristics
Admission control

© 2011, S. Krakowiak Systems Architecture

An old example, with admission control

29

OverloadUnderload

Normal load

100%

CPU
activity rate

Number of page
replacements

n

!
! and n measured on last
observation interval (t-∆t, t)

a) a simple model of system behavior

Preventing thrashing:
the IBM M44/44X experiments (1968)

© 2011, S. Krakowiak Systems Architecture

every ∆t do
 if (overload)

move one process from ready set to waiting set
 else

if (underload and (waiting set ≠ "))
admit one waiting process to ready set

An old example, with admission control

29

OverloadUnderload

Normal load

100%

CPU
activity rate

Number of page
replacements

n

!
! and n measured on last
observation interval (t-∆t, t)

a) a simple model of system behavior

Preventing thrashing:
the IBM M44/44X experiments (1968)

© 2011, S. Krakowiak Systems Architecture

every ∆t do
 if (overload)

move one process from ready set to waiting set
 else

if (underload and (waiting set ≠ "))
admit one waiting process to ready set

An old example, with admission control

B. Brawn, F. Gustavson. Program behavior in a paging
environment. Proc. AFIPS FJCC, pp. 1019-1032 (1968)

Execution time
(seconds)

Number of active
processes1 2 3 4 5

200

400

600

800

1000

1200

 with admission control

b) effect of load leveling by admission control

 without admission control

29

OverloadUnderload

Normal load

100%

CPU
activity rate

Number of page
replacements

n

!
! and n measured on last
observation interval (t-∆t, t)

a) a simple model of system behavior

Preventing thrashing:
the IBM M44/44X experiments (1968)

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS : example (1)

30

Web Application Data store

sensorsactuators
control Cloud

provider

clients

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS : example (1)

30

Web Application Data store

sensorsactuators
control Cloud

provider

clients

H. C. Lim, S. Babu, J. S. Chase. Automated Control for Elastic Storage, International Conf. On
Autonomic Computing (ICAC), June 7-11, 2010

Example: controlling the “data store” tier
Allocating servers from a cloud provider
Goal:

guaranteeing response time under a bursty load
Experience with Hadoop Distributed File System

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS: example (2)

! Designing control algorithms
For server allocation

actuator: allocate/free servers (provider interface)
sensor: CPU utilization rate (strong correlation with response time)
strategy: integral control with threshold (for stability)

31

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS: example (2)

! Designing control algorithms
For server allocation

actuator: allocate/free servers (provider interface)
sensor: CPU utilization rate (strong correlation with response time)
strategy: integral control with threshold (for stability)

For data store tier reconfiguration (redistributing data)
actuator: fraction of bandwidth allocated to reconfiguration (which interferes

with request processing)
sensor: time needed (a function of data size) + impact of reconfiguration on

response time

31

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS: example (2)

! Designing control algorithms
For server allocation

actuator: allocate/free servers (provider interface)
sensor: CPU utilization rate (strong correlation with response time)
strategy: integral control with threshold (for stability)

For data store tier reconfiguration (redistributing data)
actuator: fraction of bandwidth allocated to reconfiguration (which interferes

with request processing)
sensor: time needed (a function of data size) + impact of reconfiguration on

response time

Coordinating the two above control loops
goal: avoid over- or under-allocation; avoid oscillations
means: state machine ensuring alternation between the two above control

loops, with time delay

31

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS : example (3)

! Results
Very good reactivity to a
load peak
(a posteriori) Good
correlation between
response time and CPU
utilization rate

32

4. IMPLEMENTATION

4.1 Cloudstone Guest Application
CloudStone: We modified and configured Cloudstone to run with
GlassFish as the front-end application server tier, PostgreSQL as
the database tier for structured data, and HDFS as a distributed stor-
age tier for content objects such as PDF documents and image files.
This required adding an HDFS class abstraction to Cloudstone to
enable it to use HDFS storage APIs. We also added new parame-
ter types to Cloudstone’s configuration file so that users can easily
configure and switch between different file systems without having
to recompile the source code. In all, this involved adding 200 lines
of code to Cloudstone. The experiments use a block size in the
storage tier of 800KB, which is the maximum size of binary files
generated by Cloudstone. The HDFS replica count is set to three
following best practices from production deployments.

HDFS: HDFS distributes the content objects (files) across an elas-
tic set of N storage nodes, called datanodes. A namenode tracks
metadata including replica counts and locations for each file.

With its current implementation, HDFS does not ensure that stor-
age nodes are request-balanced, since its internal policy is based on
disk usage capacity. However, Cloudstone’s workload generator is
designed such that structured data and content objects are accessed
in a uniform distribution, which naturally balances requests across
all HDFS datanodes.

Finally, we modified HDFS to expose the rebalancer’s bandwidth
throttle b as an actuator to the external controller. We created an
RPC interface in the HDFS namenode that notifies all HDFS datan-
odes of changes to the bandwidth limit.

4.2 Cloud Provider
We use a local ORCA [14, 8] cluster as our cloud infrastruc-

ture provider. ORCA is a resource control framework developed
at Duke University. It provides a resource leasing service which
allows guests to lease resources from a resource substrate provider,
such as a cloud computing provider. The test cluster exports an in-
terface to instantiate Xen virtual machine instances [7] on a shared
pool of 30 host servers.

4.3 Elasticity Controller
The controller is written in Java and contains 1500 lines of code.

ORCA allows guests to use the resource leasing mechanisms through
a controller plug-in module written to various toolkit APIs [35].
The control policy is clocked by periodic upcalls from the ORCA

leasing core to a tick method in the controller. The controller plug-
in module also installs event handlers that trigger notifications from
the leasing core at specific points of a lease’s life cycle. We use
the onBeforeExtendTicket and onLeaseComplete handlers that are
triggered just before a lease expires and after a new lease reserva-
tion is complete (e.g., a new datanode is instantiated).

Each new lease request is attached with a guest application con-
trol handler that installs, configures, and launches the guest soft-
ware (Cloudstone and/or HDFS) on the leased server instances after
they start. Our handler installs and configures the HDFS datanode
software package when a new storage node is instantiated and also
performs the necessary shutdown sequence, such as shutting down
the HDFS datanode, when the controller decides to decommission
a storage node. The control system includes two other important
components, described next.

Instrumentation: To get the sensor measurements mentioned in
Section 3, we modified the HDFS datanode to gather system-level
metrics such as CPU utilization. We included the Hyperic SIGAR
library with each HDFS datanode. At periodic intervals, the HDFS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
Target (20%)

WH

(a) Average CPU utilization of
the HDFS datanodes with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(b) Response time of the Cloud-
stone application with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
y

h
 (20%)

y
l

Rebalance

WH

+9 Storage
Nodes

(c) Average CPU utilization of
the HDFS datanodes with dy-
namic provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(d) Response time of the Cloud-
stone application with dynamic
provisioning

Figure 6: The performance of Cloudstone with static allocation
(a,b) and our control policy (c,d), under a 10-fold increase in
workload volume. The time periods with high volume of work-
load is labeled as “WH”.

datanode uses SIGAR to gather the system-level metrics and pig-
gybacks this information on the regular heartbeat messages of the
HDFS datanode to the HDFS namenode. We also modified the
HDFS namenode and implemented a remote procedure call (RPC)
that allows the controller to get the sensor measurements of all
HDFS datanodes in a single call. With this implementation, the
controller only needs to contact the HDFS namenode to get the
sensor measurements for all storage nodes.

The controller has a separate thread that periodically obtains
these measures: the sensor interval is set to 10 seconds. The con-
troller then processes the sensor measures and applies the control
policy as described. It computes the average CPU utilization of the
HDFS datanodes, and applies an exponential moving average filter
of six time periods to the average CPU utilization.

Subcontroller Modules: The controller has two subcontroller mod-
ules, corresponding to HSC and DRC, as described in Section 3.
Each of these modules runs on a separate thread. As mentioned in
Section 3, the coordination between these two subcontroller mod-
ules is guided by a finite state machine interlock. Since the feed-
back subcontrollers and the leasing mechanism run asynchronously
on separate threads, they synchronize through a common state vari-
able accessed by the upcall handlers. This state variable activates
and deactivates the subcontroller modules according to the state of
the controller’s finite state machine.

5. EVALUATION

5.1 Experimental Testbed
Our experimental service cluster consists of a group of servers

running on a local network. To focus on the storage tier, the front-
end application tier and database tier of Cloudstone are statically
over-provisioned: the database server (PostgreSQL) runs on a pow-
erful server with 8GB of memory and 3.16 GHz dual-core CPU,
while the forward tier (GlassFish) runs in a fixed six-node sub-

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS : example (3)

! Results
Very good reactivity to a
load peak
(a posteriori) Good
correlation between
response time and CPU
utilization rate

32

4. IMPLEMENTATION

4.1 Cloudstone Guest Application
CloudStone: We modified and configured Cloudstone to run with
GlassFish as the front-end application server tier, PostgreSQL as
the database tier for structured data, and HDFS as a distributed stor-
age tier for content objects such as PDF documents and image files.
This required adding an HDFS class abstraction to Cloudstone to
enable it to use HDFS storage APIs. We also added new parame-
ter types to Cloudstone’s configuration file so that users can easily
configure and switch between different file systems without having
to recompile the source code. In all, this involved adding 200 lines
of code to Cloudstone. The experiments use a block size in the
storage tier of 800KB, which is the maximum size of binary files
generated by Cloudstone. The HDFS replica count is set to three
following best practices from production deployments.

HDFS: HDFS distributes the content objects (files) across an elas-
tic set of N storage nodes, called datanodes. A namenode tracks
metadata including replica counts and locations for each file.

With its current implementation, HDFS does not ensure that stor-
age nodes are request-balanced, since its internal policy is based on
disk usage capacity. However, Cloudstone’s workload generator is
designed such that structured data and content objects are accessed
in a uniform distribution, which naturally balances requests across
all HDFS datanodes.

Finally, we modified HDFS to expose the rebalancer’s bandwidth
throttle b as an actuator to the external controller. We created an
RPC interface in the HDFS namenode that notifies all HDFS datan-
odes of changes to the bandwidth limit.

4.2 Cloud Provider
We use a local ORCA [14, 8] cluster as our cloud infrastruc-

ture provider. ORCA is a resource control framework developed
at Duke University. It provides a resource leasing service which
allows guests to lease resources from a resource substrate provider,
such as a cloud computing provider. The test cluster exports an in-
terface to instantiate Xen virtual machine instances [7] on a shared
pool of 30 host servers.

4.3 Elasticity Controller
The controller is written in Java and contains 1500 lines of code.

ORCA allows guests to use the resource leasing mechanisms through
a controller plug-in module written to various toolkit APIs [35].
The control policy is clocked by periodic upcalls from the ORCA

leasing core to a tick method in the controller. The controller plug-
in module also installs event handlers that trigger notifications from
the leasing core at specific points of a lease’s life cycle. We use
the onBeforeExtendTicket and onLeaseComplete handlers that are
triggered just before a lease expires and after a new lease reserva-
tion is complete (e.g., a new datanode is instantiated).

Each new lease request is attached with a guest application con-
trol handler that installs, configures, and launches the guest soft-
ware (Cloudstone and/or HDFS) on the leased server instances after
they start. Our handler installs and configures the HDFS datanode
software package when a new storage node is instantiated and also
performs the necessary shutdown sequence, such as shutting down
the HDFS datanode, when the controller decides to decommission
a storage node. The control system includes two other important
components, described next.

Instrumentation: To get the sensor measurements mentioned in
Section 3, we modified the HDFS datanode to gather system-level
metrics such as CPU utilization. We included the Hyperic SIGAR
library with each HDFS datanode. At periodic intervals, the HDFS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
Target (20%)

WH

(a) Average CPU utilization of
the HDFS datanodes with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(b) Response time of the Cloud-
stone application with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
y

h
 (20%)

y
l

Rebalance

WH

+9 Storage
Nodes

(c) Average CPU utilization of
the HDFS datanodes with dy-
namic provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(d) Response time of the Cloud-
stone application with dynamic
provisioning

Figure 6: The performance of Cloudstone with static allocation
(a,b) and our control policy (c,d), under a 10-fold increase in
workload volume. The time periods with high volume of work-
load is labeled as “WH”.

datanode uses SIGAR to gather the system-level metrics and pig-
gybacks this information on the regular heartbeat messages of the
HDFS datanode to the HDFS namenode. We also modified the
HDFS namenode and implemented a remote procedure call (RPC)
that allows the controller to get the sensor measurements of all
HDFS datanodes in a single call. With this implementation, the
controller only needs to contact the HDFS namenode to get the
sensor measurements for all storage nodes.

The controller has a separate thread that periodically obtains
these measures: the sensor interval is set to 10 seconds. The con-
troller then processes the sensor measures and applies the control
policy as described. It computes the average CPU utilization of the
HDFS datanodes, and applies an exponential moving average filter
of six time periods to the average CPU utilization.

Subcontroller Modules: The controller has two subcontroller mod-
ules, corresponding to HSC and DRC, as described in Section 3.
Each of these modules runs on a separate thread. As mentioned in
Section 3, the coordination between these two subcontroller mod-
ules is guided by a finite state machine interlock. Since the feed-
back subcontrollers and the leasing mechanism run asynchronously
on separate threads, they synchronize through a common state vari-
able accessed by the upcall handlers. This state variable activates
and deactivates the subcontroller modules according to the state of
the controller’s finite state machine.

5. EVALUATION

5.1 Experimental Testbed
Our experimental service cluster consists of a group of servers

running on a local network. To focus on the storage tier, the front-
end application tier and database tier of Cloudstone are statically
over-provisioned: the database server (PostgreSQL) runs on a pow-
erful server with 8GB of memory and 3.16 GHz dual-core CPU,
while the forward tier (GlassFish) runs in a fixed six-node sub-

© 2011, S. Krakowiak Systems Architecture

Self-adaptation for QoS : example (3)

! Results
Very good reactivity to a
load peak
(a posteriori) Good
correlation between
response time and CPU
utilization rate

32

4. IMPLEMENTATION

4.1 Cloudstone Guest Application
CloudStone: We modified and configured Cloudstone to run with
GlassFish as the front-end application server tier, PostgreSQL as
the database tier for structured data, and HDFS as a distributed stor-
age tier for content objects such as PDF documents and image files.
This required adding an HDFS class abstraction to Cloudstone to
enable it to use HDFS storage APIs. We also added new parame-
ter types to Cloudstone’s configuration file so that users can easily
configure and switch between different file systems without having
to recompile the source code. In all, this involved adding 200 lines
of code to Cloudstone. The experiments use a block size in the
storage tier of 800KB, which is the maximum size of binary files
generated by Cloudstone. The HDFS replica count is set to three
following best practices from production deployments.

HDFS: HDFS distributes the content objects (files) across an elas-
tic set of N storage nodes, called datanodes. A namenode tracks
metadata including replica counts and locations for each file.

With its current implementation, HDFS does not ensure that stor-
age nodes are request-balanced, since its internal policy is based on
disk usage capacity. However, Cloudstone’s workload generator is
designed such that structured data and content objects are accessed
in a uniform distribution, which naturally balances requests across
all HDFS datanodes.

Finally, we modified HDFS to expose the rebalancer’s bandwidth
throttle b as an actuator to the external controller. We created an
RPC interface in the HDFS namenode that notifies all HDFS datan-
odes of changes to the bandwidth limit.

4.2 Cloud Provider
We use a local ORCA [14, 8] cluster as our cloud infrastruc-

ture provider. ORCA is a resource control framework developed
at Duke University. It provides a resource leasing service which
allows guests to lease resources from a resource substrate provider,
such as a cloud computing provider. The test cluster exports an in-
terface to instantiate Xen virtual machine instances [7] on a shared
pool of 30 host servers.

4.3 Elasticity Controller
The controller is written in Java and contains 1500 lines of code.

ORCA allows guests to use the resource leasing mechanisms through
a controller plug-in module written to various toolkit APIs [35].
The control policy is clocked by periodic upcalls from the ORCA

leasing core to a tick method in the controller. The controller plug-
in module also installs event handlers that trigger notifications from
the leasing core at specific points of a lease’s life cycle. We use
the onBeforeExtendTicket and onLeaseComplete handlers that are
triggered just before a lease expires and after a new lease reserva-
tion is complete (e.g., a new datanode is instantiated).

Each new lease request is attached with a guest application con-
trol handler that installs, configures, and launches the guest soft-
ware (Cloudstone and/or HDFS) on the leased server instances after
they start. Our handler installs and configures the HDFS datanode
software package when a new storage node is instantiated and also
performs the necessary shutdown sequence, such as shutting down
the HDFS datanode, when the controller decides to decommission
a storage node. The control system includes two other important
components, described next.

Instrumentation: To get the sensor measurements mentioned in
Section 3, we modified the HDFS datanode to gather system-level
metrics such as CPU utilization. We included the Hyperic SIGAR
library with each HDFS datanode. At periodic intervals, the HDFS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
Target (20%)

WH

(a) Average CPU utilization of
the HDFS datanodes with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(b) Response time of the Cloud-
stone application with static
provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

10

20

30

40

50

60

70

Time (s)

C
P

U
 U

til
iz

a
tio

n
 (

%
)

CPU Utilization
y

h
 (20%)

y
l

Rebalance

WH

+9 Storage
Nodes

(c) Average CPU utilization of
the HDFS datanodes with dy-
namic provisioning

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

5

10

15

20

25

30

35

Time (s)

R
e

sp
o

n
se

 T
im

e
 (

s)

Response Time
Target (3s)

(d) Response time of the Cloud-
stone application with dynamic
provisioning

Figure 6: The performance of Cloudstone with static allocation
(a,b) and our control policy (c,d), under a 10-fold increase in
workload volume. The time periods with high volume of work-
load is labeled as “WH”.

datanode uses SIGAR to gather the system-level metrics and pig-
gybacks this information on the regular heartbeat messages of the
HDFS datanode to the HDFS namenode. We also modified the
HDFS namenode and implemented a remote procedure call (RPC)
that allows the controller to get the sensor measurements of all
HDFS datanodes in a single call. With this implementation, the
controller only needs to contact the HDFS namenode to get the
sensor measurements for all storage nodes.

The controller has a separate thread that periodically obtains
these measures: the sensor interval is set to 10 seconds. The con-
troller then processes the sensor measures and applies the control
policy as described. It computes the average CPU utilization of the
HDFS datanodes, and applies an exponential moving average filter
of six time periods to the average CPU utilization.

Subcontroller Modules: The controller has two subcontroller mod-
ules, corresponding to HSC and DRC, as described in Section 3.
Each of these modules runs on a separate thread. As mentioned in
Section 3, the coordination between these two subcontroller mod-
ules is guided by a finite state machine interlock. Since the feed-
back subcontrollers and the leasing mechanism run asynchronously
on separate threads, they synchronize through a common state vari-
able accessed by the upcall handlers. This state variable activates
and deactivates the subcontroller modules according to the state of
the controller’s finite state machine.

5. EVALUATION

5.1 Experimental Testbed
Our experimental service cluster consists of a group of servers

running on a local network. To focus on the storage tier, the front-
end application tier and database tier of Cloudstone are statically
over-provisioned: the database server (PostgreSQL) runs on a pow-
erful server with 8GB of memory and 3.16 GHz dual-core CPU,
while the forward tier (GlassFish) runs in a fixed six-node sub-

H. C. Lim, S. Babu, J. S. Chase.
Automated Control for Elastic Storage,
International Conf. On Autonomic
Computing (ICAC), June 7-11, 2010

Figure 6 of:

© 2010 ACM, Inc.
Included here by permission.

doi>10.1145/1809049.1809052

http://dx.doi.org/10.1145/1809049.1809052
http://dx.doi.org/10.1145/1809049.1809052

© 2011, S. Krakowiak Systems Architecture

Advances and challenges for self-adaptation

! Advances
A fruitful interaction with control theory

continuous domain (control loop)
discrete domain (controller synthesis)
some results for QoS

Reflective components and architectures

33

© 2011, S. Krakowiak Systems Architecture

Advances and challenges for self-adaptation

! Advances
A fruitful interaction with control theory

continuous domain (control loop)
discrete domain (controller synthesis)
some results for QoS

Reflective components and architectures

! Challenges
Multilevel approaches (model-driven vs self-organized)
Expression of objectives

multi-criteria objectives (performance, energy, availability, …)
dealing with unexpected situations

Modeling, verification, guarantees
continuous-discrete interaction, timed models

Security

33

© 2011, S. Krakowiak Systems Architecture

Concluding remarks

! On architectural paradigms
Permanence of concepts, (slow) refinement in their

application
New paradigms

mobility, autonomy, …

34

© 2011, S. Krakowiak Systems Architecture

Concluding remarks

! On architectural paradigms
Permanence of concepts, (slow) refinement in their

application
New paradigms

mobility, autonomy, …

34

the power of abstraction
the power (and increasing role)
 of models

© 2011, S. Krakowiak Systems Architecture

Concluding remarks

! On architectural paradigms
Permanence of concepts, (slow) refinement in their

application
New paradigms

mobility, autonomy, …

! Some challenges for the future
Conceptual

formal models for systems architecture
validity of construction
modeling security
hybrid systems

Practical
declarative description of environments and constraints
automatic generation of special-purpose systems
administration and quality of service of very large systems

34

the power of abstraction
the power (and increasing role)
 of models

35

Obrigado pela atenção !

