
Patterns and Frameworks
for Middleware Construction

Infrastructure Intergicielle pour Applications Distribuées

Infraestruturas “Middleware” para Aplicaciones Distribuídas

LAFMI, Xalapa, 6-10.05.2002

Sacha Krakowiak
Université Joseph Fourier, Grenoble

INRIA, projet Sardes

http://sardes.inrialpes.fr/people/krakowia

Distributed Middleware - 2© 2002, S. Krakowiak

An introduction to Middleware

■ Middleware sits “in the middle”

Application

Operating
system

Application

Operating
system

Communication

Middleware

■ Middleware is a relatively recent notion (early 90’s)

High-level API

Low-level APIs

Distributed Middleware - 3© 2002, S. Krakowiak

■ Middleware aims to improve distributed programming
◆ Make application development easier by providing a common

programming abstraction and by hiding low-level details
◆ Facilitate evolution
◆ Enhance reusability
◆ Improve portability on new platforms
◆ Allow interoperability of heterogeneous applications

■ Middleware has four main functions
◆ To provide an uniform, high level API (Applications Programming

Interface) to applications
◆ To hide the heterogeneity of the underlying hardware and operating

systems
◆ To make distribution invisible (“transparent”)
◆ To provide general purpose distributed services

Functions of Middleware

Distributed Middleware - 4© 2002, S. Krakowiak

Categories of Middleware

■ Remote Procedure Call

■ Distributed Objects
◆ CORBA, DCOM, .NET, Java RMI

■ Distributed Components
◆ Java Beans, Enterprise Java Beans, CCM

■ Message-Oriented Middleware (MOM)
◆ Message Queues, Publish-Subscribe

■ Distributed tuples
◆ Linda, Jini

■ Data access and persistence

Middleware takes a wide variety of forms

Distributed Middleware - 5© 2002, S. Krakowiak

Goal of this course

■ To present the principles of middleware architecture
In a systematic way

◆ By identifying the main design and implementation problems

◆ By exhibiting the main design patterns relevant to middleware
construction

◆ By illustrating these patterns with useful frameworks

■ To present detailed examples of how middleware
actually works

◆ By going down to the source code level

The examples are taken from ObjectWeb, a consortium dedicated to the
development of innovative open source middleware (www.objectweb.org)

Distributed Middleware - 6© 2002, S. Krakowiak

Plan of the course

■ A refresher on RPC and Java RMI
◆ introduce the main issues of middleware
◆ Introduce basic architectural concepts

■ From objects to components
◆ Examples with Enterprise Java Beans (EJB)

■ A few basic patterns for middleware
◆ Proxy, Stub, Factory, Wrapper, Interceptor, etc.
◆ How these patterns are actually used and combined

■ Inside middleware: a case study
◆ An introduction to Jonathan, an open source middleware framework
◆ A code walkthrough of Jonathan, with examples
◆ Three frameworks in use: naming and binding, communication,

configuration

A Refresher on Client-Server Middleware

RemoteProcedure Call (RPC)

Java Remote Method Invocation (RMI)

Distributed Middleware - 8© 2002, S. Krakowiak

A Refresher on RPC

■ Remote procedure Call (RPC) is a tool for the
construction of client-server applications

process p

procedure
P(x, y, …)

P(x, y, …)

process p

P(x, y, …)

The effect of the call must be identical in both situations. This cannot be achieved
in the presence of failures

Distributed Middleware - 9© 2002, S. Krakowiak

Implementation of RPC

send
receive

pack parameters
send parameters
wait
receive results
unpack results

receive
send

receive parameters
unpack parameters
call procedure

 pack results
 send results

network

P(x, y, …)

P(x, y, …)application level

middleware level
client
stub

server
stub

communication software
(sockets)

communication software
(sockets)

Distributed Middleware - 10© 2002, S. Krakowiak

Functions of the stubs

■ Client stub
◆ Represents the server on the

client site

◆ Receives local call

◆ Marshalls parameters

◆ Creates unique identifier for
the call

◆ Executes the call

◆ Blocks calling process

◆ Receives and unmarshalls
results

◆ Returns to calling process

■ Server stub
◆ Represents the client on the

server site

◆ Receives the call as a
message

◆ Unmarshalls parameters

◆ Creates or selects thread to
execute procedure

◆ Gets and marshalls results

◆ Send results to caller

In addition, both stubs must detect errors (timeouts) and react to detected errors
according to the « semantics of the RPC

Distributed Middleware - 11© 2002, S. Krakowiak

RPC Implementation Issues

■ How does the client know the server’s address
■ How are parameters and results transmitted?

◆ value or reference?
◆ what about complex structures?
◆ encoding, marshalling, unmarshalling
◆ heterogeneity issues

■ How are the errors dealt with?
◆ error detection
◆ semantics

■ How are the stubs constructed?
◆ automatic stub generation

■ How is the execution managed?
◆ server starting and stopping, etc.

Distributed Middleware - 12© 2002, S. Krakowiak

Naming and Binding in RPC

■ Naming
◆ Objects to name: called procedure, server site

◆ Desirable properties: location-independent naming, flexibility
(location of objects may change)

■ Binding time
◆ Early binding (static) or late binding (dynamic)

◆ Static: server location known at compile time

◆ Dynamic: server location unknown at compile time

❖ Use symbolic names for services, and name service

Naming: associating names with objects
Binding: using names as an access path to objects

Distributed Middleware - 13© 2002, S. Krakowiak

Naming and Binding in RPC (2)

◆ Static binding: all addresses “hardwired” in code, no name server
◆ Binding at first call: look up name server at first call, then reuse address
◆ Binding at each call: look up name server at each call

client
application

client
stub

communication

server
application

server
stub

communication

Name
server

lookup
register

logical communication

physical communication

Distributed Middleware - 14© 2002, S. Krakowiak

Naming and binding in RPC: a dynamic view

Client
stub

Name
server

Server
stub

lookup (name)

register
(name, adr, port)

return (adr, port)

rpcCall
(adr, port, params)

return (results)

ServerClient

local call

RPC
name (params)

return (results)

return (results)

return(ok)
return(ok)

Distributed Middleware - 15© 2002, S. Krakowiak

Stub Generation

■ Principles
◆ The structure of the stubs is well defined, and they can be

generated automatically
◆ What information is needed?

❖ environment dependent: conversion procedures,
communication protocols

❖ application dependent: formats of parameters and results, for
marshalling and unmarshalling

■ Implementation
◆ Application dependent information is described in an Interface

Definition Language (IDL)
◆ The IDL defines a contract between the client (caller) and the server

(callee)
◆ The IDL serves as input to a stub compiler, which generates stubs

Distributed Middleware - 16© 2002, S. Krakowiak

Stub Generation

■ What is in a stub?
◆ An interface (the same as that ot the remote object that it

represents

◆ A reference to the remote object

◆ The reference must contain a means to call the object

❖ An identification of the object
❖ A communication object (session)

■ Generating stubs
◆ Two steps: generating the program and generating an instance

❖ Program: done by a stub compiler that should implement each
method of the remote object in terms of local calls

❖ Instance: done by a “stub factory”
▲ In the case of RPC, the loader

❖ Examples later …

Distributed Middleware - 17© 2002, S. Krakowiak

Object Oriented Middleware

■ Encapsulation
◆ The interface (methods + attributes) is the only way to access

the internal state of the object

■ Classes and instances
◆ Mechanism to generate instances according to a predefined

pattern

■ Inheritance
◆ Mechanism for specialization: facilitates reuse

■ Polymorphism
◆ Different implementations of the methods of an interface
◆ Replacing an object by an other one if interfaces conform
◆ Facilitates application evolution and adaptation

Why are objects useful for distributed applications ?

Distributed Middleware - 18© 2002, S. Krakowiak

Extending RPC to objects

Procedure call vs method call (on an object)
◆ Example: insert a new entry in a directory

insert (name, phone) execute
insert

procedure call

client server

insert (name, phone)
in directory_2

exec.
insert

 directory_2

object call

 directory_1
insert (name, phone)

in directory_1
[…]

exec.
insert

object call

client server

Distributed Middleware - 19© 2002, S. Krakowiak

Java RMI (Remote Method Invocation)
 http://java.sun.com/docs/books/tutorial/rmi/

■ Motivation: building distributed applications with
Java

◆ Method call instead of procedure call

■ Principle: similar to RPC
◆ The program provides

❖ An interface description
▲ no separate IDL: Java is used as IDL

❖ The server program
▲ objects that implement the interface (“servants”)
▲ a server

❖ The client program
◆ The Java environment provides

❖ A stub generator (rmic)
❖ A name service (Object Registry)

Distributed Middleware - 20© 2002, S. Krakowiak

Java RMI : Usage Rules (1/2)

■ Interface
◆ The interface of a remote object distant (Remote) is that of a

Java object, with some constraints:
◆ The remote interface must be public
◆ The remote interface must extend the interface

java.rmi.Remote
◆ Each method must declare (at least) the exception

java.rmi.RemoteException

■ Passing objects as parameters
◆ Local objects are passed by value (copy) and must be

serializable (extend the interface java.io.Serializable)
◆ Remote objects are passed by reference and are designated

by their interface

Distributed Middleware - 21© 2002, S. Krakowiak

Java RMI : Usage Rules (2/2)

■ Implementation of remote classes (Remote)
◆ A remote class must implement an interface that is itself remote

(Remote)

◆ A remote class must extend the class
java.rmi.server.UnicastRemoteObject (there are other possibilities)

◆ A remote class may also have some methods that may only be
called locally (not part of its Remote interface)

Distributed Middleware - 22© 2002, S. Krakowiak

Java RMI : Server Implementation Rules

■ A server is a class that implements the remote
object’s interface

◆ Specify the remote references that should be implemented
(objects passed as parameters)

◆ Define the constructor of the remote object

◆ Provide the implementation of remotely callable methods

◆ Create and install the security manager

◆ Create at least one instance of the server class

◆ Register at least one instance in the name server

Distributed Middleware - 23© 2002, S. Krakowiak

Java RMI : Example (Hello world) - 1

import java.rmi.*
public interface HelloInterface
 extends Remote {

 /* method that prints a message
 (predefined in the called object) */

 public String sayHello ()
throws java.rmi.RemoteException;

}

Interface Definition
import java.rmi.*
import java.rmi.server.*;
 public class Hello
 extends java.rmi.server.UnicastRemoteObject
 implements HelloInterface {

 private String message;

/* the constructor */

public Hello (String s)
throws RemoteException
{

message = s ;
}

/* implementation of the method */
public String sayHello ()

 throws RemoteException
{

return message ;
}

}

A class implementing the interface

Distributed Middleware - 24© 2002, S. Krakowiak

Java RMI : Example (Hello world) - 2

import HelloInterface.*
import Hello.*;
import java.rmi.*;
public class HelloServer {
public static void main (String [] argv) {

 /*start SecurityManager */

 System.setSecurityManager (
new RMISecurityManager ()) ;

 try {

 /* create an instance of class Hello and
 register it in the nameserver */
 Naming.rebind ("Hello1”,

new Hello ("Hello world !")) ;
 System.out.println ("server ready.") ;

 } catch ((Exception e) {
 System.out.println

("Server error: " + e) ;
 }
}}

Server Program

import HelloInterface.*
import java.rmi.*;
public class HelloClient {
public static void main (String [] argv) {

 try {

 /*find a reference to the remote object */
 HelloInterface hello =

(HelloInterface) Naming.lookup
 ("rmi://boole.imag.fr/Hello1") ;

 /* remote method call */
 System.out.println (hello.sayHello()) ;

 } catch (Exception e) {
 System.out.println

("Hello client exception : " + e) ;
 }
}}

Client Program

Distributed Middleware - 25© 2002, S. Krakowiak

Java RMI : Execution Steps

■ Compilation
◆ Compile the Remote classes (javac), and the client and server

programs
◆ Compile the interface (rmic) to create the client and server stubs

■ Execution
◆ Start the name server (on the server machine)

rmiregistry &
◆ Start the server

java HelloServer &
◆ Start the client

java HelloClient

Distributed Middleware - 26© 2002, S. Krakowiak

Reference Passing in Java RMI

Skeleton
Int_object2

Client

Skeleton
Int_object1

Stub
Int_object2

Instance object1

Stub
Int_object1

Stub
Int_object2

An object reference designates a stub , a local
proxy for the object. The only information
known at this stage is the object’s interface

Int_object1.meth (Int_Obj2)
meth (Int_Obj2)

Distributed Middleware - 27© 2002, S. Krakowiak

Conclusion on Java RMI

■ Extending RPC to objects
◆ Allows access to remote objects
◆ Allows extension of the local environment by dynamic

dynamic code loading
◆ No separate Interface Description Language

■ Limitations
◆ Single language environment (Java)

❖ But possible interconnection
◆ Minimal services

❖ Simple name service (no trading)
❖ No additional services

▲ Objects replication
▲ Transactions
▲ …

Patterns for Middleware

Introduction to Design Patterns

A Few Useful Patterns and their Applications

Distributed Middleware - 29© 2002, S. Krakowiak

A View of Client-Server Middleware

Binding
factory

Binding object

Client Server

Name
server

IDL

pre-
compiler

session

client stub (RPC)
stub (CORBA)
proxy (DCOM)
…

server stub (RPC)
skeleton (CORBA)
stub (DCOM)
…

Distributed Middleware - 30© 2002, S. Krakowiak

Common Constructions

Two constructions:

A “representative” (Proxy)

A “constructor” (Factory)

Generic (reusable)

Client Server

May be combined:

Servant
2

Servant
1

Name
server Factory

Factory Proxy
Factory Factory
Proxy Factory
Proxy Proxy

Distributed Middleware - 31© 2002, S. Krakowiak

■ Definition [not limited to program design]
◆ A set of design rules (element definitions, element composition

principles, rules of usage) that allow the designer to answer a
class of specific needs in a specific environment.

■ Properties
◆ A design pattern is elaborated from the experience acquired

during the resolution of a class of related problems ; it captures
solution elements common to those problems.

◆ A design pattern defines design principles, not specific
implementations of those principles.

◆ A design pattern provides an aid to documentation, e.g. by
setting up a common terminology, or even a formal description
(“pattern language”)

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns - Elements of Reusable Object-Oriented Software , Addison-
Wesley, 1995
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software Architecture - vol. 1, Wiley 1996
D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-Oriented Software Architecture - vol. 2, Wiley, 2000

Design patterns

Distributed Middleware - 32© 2002, S. Krakowiak

More about Patterns

■ Defining a Pattern
◆ Context: the design solution giving rise to a design problem; should be as

generic as possible (but not overly general)
◆ Problem: requirements, desirable properties of the solution; constraints of the

environments
◆ Solution:

❖ Static aspects: components, relationships between components; may be
described by class/collaboration diagrams

❖ Dynamic aspects: run-time behavior, lifecycle (creation, termination,
etc.); may be described by sequence/state diagrams

■ Categories of Patterns
◆ Design: small scale, commonly recurring structure within a particular context
◆ Architectural: large scale, structural organization, defines subsystems and

relationships between them
◆ Idioms: language specific - how to implement a particular aspect in a given

language

Source: F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software Architecture - vol. 1,
Wiley 1996

Distributed Middleware - 33© 2002, S. Krakowiak

A Few Examples of Patterns

■ Proxy
◆ Design pattern: representative for remote access

■ Factory
◆ Design pattern: object creation

■ Wrapper
◆ Design pattern: interface transformation

■ Interceptor
◆ Architectural pattern: adaptable service provision

These patterns appear very frequently in middleware construction

Their use will be illustrated later in the Jonathan framework

Distributed Middleware - 34© 2002, S. Krakowiak

Proxy

■ Context
◆ Applications organized as a set of objects in a distributed environment; a

client needs access to the services provided by some possibly remote
object (the “servant”)

■ Problem
◆ Define an access mechanism that does not involve

❖ hard-coding the location of the servant into the client code
❖ deep knowledge of the communication protocols by the client

◆ Desirable properties
❖ Access should be efficient at run time and secure
❖ Programming should be simple for the client; ideally there should be

no difference between local and remote access
◆ Constraints

❖ Distributed environment (no single address space)

■ Solutions
◆ Use a local representative of the server on the client site (isolates client

from servant and communication system)
◆ Keep the same interface for the representative as for the servant
◆ Define a uniform proxy structure to facilitate automatic generation

Distributed Middleware - 35© 2002, S. Krakowiak

Proxy in Use

Client Proxy Servant

Interface I Interface I

service request

service request

result

result

pre-processing

post-processing usually:
Remote call

Distributed Middleware - 36© 2002, S. Krakowiak

Factory

■ Context
◆ Applications organized as a set of objects in a distributed environment

■ Problem
◆ Dynamically create multiple instances of a class
◆ Desirable properties

❖ Instances should be parameterized
❖ Evolution should be easy (no hard-coded decisions)

◆ Constraints
❖ Distributed environment (no single address space)

■ Solutions
◆ Abstract Factory: defines a generic interface and organization for creating

objects; the actual creation is deferred to concrete factories that actually
implement the creation methods

◆ Abstract Factory may be implemented using Factory Methods (a creation
method that is redefined in a subclass)

◆ A further degree of flexibility is achieved by using Factory Factory (the
creation mechanism itself is parameterized)

Distributed Middleware - 37© 2002, S. Krakowiak

Factory in Use

Client

Factory Factory

Factory
create

Object
create

return
object reference

with
parameters

request for creation

request for removal

optional

optional

Possible delegation
from abstract to
concrete factory

Distributed Middleware - 38© 2002, S. Krakowiak

Wrapper (a.k.a. Adapter)

■ Context
◆ Clients requesting services; servers providing services; services defined

by interfaces

■ Problem
◆ Reuse an existing server by modifying either its interface or some of its

functions in order to satisfy the needs of a client (or class of clients)
◆ Desirable properties: should be run-time efficient; should be adaptable

because the needs may change and may not be anticipated; should be
itself reusable (generic)

◆ Constraints:

■ Solutions
◆ The wrapper screens the server by intercepting method calls to its

interface. Each call is prefixed by a prologue and followed by an epilogue
in the wrapper.

◆ The parameters and results may need to be converted.

Distributed Middleware - 39© 2002, S. Krakowiak

Wrapper in Use

Client Wrapper Servant

Interface I2 Interface I1

service request

service request

result

result

pre-processing

post-processing

Distributed Middleware - 40© 2002, S. Krakowiak

Interceptor

■ Context
◆ Service provision (in a general setting)

❖ Client-server, Peer to peer, High-level to low-level
❖ May be uni- or bi-directional, synchronous or asynchronous

■ Problem
◆ Transform the service (adding new functions), by different means

❖ Interposing a new layer of processing (like wrapper)
❖ Changing the destination (may be conditional)

◆ Constraints
❖ Services may be added/removed dynamically

■ Solutions
◆ Create interposition objects (statically or dynamically). These objects

❖ Intercept calls (and/or returns) and insert specific processing, that
may be based on contents analysis

❖ May redirect call to a different target
❖ May use callbacks

Distributed Middleware - 41© 2002, S. Krakowiak

Interceptor in Use

Client

Interface I

service request

result

Supporting
Infrastructure

Interceptor

Servant

Interface I

create

callback

create

use service

Distributed Middleware - 42© 2002, S. Krakowiak

Similarities and Differences between Patterns

■ Wrapper vs Proxy
◆ Wrapper and Proxy have a similar structure

❖ Proxy preserves the interface; Wrapper transforms the
interface

❖ Proxy often (not always) involves remote access; Wrapper is
ususally on-site

■ Wrapper vs Interceptor
◆ Wrapper and Interceptor have a similar function

❖ Wrapper transforms the interface
❖ Interceptor transforms the functionality (may even completely

screen the target)

Frameworks for Middleware: a Case Study

From Patterns to Frameworks

Jonathan: A Framework for Middleware Construction

Examples and Code Walkthrough

Naming & binding

Communication

Configuration

Distributed Middleware - 44© 2002, S. Krakowiak

■ Definition
◆ A framework is a program “skeleton” that may reused (and

adapted) for a family of applications

◆ In object oriented languages: a framework consists of

❖ A set of classes (often abstract) to be adapted (e.g. by
overloading) to specific environments and constraints

❖ A set of rules of usage for these classes

■ Patterns and frameworks
◆ Both are techniques for reuse

◆ Patterns reuse design; frameworks reuse code

◆ A framework implements a design pattern (usually several)

Software Frameworks

Distributed Middleware - 45© 2002, S. Krakowiak

Jonathan, an Open Distributed Processing Environment

■ Motivations
◆ Need for a flexible environment, to be adapted to

❖ Specific runtime constraints
❖ Customized resource management policies

◆ Lack of flexibility of existing distributed processing environments

❖ Monolithic (lack of modularity)
❖ Hard coded policies

■ History
◆ In 1996-98, developed by a group at France Télécom R&D (Bruno Dumant et al.)* as

contribution to the ReTina project (for telecom applications)

◆ In 1999-2000, became part of the ObjectWeb consortium (open source middleware), now
hosted by INRIA

◆ In 2001, creation of the Kelua company, which develops products derived from
Jonathan

(*) B. Dumant, F. Dang Tran, F. Horn, and J.-B. Stefani. Jonathan: an open distributed processing
environment in Java. In Middleware’98: IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing , The Lake District, U.K., September 1998.

Distributed Middleware - 46© 2002, S. Krakowiak

What Jonathan Provides

■ A set of components from which an Object Request
Broker (ORB) can be assembled

◆ Buffer management
◆ Activity management
◆ Binding factories
◆ Communication protocols
◆ Marshallers and unmarshallers

■ Configuration tools
◆ Used to build a system from a set of selected components

■ Instances of specific ORBs (“personalities”)
◆ Jeremie, a Java RMI personality
◆ David, a CORBA personality

Distributed Middleware - 47© 2002, S. Krakowiak

The Jonathan Frameworks

■ Binding
◆ Tools for managing names (identifiers) and developing binding

factories, with different binding models (e.g. for QoS)

■ Communication
◆ Tools for developing and composing communication components

(sessions, etc.) to implement various communication protocols

■ Resources
◆ Abstractions for the management of various basic resources

❖ Processor (Threads)
❖ Memory (Buffers)
❖ Network (Connections)

■ Configuration
◆ Tools to create new instances of components and to assemble

them to form specified configurations

Distributed Middleware - 48© 2002, S. Krakowiak

Jonathan Design Principles

■ Separate abstractions from implementations
◆ Separate apis.* from libs.*

■ Independent modules implement specific services
◆ Non-functional issues (e.g. resource management) in separate

service modules
◆ A configurable kernel gives access to these services
◆ Most users do not access service implementations (left to “system

integrators”)

■ A few generic programming patterns are used
throughout

◆ Factory, FactoryFactory
◆ Delegation, abstract classes
◆ Helpers, holders

Achieve flexibility through separation of concerns and specialization

Distributed Middleware - 49© 2002, S. Krakowiak

Naming (1)

■ Names
◆ A name is an information that designates an entity. It has two

functions
❖ Identification: to distinguish this entity from other entities
❖ Reference: to provide a means of access to the entity

◆ Example
▲ A Java identifier identifies an object (an instance of a class)
▲ The run time representation of the identifier is a reference (a pointer, invisible

to the programmer) that gives access to the representation of the instance in
the JVM

◆ In Jonathan, the main named entities are interfaces (need for
abstraction and separation of concerns)

◆ Binding provides the link between identification and reference; these
two notions are independent

▲ To allow an interface to participate to bindings of different types
▲ To allow an interface to be designated even if it cannot be accessed (because

of failure, mobility)
▲ To allow an interface to be transmitted in a binding, even if it cannot be part

of a binding of this type

Distributed Middleware - 50© 2002, S. Krakowiak

Naming (2)

■ A name is only valid in a naming context (a set of
associations between names and entities)

■ In Jonathan, basic forms of names are identifiers
◆ Plain identifiers

◆ Session identifiers (in protocols)

◆ A name may be composite (a chain of identifiers)

◆ An identifier has a link to the naming context in which it was created

name1

name2

name3

Naming
 Context

Distributed Middleware - 51© 2002, S. Krakowiak

Naming (3)

■ Resolving a name: finding the entity associated with the name
(in a context)

■ Names may be composite: name resolution may be an iterative
process - analogy with names in file systems

Id1

Ctx1

Id1

Ctx2

resolve ()
Idn

Ctxn

resolve ()

bind ()

◆ In Jonathan:

❖ resolve() goes down a chain of identifiers
❖ bind() gets to the actual target at the end of the chain

a naming context a binder

Distributed Middleware - 52© 2002, S. Krakowiak

Binding

■ Definition
◆ Binding is concerned with actual access (as opposed to identification)

❖ Note the difference between naming and binding
▲ Identifying an object is different from getting access to it

◆ Binding is the process by which an object, the origin, gets access to another
object, the target (it is also the result of this process)

❖ Specific case: binding an identifier to an object that it designates

■ A brief reminder about binding
◆ There are many instances of bindings

❖ Language level (by compiler + linker), system level, network level
◆ Binding may occur at various times in the lifecycle of a system

❖ Late (dynamic) binding adds flexibility (but usually at a price)
◆ Just like naming, binding usually is a multi-stage process (binding chain)
◆ In object systems

❖ Binding an identifier to an interface
❖ Binding an interface (used) to an implementation (provided)

Distributed Middleware - 53© 2002, S. Krakowiak

Binding in Jonathan (1)

■ Binding is a 2-phase process
◆ export : the target object is “exported” to one (or more) naming context(s);

export makes the object potentially accessible and usually prepares data
structures to speed up the binding process

◆ bind : actual access is set up, possibly by building a local representative of
a remote object

r
r = id3.bind()

id3

nc3

transmit

id2

id2 = nc1.export(obj, nc2)

id1

nc1
nc2 obj

Note that:
id2.resolve() returns id1
id1.bind() returns obj

Distributed Middleware - 54© 2002, S. Krakowiak

Binding in Jonathan (2)

■ Example
◆ Single Object Adapter: a manager for a single object (the simplest

possible example !)

◆ Class SingleOAdapter

❖ The target object is designated by an identifier id
❖ Only one object may be designated in the context
❖ It may be exported to another naming context (with nc_id)

id.bind() returns target

nc_id

target object

SingleOAdapter
id

this is an identifier
(identifies the object)

this is a reference
(gives access to the object)

Distributed Middleware - 55© 2002, S. Krakowiak

Binding Example: Single Object Adapter

target

object

soa

null

null

before

null

nc_id ←←←← soa.export(target, nc)

nc target

object

soa
nc_id

nc

after

nc_id

target

id

t ←←←← nc_id.bind()

object

soa
nc_id

nc nc_id

target

id

t

1.resolve
2.bind

A fine point: an soa instance
must be preserved from
garbage collection as long as
the object is being exported.
To ensure this, a thread
(waiter) is kept waiting on a
lock.

Distributed Middleware - 56© 2002, S. Krakowiak

Minimal Object Adapter

MinimalAdapter

id_ nc

next

another context

moa_ id object

object

hashcode
synonym list

encoded

8 bytes int int

value hashcode

encode

moa_ id (instance
of MOAIdentifier)

id_ nc

a context

nextmoa_ id id_ nc

A table of Java objects
Implemented as a collection of
holders, accessed by hashcode. Each
holder contains a couple moa_id, ref
to object) + last exported identifier.
export creates a holder, bind tries to
find a holder with a matching moa_id.

(a counter, to ensure uniqueness)

Optimizations.
There is a static free holder list, to be
reused when a new object is exported
(reduces creation overhead).
The table is rehashed and its size
doubled when half full.
Again a waiter thread is kept alive as
long as one holder is present.

a holder

Distributed Middleware - 57© 2002, S. Krakowiak

More on identifiers

■ Identifiers may need to be transmitted on a network
◆ Therefore they need to be put into a suitable sequential form (a

byte array)

◆ id.encode() returns an encoded form for id; the algorithm depends
on id’s naming context

◆ nc.decode(encoded) returns a previouly encoded id

❖ Note that you need to know the naming context. This is
usually provided for by attaching a label to the encoding, and
associating this label with a context. More on this in the
configuration framework

Distributed Middleware - 58© 2002, S. Krakowiak

The Identifier and NamingContext Interfaces

■ Summary (with some approximations)

◆ id = nc.export(obj)

❖ obj may be an identifier or a direct reference (address)
❖ if obj is an identifier, id.resolve() returns obj

◆ id.bind() returns a handle to obj, which may be

❖ obj itself (a direct reference)
❖ A representative for obj (a proxy)

◆ id.unexport() cancels the effect of export (id.bind () will fail)

◆ id.encode() returns encoded form of id suitable for transmission

◆ if nc=id.getContext(), then nc.decode(id.encode()) returns id

◆ id.isvalid() returns false if id can be neither bound not resolved

Distributed Middleware - 59© 2002, S. Krakowiak

Binding Objects and Binding Factories

■ Bindings may take various forms
◆ In a single address space: a reference (a pointer, a memory address)

◆ Between different address spaces: stubs, communication channel

◆ It is convenient to think of a binding as an object (“binding object”)

◆ Then this object has to be constructed by a “binding factory”

Binding object

Client Server

Binding
factory

A binding factory may include
binding factories for the
objects that make up the
binding object (e.g. stubs,
communication channels)

Distributed Middleware - 60© 2002, S. Krakowiak

A very schematic outline of export & bind

[in implementation of binding factory]

Includes
 a context table
 the definition of a class of identifiers

(implements Identifier)

Identifier export (Object obj, Context hints){
 create new identifier id
 (using binder's identifier class)
 create new element in context table with (id, obj)
 possibly export obj to other context
 possibly create new session
 return id (or last identifier created)
 }

[in implementation of Identifier]

Object bind (parameters) {
 case of
 local object:
 lookup target identifier in context table;
 if (found)
 {return associated object}
 remote object:
 determine session from target identifier
 (or create it if needed)
 create stub with session and parameters
 (using stub factory)
 return stub
 }

Distributed Middleware - 61© 2002, S. Krakowiak

Jeremie, the Java RMI personality of Jonathan

■ Main components
◆ Binding

❖ the binding factory: JIOP
❖ adapters: single object, multiple objects

◆ The IIOP protocol (GIOP over TCP-IP)
❖ GIOP protocol
❖ IIOPBinder

◆ Stub factories
❖ specialized for method call

◆ Presentation
❖ marshallers and unmarshallers

◆ The naming server (Registry)
❖ may reside on a different node from the server

Distributed Middleware - 62© 2002, S. Krakowiak

A Use Case of Jeremie: Hello World

class HelloImpl implements Hello {

 HelloImpl() {
 }
 public String sayHello() {
 return "Hello World!";
 }
}

Implementation

...
Hello hello = new HelloImpl ();
...
hello.sayHello();
...

Use

public interface Hello {

 String sayHello();
};

Interface

Example (centralized)

Distributed Middleware - 63© 2002, S. Krakowiak

Remote Invocation

Client Server
object hello

method sayHello()

Remote Method Invocation:
abstract view

Client Server
object hello

method sayHello()

Network

Stub Skeleton

Remote Method Invocation:
implementation

ServerClient

Session in network protocol

a binding
objectStub

export

bind

object hello
instance of HelloImpl

StubSkeleton
a symbolic
name

Client Server

Skeleton Stub

Client Registry Server

lookup (name)

returns HelloImpl
(actually a stub)

rebind (HelloImpl, name)

HelloImpl

new

creates an instance
of HelloImpl

sayHello ()

returns "Hello world!"

registerlookup Registry

Client Server
object hello

method sayHello()

?

Client

RegistryImpl

Server

HelloImpl

rebind
 (HelloImpl, name)

new

lookup (name)

creates an instance of
HelloImpl, HelloImpl_Stub

and HelloImpl_Skel

Naming

local
interaction LocateRegistry

getRegistry

return stub for
RegistryImpl

lookup (name)

return stub for
HelloImpl

HelloImpl _Stub

return stub for
HelloImpl

local
interaction

remote
interaction

Naming

LocateRegistry

getRegistry

return stub for
RegistryImpl

rebind
 (HelloImpl, name)

remote
interaction

sayHello()

"Hello World!"

JRMIRegistry
creates an instance of

RegistryImpl, RegistryImp _Stub
and RegistryImpl_Skel

new

remote
interaction

main

main

main

RegistryImpl_Stub

RegistryImpl_Stub

UnicastRemoteObject

HelloImpl
extends

super()

new

export0bject(impl, binder, port)

MOAContext
HelloImplt()

creates an instance
impl of HelloImpl JIOP

getStubFactory

getStubFactory

IIOPBinder

returns an instance of
StdStubFactory

StdStubFactory

newRequestSession
(impl)

creates an instance
of HelloImpl_Skel

MinimalAdapter

RequestSession session export (session,
 port, binder)

SrvIdentifier
id

export (moa_id)

SrvIdentifier
id

SrvIdentifier
id

newStub(impl, id)

RemoteStub stub

stub

creates an instance
of HelloImpl_Stub

creates
 identifier
moa_id

stub

an instance of
StdStubFactory

export (moa_id)

export (impl, port)

UnicastRemoteObject()

Server-side initialization (export)

Client

RegistryImpl

Server

HelloImpl

rebind
 (HelloImpl, name)

new

lookup (name)

creates an instance of
HelloImpl, HelloImpl_Stub

and HelloImpl_Skel

Naming

local
interaction LocateRegistry

getRegistry

return stub for
RegistryImpl

RegistryImpl_Stub

lookup (name)

return stub for
HelloImpl

HelloImpl _Stub

return stub for
HelloImpl

local
interaction

remote
interaction

Naming

LocateRegistry

RegistryImpl_Stub

getRegistry

return stub for
RegistryImpl

rebind
 (HelloImpl, name)

remote
interaction

sayHello()

"Hello World!"

JRMIRegistry
creates an instance of

RegistryImpl, RegistryImp _Stub
and RegistryImpl_Skel

new

remote
interaction

main

main

main

Server

JIOP

StdStubFactory

Naming

LocateRegistry

getRegistry
(host, port)

return stub for
RegistryImpl

RegistryImpl_Stub

IIOPBinder

IIOPBinder.CltIdentifier

return new CltIdentifier

rebind
 (HelloImpl, name)

main

creates an instance of
HelloImpl, HelloImpl_Stub

and HelloImpl_Skel
(details on previous Figure) new HelloImpl ()

rebind (HelloImpl, name)

bind (…)

bind
(" RegistryImpl",

host, port)

bind (…)

newStub (cltsession_id, …)

newId (host, port, key)

RegistryImpl

rebind (HelloImpl, name)

(remote interaction)

GIOPProtocol

cltsession_id

newSessionIdentifier(…)

return stub for
RegistryImpl

stub
stub

stub

Binding to Registry

Stream

ObjectOutputStream

StdMarshaller
rebind

 (HelloImpl, name)

RegistryImpl_Stub

wiriteValue
writeObject

RefImpl

writeExternal

JDomain

encode

supersedes

return
encoded

write

ObjectOutputStream

callsRegistry.rebind
with

returned stub

ObjectInputStream
RegistryImpl _ Skel

send

activated by message receipt

StdUnmarshaller

readValue
readObject

RefImpl

readExternal

JDomain

decode

return
decoded

read

 readObject
calls readResolve
on returned stub

IIOPBinder

bind StdStubFactory

newStub (cltsession_id, …)

StdStub

returns stub

readResolve

returns stub
returns stub

ObjectInputStream

supersedes

The Jonathan Communication
Framework

Distributed Middleware - 72© 2002, S. Krakowiak

Introduction: Another View of Java Sockets

server_socket=new ServerSocket(3456)
Socket socket=server_socket.accept()

Server

port 3456 server_socket

Client

read, write

Socket socket=new Socket(server, 3456)

socket
connect

socket

accept

◆ ServerSocket is a socket factory (it creates communication sockets)
◆ accept is equivalent to export (it sets up structures for connections

and waits for connect)
◆ connect is equivalent to bind (it sets up the actual connection, to be

used for message exchange)

Distributed Middleware - 73© 2002, S. Krakowiak

Communication in Jonathan

■ Communication relies on 3 main entities
◆ Protocols: a protocol is a naming context and factory for sessions

❖ A protocol graph combines several protocols (in a stack or
acyclic graph) and exports sessions

◆ Sessions: a session is a communication channel fo sending and
receiving messages (the main abstraction used by applications)

❖ Two interfaces, Session_Low and Session_High to send
messages up and down the protocol layer

◆ Connections: a connection is the basic communication mechanism
provided by the OS and network

❖ A connection encapsulates a socket Applications

Sessions

Connections

Protocol
graphs

use

use
export

Distributed Middleware - 74© 2002, S. Krakowiak

Sending and receiving Messages

Session_High

Session_Low

Session_Low

Session_High

incoming
message

outgoing
message

emit receive

send

send

send

send

Application

Session

Connection

network

This is similar to the
x-kernel protocol
organization

Session

Distributed Middleware - 75© 2002, S. Krakowiak

Managing Connections

class JConnectionMgr
 manages connections for an application
 newSrvConnectionFactory(int port)
 returns new server connection factory
 encapsulating a server socket on port

 newCltConnection(String host, int port,
 IPSession session)
 returns a client connection encapsula-
 ting a socket, assigns it to session

class IPv4ConnectionFactory
 implements connections using sockets
 class Connection
 public void emit(Chunk c)
 sends message
 public void receive(Chunk c, int sz)
 receives message

delegation

Used by a server to receive
service requests

Used by a client to connect to a
server

Implementation is normally
invisible to the applications; may
be reimplemented without
modifying JconnectionMgr

Distributed Middleware - 76© 2002, S. Krakowiak

Session Setup

Session_Lowclt_itf

network

srvsession _id=protocol_graph.export(serv_itf)

Session_Low serv_itfProtocolGraph

ServerClient

session=cltsession_id.bind(clt_ itf)

CltSession_id
[server host, port]

connection

Session_High

SrvSession

SrvSession_id
[server host, port]

created
by export

connection

Session_High

CltSession

session

created
by bind

◆ After binding:

❖ the Client application can use CltSession to send messages to the
server; the Server application can use SrvSession to send messages
to the client

❖ both Client and Server can receive messages on their own clt_itf or
srv_itf interface

Distributed Middleware - 77© 2002, S. Krakowiak

The TCP-IP protocol in Jonathan

◆ A common pattern for sessions (both CltSession and SrvSession)

 …
[unmarshall message_in]
[process message_in, producing
 message_out]
[marshall message_out]
sender.send (message_out)

method send (message_in)

Application Session
(Client or Server)Session_Low

interface

method send (message_out)

method run ()

hls.send (message_in)

TcpIpProtocol.this.send(…)

hls

TcpIpChunkProvider
(in TcpIpProtocol)

connection.receive (...)

TcpIp Session
(CltSession or SrvSession)

Socket

network

run

TcpIpProtocol

connection.emit (...)

method send (message)

IPConnection
(encapsulates a socket)

Session_High
interface

Distributed Middleware - 78© 2002, S. Krakowiak

TCP-IP Protocol: a Global View

bind

CltSessionIdentifier
(identifies remote

host and port)

participant

export

bind returns
sessionc1 (new)

CltSession

a) server-side session setupb) client-side session setup

ProtocolGraph

TcpIpProtocolTcpIpProtocol

ClientSession ServerSession

JConnectionMgr JConnectionMgr

IpConnection

c4 (connect)

new

(encapsulates
socket)

s6 (accept)

c5 (run)

s7-c6: socket
connection is set up

SrvSessionId

s3 (new)

s2 (new)

TcpIpSrvConnectionFactory

s1

(encapsulates
server socket)

IpConnection

c3 (new)

c2

(encapsulates
client socket)

 s4
(new
 + run)

SrvSessionFactory

s5
(new)

(wait for
connect)

SrvSession

s8 (run)

export returns
session_id

Distributed Middleware - 79© 2002, S. Krakowiak

CltSessionIdentifier

TCP-IP Protocol: a Global View

bind

(identifies remote
host and port)

participant

export

bind returns
sessionc1 (new)

CltSession

a) server-side session setupb) client-side session setup

ProtocolGraph

TcpIpProtocolTcpIpProtocol

ClientSession ServerSession

JConnectionMgr JConnectionMgr

IpConnection

c4 (connect)

new

(encapsulates
socket)

s6 (accept)

c5 (run)

s7-c6: socket
connection is set up

SrvSessionId

s3 (new)

s2 (new)

TcpIpSrvConnectionFactory

s1

(encapsulates
server socket)

IpConnection

c3 (new)

c2

(encapsulates
client socket)

 s4
(new
 + run)

SrvSessionFactory

s5
(new)

(wait for
connect)

SrvSession

s8 (run)

export returns
session_id

Distributed Middleware - 80© 2002, S. Krakowiak

Serving Multiple Clients

■ Multiple connections with
shared state

◆ All clients share the state (the
internal data, i.e. attributes, of
the server session

new

(encapsulates
socket)

(encapsulates
server socket)

TcpIpSrvConnectionFactory

IpConnection

SrvSessionFactory

(wait for
connect)

SrvSession

ServerSession
(shared state)

run

client 1
client 2

client 3

accept

new

Distributed Middleware - 81© 2002, S. Krakowiak

new

SrvProtocol

new

(encapsulates
socket)

(encapsulates
server socket)

TcpIpSrvConnectionFactory

IpConnection

SrvSessionFactory

(wait for
connect)

SrvSession

OwnSession
(private state)

run

client 1
client 2

client 3

accept

new

creates OwnSessions
demultiplexes messages

message

Serving Multiple Clients

■ Multiple connections with per-
client state

◆ Each client has its own copy of the
server session state (the internal
data)

◆ Each copy has its own evolution
◆ A server protocol manages these

copies and demultiplexes incoming
messages

Distributed Middleware - 82© 2002, S. Krakowiak

Back to the Hello World Example

Client Server

Network

Stub Skeleton

Remote Method Invocation:
implementation

Let’s take a look at communication

object hello

method sayHello()

org.objectweb.jeremie.libs.stub_factories.std.RefImpl

org.objectweb.jeremie.libs.stub_factories.std.OptStub

org.objectweb.jeremie.apis.bindings.JRMIRef

java.rmi.server.RemoteRef

org.objectweb.jonathan.apis.bindings.Reference

org.objectweb.jeremie.apis.bindings.JRMIOptRef

Hello_Stub

java.rmi.server.RemoteStub

java.rmi.server.RemoteObject

instance of

implements

extends

Key Stubinstance

class

interface

…
public String sayHello() throws RemoteException {
 …

 marshaller.writeInt(0); // # of the method

 optref .invoke(marshaller);
 …
}

java.io.Externalizable

HelloInterface

also valid for
 following figures

java.io.Serializable

java.rmi.Remote

org.objectweb.jeremie.libs.stub_factories.std.RefImpl

Hello_Stub

client stub
optref .invoke(marshaller)

class RefImpltransient protected Session_High session;

public void invoke(Marshaller marshaller) {
˚˚try {synchronized(this){
˚˚˚˚if (session == null) throw new MarshallException

("null session");
 }
˚˚˚˚session .send(marshaller);
 } catch (Exception e) {
 throw new MarshallException ("invocation exception", e);
 }
}

...jonathan.apis.protocols.Session_High

....david.libs.protocols.giop.GIOPSession_High

continues
on next flip
continues

...giop.ClientSession_High

class GIOPSession_High

Session_High lower ...
void send(Marshaller marshaller) throws JonathanException {
˚˚˚ sendMessage(marshaller, lower); }
˚˚˚˚˚˚
void sendMessage(Marshaller marshaller, Session_High lower) {
˚˚˚˚˚˚...
˚˚˚˚˚˚lower .send(marshaller);
}

...TcpIpProtocol.CltSession

.

...protocols.tcpip.TcpIpProtocol.Session

..jonathan.apis.protocols.ip.IpSession

...jonathan.libs.resources.tcpip.IPv4ConnectionFactory.Connection

implementation of sockets
provided

by operating system

...tcpip.TcpIpProtocol.CltSession

˚lower .send(marshaller);
...jonathan.apis.protocols. ip.IpConnection

class IPv4ConnectionFactory.Connection
class Connection implements IpConnection {
˚˚˚˚˚˚
˚˚˚˚˚ OutputStream os;
˚˚˚˚˚˚
˚˚˚˚˚˚protected Connection(Socket socket,) {
˚˚˚˚˚˚˚˚˚˚˚˚
˚˚˚˚˚˚˚˚˚˚˚˚os = socket.getOutputStream();
˚˚˚˚˚˚}

˚˚˚˚˚˚public void emit(Chunk c) throws IOException {

˚˚˚˚˚˚˚˚˚˚˚˚synchronized (os) {

˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚˚os .write(c.data, c.offset, c.top);

˚˚˚˚˚˚˚˚˚˚˚˚}
˚˚˚˚˚˚}

java.io.OutputStream

socket

class TcpIpProtocol.CltSessionIpConnection connection ...
void send(Marshaller message, IpConnection connection) {
˚˚˚˚Chunk portion;
˚˚˚ // fill up portion with contents of message
˚˚˚˚connection .emit(portion)

˚˚˚˚˚˚final class CltSession extends Session
˚˚˚˚˚˚public final void send(Marshaller message);
˚˚˚˚˚˚˚˚˚˚
˚˚˚˚˚˚˚˚˚˚˚˚˚TcpIpProtocol.this.send (message, connection);

socket

Network

Socket

TcpIpChunkProvider ObjectInputStream

read

TcpIpProtocol.
SrvSession

readInt

run

Session_Low

HelloImpl_Skel

HelloImpl

send

sayHello ()

UnMarshaller

prepare
readInt

activated by
message receipt

Client

HelloImpl_Stub

sayHello ()
RefImpl

invoke

Session_High

GIOPSession_High

send

extends TcpIpProtocol.
CltSession

send

IPv4ConnectionFactory.
Connection

IPConnection

extends

emit

ObjectOutputStream

write Socket

write

Marshaller

writeInt(0)

The Jonathan Configuration
Framework

Distributed Middleware - 88© 2002, S. Krakowiak

Configuration Management

■ Configuration management is increasingly important
◆ Because systems are getting larger and more complex

◆ Because systems become more and more adaptable

❖ to changing user needs
❖ to changing environments and operating conditions

■ New approaches
◆ Related to

❖ component models
❖ composition and configuration languages

◆ A case study: the Jonathan configuration framework

“Configuration Management is the process of identifying and defining the
items in the system, controlling the change of these items throughout their
lifecycle, recording and reporting the status of items and change requests,
and verifying the completeness and correctness of items” [IEEE Std-729-1983

Distributed Middleware - 89© 2002, S. Krakowiak

The Static Configuration Problem

public class C_Impl implements C {
A field_A ;
B field_B ;
…

field_A = new A_Impl() ;
field_B = new B_Impl() ;

}

public interface A {
…

}
public interface B {

…
}
public interface C {

…
}

public class A_Impl implements A {
…

}
public class B_Impl implements B {

…
}

What if we change the implementation of A to
A_Impl1 ?
We have to modify the code of class C_Impl

We need a description of the dependency
between C_Impl, A_Impl and B_Impl,
separate from the code

C_Impl

A_Impl

B_Impl

"depends on"

"depends on"

Distributed Middleware - 90© 2002, S. Krakowiak

Describing a Configuration

C_Impl

A_Impl

B_Impl

"depends on"

"depends on"

C_Impl

A
"uses"

"uses"
B

A_Impl

B_Impl

"A is implemented by A_Impl"
"C_Impl uses A, B "

"B is implemented by B_Impl"

configuration description

public class C_Impl implements C {
A field_A ;
B field_B ;
…

field_A = new A_Impl() ;
field_B = new B_Impl() ;

}

Changing the implementation of A or B
means changing the configuration
description, not the code of C_Impl"is described by"

Distributed Middleware - 91© 2002, S. Krakowiak

configuration
class for
class C

newConfiguration (C)

C_Impl implements C, uses
A implemented by A_Impl

Initialization sequence in
the program of C_Impl

Configuration in Jonathan

Factory for
class A

an instance
A_Impl of
class A

newObject (context)

configuration
description

specifies values or mode
of generation of various

instances for one specific
configuration of Jonathan

context for
class A_Impl

getValue ("name for an
implementation of A")
in config. description

name-value pairs
describing A_Impl

configuration
compiler

Kernel
program

done once at system
generation

Distributed Middleware - 92© 2002, S. Krakowiak

Configuration Description in Jonathan

The actual description is in XML

A configuration [conf] is described by four
types of elements

Atom: description of a class
name => class

Property: associates a type and a value
name => (type, value)

Assemblage: associate a factory and a
configuration

name => {fact, conf}

Alias: an alternative name for an existing
element

name -> target

getValue() uses these descriptions to
generate actual values for attributes

[/]
 [jonathan]
 …
 [IPv4ConnectionFactory] -- a configuration
 factory =>
 org.objectweb.jonathan.libs.resources.tcpip.
 IPv4ConnectionFactoryFactory -- an atom
 instance => {factory, .} -- an assemblage
 verbose -> /jonathan/tcpip/verbose -- an alias
 …
 [JDomain]
 [binders]
 0 -> /david/orbs/iiop/instance
 org.objectweb.david.libs.binding.orbs.iiop.IIOPORB
 =>(int.class, 0) -- a property
 …
 [tcpip]
 verbose => (Boolean.class, false) -- a property
 …
 [jeremie]
 …
 [jiop]
 factory =>
 org.objectweb.jeremie.libs.binding.jiop.JIOPFactory
 instance => {factory, .}
 Chunkfactory -> /jonathan/JChunkFactory/instance
 …

Distributed Middleware - 93© 2002, S. Krakowiak

An Example

Class LocateRegistry uses a specific instance of class JIOP

In the static initializer of LocateRegistry, we find the following code sequence:

$initial_context =
 (Context) Kernel.newConfiguration(LocateRegistry.class).getValue("/jeremie/jiop", '/');
binder = (JIOP) (new JIOPFactory()).newObject($initial_context);

Creating a specific instance is a two-step process:

Create a context describing the instance
 create a configuration using the configuration description
 get the parameters corresponding to the created class
Use a factory to create the instance
 create an instance of the class-specific factory
 create an instance of the class using the new context

Distributed Middleware - 94© 2002, S. Krakowiak

Configuration in Jonathan (1) : Contexts

A context is a set of elements (typed objects), each identified by a
name. Example: a tree context (structured as a tree)

The getValue() method builds a context, starting from a configuration
description (another context). Its effect depends on the type of the
element in the description:

A property element (e.g. (Integer.class, 123))
return its value

An atom element (e.g. class name)
load the class, then create an instance of it

An assemblage element (e.g. (factory, context))
find factory and context, then create an instance
using factory.newObject(context)

An alias element (e.g. name -> target)
apply getValue() to the target element of the alias

Distributed Middleware - 95© 2002, S. Krakowiak

public abstract class GenericFactory implements Factory {
public Object newObject (Context _c) {…
 $comps = getUsedComponents (_c) …
 return newInstance (_c, $comps) }
abstract protected Object[] getUsedComponents (Context _c);
abstract protected Object newInstance (Context _c, Object[]used_components);

}
public class JIOPFactory extends GenericFactory { // an example of specific factory
 final protected Object[] getUsedComponents(Context _c) {

 used_components[0] = _c.getValue ("ChunkFactory", (char) 0);
 used_components[1] = …}
 final protected Object newInstance (Context _c, Object[] used_components) {
 return new JIOP(_c, used_components); }

}
public class JIOP … {

JIOP(Context c, Object[] used_components) … {
 super();
 initialize(c, used_components); }
protected void initialize (Context c, Object[] used_components) {
 ChunkFactory chunk_factory= (ChunkFactory) used_components[0];
 … }

}

Configuration in Jonathan (2) : Factories

From Objects to Components

Motivations for Components

A Component-Based Middleware: Enterprise Java Bean (EJB)

Distributed Middleware - 97© 2002, S. Krakowiak

Motivation for components: Evolution of client-server
architectures

■ Basic scheme for an application
◆ A client application applies a specific processing to permanent

data (DBMS) and displays the results

Processing using
data in a DBMS

client

client

client

…
◆ Initial implementation

❖ “lightweight” clients (alphanumeric
terminals)

❖ processing an data access are
intertwined

Distributed Middleware - 98© 2002, S. Krakowiak

■ 2-tier Architecture
◆ Used in simple situation in which all processing may be done

on the client site.

◆ Limitations

❖ Processing power on the client site
❖ Data sharing
❖ Scalability
❖ Evolution

Evolution of client-server architectures (2)

client
Graphical User

Interface
+ processing

DBMS
Data

access server

Distributed Middleware - 99© 2002, S. Krakowiak

Evolution of client-server architectures (3)

■ 3-Tier Architecture

◆ Potential benefits
❖ Separation of functions
❖ Well-defined interfaces, standardization, openness
❖ Evolution and scalability
❖ Reuse of legacy code

client
“Business

Logic”
Storage
serverDBMS

Implementation of
the GUI Interface

Implementation
of the application-specific

functions Permanent
data storage

Legacy
applications

Distributed Middleware - 100© 2002, S. Krakowiak

Some Architectural Variations

Browser

GUI
specific
program

HTML

IIOP

servlets processing

legacy
application

message bus

JDBC DBMS

processing
SQL

DBMS

RMI

DBMS
Access
module

Distributed Middleware - 101© 2002, S. Krakowiak

Developing a distributed application

■ Objectives
◆ Ease of development (low cost)

◆ Ease of evolution, scalability

◆ Openness (integration, heterogeneous systems, etc)

■ Possible solutions
◆ Object-oriented middleware may be used …

❖ Java RMI, CORBA, DCOM, Message Bus
◆ … but must be extended

❖ modular construction for evolution and openness
❖ common services (avoid “reinventing the wheel” and

concentrate on the specific application)
❖ development tools (program development, composition)
❖ deployment tools (generating and placing the elements)
❖ administration tools (observation, reconfiguration)

◆ Component-based middleware aims at providing these extensions

Distributed Middleware - 102© 2002, S. Krakowiak

Limits of object-oriented programming

■ No global vision of the application
◆ Main concepts are defined for a single object

◆ No global description of the architecture

■ Evolution is difficult
◆ Consequence of the lack of a global view

■ Services are missing
◆ Needed services must be implemented “by hand”

(persistence, security, fault tolerance, etc.)

■ Tools are missing (composition, deployment)

■ Conclusion
◆ Important load on the programmer

◆ Incidence on the quality of the application

◆ Part of the lifecycle is not covered

Distributed Middleware - 103© 2002, S. Krakowiak

Components: a definition

■ Definition
◆ Autonomous software module

❖ unit of deployment (installation on various platforms)
❖ unit of composition (combination with other components)

■ Properties
◆ explicitly specifies the provided interface(s) (attributes, methods)
◆ explicitly specifies the required interface(s)
◆ may be configured
◆ self-describing

■ Benefits
◆ allow the construction of applications by composition of

configurable elementary pieces
◆ separate the functions of component provider and assembler

(conditions for the development of a component industry

Distributed Middleware - 104© 2002, S. Krakowiak

Components : a Generic Model

technical constraints

❖ placement, security
❖ transactional access, persistence
❖ system provided interfaces (libraries, etc.)

component

synchronoussynchronous

asynchronousasynchronous

provided interface(s)

❖ methods,
attributes

required interfaces

❖ provided by
other components

◆ configurable properties

❖ specific interfaces with restricted
access

Distributed Middleware - 105© 2002, S. Krakowiak

Using Components

Hierarchical composition and encapsulation
 (composite components, sub-components)
Interconnection of components
 (connectors, or binding objects)

A
B

A1

A2

A3

B2B1

elementary component

composite component

connector

Input interfaces (provides)

Output interfaces (required)

synchronous asynchronous

Distributed Middleware - 106© 2002, S. Krakowiak

Support Software for Components

■ Container
◆ encapsulates one or several component(s)

◆ takes care of system services

❖ naming, security, transactions, persistence, etc.
◆ (partly) takes care of relationships between components

❖ invocations, events
◆ techniques involved: interposition, delegation

■ Server
◆ execution space for containers and components

◆ mediator between containers and system services

In order to fulfill their task, components need software support. This is
provided by containers and servers

Distributed Middleware - 107© 2002, S. Krakowiak

Components in Action

component

Server

container

component

client

Software bus + services (naming, persistence, transactions, security,
etc.)

synchronous
connectoruses

container

componentasynchronous
connector

container

Server

Distributed Middleware - 108© 2002, S. Krakowiak

Enterprise Java Beans (EJB)

■ Objectives
◆ Facilitate the construction of programs for enterprise servers (the

middle tier of a 3-tier architecture) by assembling reusable components

◆ Provide an environment for common services (persistence,
transactions, etc.), allowing the developer to concentrate on the
specific problems of the application

◆ Favor the development of a component industry by separating the
functions of component production, applications assembly, and
de service provision

■ Overview
◆ 2 types of Enterprise Beans

❖ Entity Bean : represents an object, usually persistent
❖ Session Bean : represents a sequence of actions for a client

◆ Environment = server + container

Distributed Middleware - 109© 2002, S. Krakowiak

EJB Execution Scheme

server

container

container
…

Client

Client

Bean
Bean

Bean

Bean Bean

A container intercepts the calls to the beans that
it contains and performs some common
functions (persistence, transactions, security).

The beans provide a set of services, by
performing application specific tasks
The clients use these services.

The containers isolate the beans - a) from the clients, - b) from a specific server
implementation

The server is a mediator between the system and the container (it allows the container to
perform its functions by calling the system primitives)

Distributed Middleware - 110© 2002, S. Krakowiak

source : documentation JOnAS : http://www.objectweb.org/jonas/

EB provider

Application assembler

Deployer

EJB container provider

EJB server provider

development

Enterprise Bean (EB)

Application

Container

Server

deployment
and
execution

System administrator Administration tools

Enterprise Java Beans Related Roles

Distributed Middleware - 111© 2002, S. Krakowiak

EJB Contracts

■ “Contracts” are associated with each bean
◆ should be respected by the client, the bean and the container

◆ client-side contract

❖ provides a uniform view of the bean to the client (this view is
independent of the deployment platform)

◆ container contract

❖ allows beans to be ported on different servers
◆ storage contract (packaging)

❖ defines a standard file format (ejb-jar-file) for archiving beans .
This format should be respected by all tools

ejb-jar-file

storage contract

container
contract

client contract server

container bean

client

Distributed Middleware - 112© 2002, S. Krakowiak

Client-side Contract

■ Locating the bean
◆ use JNDI Java (interface to directory service)

■ Using the bean
◆ via the standard interfaces provided by the beans developer

❖ Home Interface (methods for bean management : create ,
remove , find , etc.)

❖ Remote Interface (application specific methods)

■ The container implements a delegation mechanism
◆ the client does not directly call the bean, but the container

◆ the container “forwards” the calls

Distributed Middleware - 113© 2002, S. Krakowiak

Executing EJBs: a closer view

JTM (transaction service)

JD
B

C
 (D

B
M

S
 interface)

Bean

Data
base

EJB
Home Object

EJB
Object

container

A simple application (a single type of
Bean). Example: banking account

EJB
Home Stub

EJB
Object Stub

Client

RMI

RMI

An Object EJB and a Home Object EJB are associated with each bean
The Home Object EJB is in charge of the Bean’s lifecycle : creation, identification
lookup, destruction. It is located through a directory (JNDI interface)
The Object EJB implements the interface to the Bean’s services. It intercepts the
calls to the Bean and performs tasks related to transactions, persistence, state
management, security, as specified in the deployment descriptor .

Deployment
descriptor

Remote Interface

Home Interface

Distributed Middleware - 114© 2002, S. Krakowiak

Container Contract

■ A container implements functions for the enclosed
beans

◆ lifecycle management, state management, security, transactions,
concurrency, etc.

◆ These services call methods provided by the bean (callback
methods)

❖ example : ejbCreate , ejbPostCreate , ejbLoad , ejbStore , etc.

■ The containers manage two types of Beans
◆ Entity Beans : implement the application’s objects
◆ Session Beans : implement operations sequences for a client
◆ specific contracts are defined for for each of these types (with

some variations according to the degree of involvement of the
container)

Distributed Middleware - 115© 2002, S. Krakowiak

EJB Entity Beans

■ Properties
◆ represent persistent entities (stocked in a database) as objects ;

the entity beans are themselves persistent
❖ persistence may be managed by the bean itself (bean

managed persistence) or delegated to the container (container
managed persistence)

◆ shared by several clients
❖ concurrency management

◆ may be involved in transactions
◆ survive to shutdowns or failures of the EJB servers
◆ how are they created?

❖ explicit instance creation
❖ Inserting an entity in the database

Distributed Middleware - 116© 2002, S. Krakowiak

EJB Session Beans

■ Properties
◆ Represent a sequence of operations for a specific client

❖ Processing in memory
❖ Access to DBMS

◆ Created and destroyed by a client

◆ Non persistent

◆ Do not survive failures or server shutdown

◆ Two modes of state management

❖ stateless : no internal data; may be shared between several
clients; no passivation (see later)

❖ stateful : preserves its state throughout a sequence of
method calls (for a single client); must include passivation
and activation primitives (see later)

Distributed Middleware - 117© 2002, S. Krakowiak

Lifecycle Managed by the Container

■ Administration (via Home Interface)
◆ Allows a client to create, destroy, lookup a bean
◆ The bean must implement the corresponding methods

(callback) : ejbCreate , ejbPostCreate , etc

■ Management of a bean’s state by the container
◆ Passivation

❖ Stores the bean’s state in persistent storage
❖ Deactivates the bean (it may no longer be called)

◆ Activation
❖ Stores the bean’s state in persistent storage
❖ Reactivates the bean (it may then be called again)

◆ The bean must implement the (callback) methods ejbPassivate
and ejbActivate

Distributed Middleware - 118© 2002, S. Krakowiak

Persistence Management

■ Container-managed Persistence
◆ The container is responsible for saving the beans’ state

◆ The fields to be saved and the storage support must be specified
separately (in a deployment descriptor)

■ Bean-Managed Persistence
◆ The bean is responsible for saving its state

◆ (must explicitly insert the operations that perform persistence
management in appropriate callback functions)

◆ Less adaptable than container managed persistence, since
persistence management operations are “hardwired” in the code

Distributed Middleware - 119© 2002, S. Krakowiak

Transaction Management

◆ Conforms to the XA architecture (X/Open Architecture)
❖ in Java : Java Transaction API (JTA)

◆ Flat transaction model
◆ Declarative specification

❖ for a whole bean or for each method
❖ transactional attributes defined in the deployment descriptor
❖ also possible explicit control by the bean

 Transactional attribute Client Transaction executing
associated with a bean method Transaction the method of the bean

NotSupported -- --
T1 --

Required -- T2
T1 T1

Supports -- --
T1 T1

RequiresNew -- T1
T1 T2

Mandatory -- Error
T1 T1

Never

Distributed Middleware - 120© 2002, S. Krakowiak

Security Management

■ Security management is delegated to the container
◆ simplifies the programmer’s task, enhances portability

■ Basic security principles
◆ Java security API (javax.security)

◆ security-related methods in the container (javax.ejb.EJBContext :
container interface, base of EntityContext and SessionContext)

❖ getCallerPrincipal
❖ isCallerInRole

◆ security attributes in the Bean ’s deployment descriptor

❖ specification of “roles”
❖ specification of methods executable under a role

Distributed Middleware - 121© 2002, S. Krakowiak

Deployment Descriptor

■ Function
◆ declarative specification of some properties of a bean

❖ Identification, transactional attributes, persistent fields,
environment, container- or bean- managed, roles for security

◆ used by the container to perform its task

■ Form
◆ Since EJB 1.1 : descriptor written in XML
◆ For each property, a specific tag is defined by the DTD
◆ Example

…
<persistence-type>Container</persistence-type>

<container-transaction>
<method>

<ejb-name>MyBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</ trans-attribute>

</container-transaction>
…

container managed
persistence

container managed
transactions

transactional execution
Mandatory for all methods

Distributed Middleware - 122© 2002, S. Krakowiak

Developing an application with EJB (1)

■ Developing a Session Bean
◆ create the Home Interface (extend ejb.EJBHome)

❖ methods create , remove
◆ create the Remote Interface (extend ejb.EJBObject)

❖ application specific methods
◆ the implementation of the creation methods (Create, PostCreate)
◆ write the implementation of the interface

❖ specific methods
❖ callback methods

▲ setSessionContext , ejbActivate , ejBPassivate , etc
▲ if the bean has a container-managed state: afterBegin , afterCompletion ,

beforeCompletion , etc

Distributed Middleware - 123© 2002, S. Krakowiak

Developing an application with EJB (2)

■ Developing an Entity Bean
◆ create the Home Interface (extend ejb.EJBHome)

❖ methods create , remove
◆ create the Remote Interface (extend ejb.EJBObject)

❖ application specific methods
◆ write a Serializable class “primary key” (BeanNamePK) to be

used for bean lookup and access
◆ write the implementation of creation methods (Create ,

PostCreate)
◆ write the implementation of the interface

❖ specific methods
❖ callback methods

▲ setEntityContext , ejbActivate , ejBPassivate , etc
▲ ejbLoad , ejbStore , etc. For container managed persistence, ejbLoad

and ejbStore may be empty.

Distributed Middleware - 124© 2002, S. Krakowiak

Steps for developing an EJB application (3)

■ Write a deployment descriptor
◆ one per bean
◆ defines the behavior for transactions, persistence, security, link

with the databases, environment (placement of the servers), etc.

■ Set up the server
◆ compile the programs of the beans
◆ generate the container classes (implementation of the Home

and Remote interfaces) with the adequate tool (GenIC in
JOnAS) using the bean classes and the deployment descriptor

■ Develop and start the client program
◆ the client gets the reference to the beans via a name service

◆ the client may create and start sessions, or directly call the
Entity beans

Distributed Middleware - 125© 2002, S. Krakowiak

Examples

See example in the JOnAS documentation : http://objectweb.org/jonas/

Simple example : bank server
an Entity Bean in two versions

AccountImpl : implicit persistence (container managed)
AccountExpl : explicit persistence (bean managed)

a client program (without session) ClientAccount
a deployment descriptor ejb-jar
a Makefile file

More complex example : electronic commerce server

Distributed Middleware - 126© 2002, S. Krakowiak

Conclusion on EJB

■ A component-based model for server side programming
◆ widely used; influences the normalization process (OMG)

■ Benefits
◆ simplifies the development of complex applications by freeing the

developer from the aspects not directly relevant to the application
❖ declarative transaction management
❖ persistence management
❖ security management
❖ distribution management

◆ increases the independence between platform and applications
❖ separation of the providers’ roles
❖ openness, competition, improved quality

◆ extensible model

Distributed Middleware - 127© 2002, S. Krakowiak

A Brief Conclusion

■ Patterns and Frameworks are important
◆ To improve our understanding of software architecture
◆ To help reusing proven designs
◆ To help reusing code bases

■ Open Source Sofware is important
◆ To improve the quality of code

❖ Wide community
❖ Critical reviews
❖ Reactivity and evolution

◆ To improve our understanding of software architecture

■ Good documentation is important
◆ Using patterns and frameworks to document open source
◆ Strong implications to education

This is a new and exciting area for research!

