Components, Coalgebras, and Chu Spaces

Jean-Bernard Stefani

INRIA Grenoble-Rhône-Alpes

4 D F

2 [Components as coalgebras](#page-6-0)

- **•** [Coalgebras](#page-7-0)
- [Components as coalgebras](#page-16-0)

4 0 8

[Components as coalgebras](#page-6-0)

- **[Coalgebras](#page-7-0)**
- [Components as coalgebras](#page-16-0)

不自下

- A \rightarrow э

B

 \mathcal{A}

Two questions re Software Components in PiCoq

2 Calculus ?

4 D F

Stefani (INRIA) [CCC](#page-0-0) PiCoq 11/2010 4 / 27

 QQ

- Formal component metamodel
- Various form of behavioral composition
- Sharing & aspects
- Extensions : stochastic & hybrid models

4 0 8

- Process calculus for component constructs
- Universality wrt component metamodel
	- Any r.e. component can be realized
- Coalgebraic semantics

4 D F

2 [Components as coalgebras](#page-6-0)

- **•** [Coalgebras](#page-7-0)
- [Components as coalgebras](#page-16-0)

4 D F

2 [Components as coalgebras](#page-6-0) **•** [Coalgebras](#page-7-0)

• [Components as coalgebras](#page-16-0)

4 D F

 QQ

- **o** Streams
- **o** Infinite data structures
- Labelled transition systems
- Self-applicative & reflective programs

- $\bullet x \cdot X \times X \rightarrow X$ $v: X \times X \times X \rightarrow X$ $z \cdot 1 \rightarrow X$
- \bullet f : $\Sigma(X) \rightarrow X$
- homomorphism: from $f : \Sigma(A) \to A$ to $g : \Sigma(B) \to B$ $h: A \rightarrow B$ extends to $\Sigma(h): \Sigma(A) \rightarrow \Sigma(B)$
- initial Σ-algebra: $id_{\Sigma_*}:\Sigma(\Sigma_*)\to\Sigma_*$ there exists a unique homomorphism h_f from $id_{\Sigma_*} : \Sigma(\Sigma_*) \to \Sigma_*$ to $f : \Sigma(X) \to X$
- \bullet Σ_* is the least fixed point of operator Σ ($Σ$ conceived as operator on sets)

4 **D** F

つへへ

- \bullet f : $X \rightarrow \Gamma(X)$
- homomorphism: from $f : A \to \Gamma(A)$ to $g : B \to \Gamma(B)$ $h: A \rightarrow B$ extends to $\Gamma(h): \Gamma(A) \rightarrow \Gamma(B)$
- final Γ-coalgebra (Γ monotone): $\mathit{id}_{\Gamma^*}: \Gamma^* \to \Gamma(\Gamma^*)$ there exists a unique homomorphism h_f from $f : A \to \Gamma(A)$ to $id_{\Gamma^*} : \Gamma^* \to \Gamma(\Gamma^*)$
- Γ ∗ is the greatest fixed point of operator Γ

4 D F

- Simple set-based models: "concrete" and "intuitive"
- Working up-to bisimulation equivalence factored-in
- Greatest non-trivial fixed-points for key operators

 \leftarrow

What's an hyperset ?

A non-well-founded set

•
$$
\Omega = \{\Omega\}
$$

\n•
$$
s = \langle a, s \rangle
$$

\n•
$$
x = \{\langle a, y \rangle, \langle b, x \rangle\}
$$

\n
$$
y = \{\langle c, z \rangle, \langle a, x \rangle\}
$$

\n
$$
z = \{\langle c, z \rangle, \langle b, x \rangle\}
$$

The unique solution of a flat system of equation (Anti-Foundation Axiom)

- A flat system of equation is a function: $e: X \to \mathcal{P}(X \cup A)$
	- X a set of variables
	- A a set disjoint from X
- A pointed coalgebra of the functor $\mathcal{P}(X \cup A)$

- **•** Functor: Γ : $U_{\text{afa}} \rightarrow U_{\text{afa}}$ U_{afa} class of all (hyper)sets
- Monotone functor: $a \subseteq b \implies \Gamma(a) \subseteq \Gamma(b)$
- G fixed point of Γ is $G = \Gamma(G)$
- **•** Least fixed point Γ_* : for any G fixed point $\Gamma_* \subseteq G$
	- Induction principle: to prove $\Gamma_* \subseteq G$, show that $\Gamma(G \cap \Gamma_*) \subseteq G$
- Greatest fixed point $\mathsf{\Gamma}^*$: for any G fixed point $G \subseteq \mathsf{\Gamma}^*$
	- Coinduction principle: to prove $G \subseteq \Gamma^*$, show that $G \subseteq \Gamma(G \cup \Gamma^*)$
- Every monotone functor Γ has a least and a greatest fixed point

重

 299

 $\exists x \in A \exists y$

K ロ ト K 伊 ト K

Theorem (Representation theorem for greatest fixed points)

If Γ is uniform (i.e. monotone + some other conditions)

 $Γ^* = {solution(E) | E a Γ-co algebra}$

Definition

Let Γ be a monotone functor. A Γ -invariant is a predicate P on Γ^* , i.e. a subset of Γ^* , such that if $P(c)$ holds then $P(k)$ holds for all $k \in \mathcal{TC}(c) \cap \Gamma^*$.

Theorem

Let Γ be a uniform functor, and let P be a predicate on Γ^* . Let P^* be the greatest $\mathsf{\Gamma}\text{-}$ invariant contained in P. Then $\langle P^*, id_{P^*} \rangle$ is a $\mathsf{\Gamma}\text{-} \mathsf{coalgebra}.$

K ロト K 個 ト K 君 ト K 君 ト

 QQ

2 [Components as coalgebras](#page-6-0) **• [Coalgebras](#page-7-0)**

[Components as coalgebras](#page-16-0)

4 D F

Þ

 QQ

Definition (The Fractal functor)

$$
\Gamma(X) = \mathcal{M}_f(X) \times \mathcal{P}(\mathcal{M}_f(\Sigma(X)) \times \mathcal{M}_f(\Sigma(X)) \times \mathcal{M}_f(X))
$$

- $\Sigma(X) = \coprod_{k \in \mathbb{N}} (\mathsf{L} \times \Delta(X))^k$
- $\Delta(X) = L + V + X$
- L set of names
- V set of values
- \bullet $\mathcal{M}_f(S)$ finite multisets of elements from S
- \bullet $P(S)$ subsets of S
- $Γ^* = Γ(Γ^*)$ set of components
- Σ(Γ[∗]) set of signals
- ∆(Γ[∗]) set of arguments

Fractal components as pointed coalgebras

- **•** Fractal component are solutions to pointed equations: $e_x : X \to \Gamma(X)$
- Example:

$$
x = \{y_1, y_2\} \cdot \{\langle \{s_1, s_2\}, \{r\}, y \rangle, \langle \{ping\}, \{ok\}, x \rangle\}
$$
\n
$$
y = \{y_1\} \cdot \{\langle \{s_3\}, \{ok\}, x \rangle\}
$$
\n
$$
s_1 = \langle op : lock \rangle
$$
\n
$$
s_2 = \langle op : get, arg : sad \rangle
$$
\n
$$
r = \langle return : y_2 \rangle
$$
\n
$$
s_3 = \langle op : insert, arg : y_2 \rangle
$$
\n• in component $x = \{y_1, y_2\} \cdot \{t_1, t_2\}$:

- y_1, y_2 are x's sub-components
- t_1, t_2 are x's transitions

• in transition
$$
t_1 = \langle \{s_1, s_2\}, \{r\}, y \rangle
$$
:

- y is t_1 's residue
- s_1, s_2 are t_1 's input signals
- r is t_1 's output signal

[Components as coalgebras](#page-6-0)

- **[Coalgebras](#page-7-0)**
- [Components as coalgebras](#page-16-0)

4 0 8

 QQ

B

 \mathcal{A} .

э

The nature of composition

• Composition as algebraic operator:

$$
op:\Sigma(X)\to X
$$

• Composition and types:

- Chu space $A = (A, \Sigma, \vDash)$
	- \bullet A tokens (components), Σ types
	- $a \models \alpha$: token a is of type α

つひい

Composition identifies tokens in a composite:

4 0 1

Composition combines types in a composite:

4 0 8

Composition as Chu-morphism

$$
c \vDash f_i^{\wedge}(\alpha_i) \Longleftrightarrow f_i^{\vee}(c) \vDash \alpha_i
$$

Stefani (INRIA) [CCC](#page-0-0) PiCoq 11/2010 24 / 27

(K) 세 등 K () 등 ()

∢ □ ▶ ∢@ ▶ ∢

Model an assemblage A as a collection of Chu spaces and Chu morphisms

$$
\{\mathbf A_i\}_{i\in I}\ \cup\ \{f_k:\mathbf A_{i_k}\to\mathbf A_{j_k}\}_{k\in K}
$$

Theorem

Every composition system has a colimit and it is unique up to isomorphism.

つひひ

- How to reconcile the two views?
	- Components as pointed coalgebras
	- Composition as Chu-morphism
	- Cf Abramsky: category of Chu spaces as full subcategory of Grothendiek category of coalgebras
- Can we find a universal component functor?
	- Every composition can be realized
- Can we find a universal language for the component functor ?
	- Every r.e. pointed coalgebra can be realized

∽≏∩

- S. Abramsky. Coalgebras, Chu Spaces, and Representations of Physical Systems, LICS 2010.
- J. Barwise & L. Moss. Vicious Circles. CSLI Lecture Notes 60, CSLI Publications, Stanford, 1996.
- **•** J. Barwise & J. Seligman. *Information Flow*. Cambridge Tracts in Theor. Comp. Science 44, Cambridge Univ. Press, 1997.
- B. Jacobs. Introduction to Coalgebra Towards Mathematics of States and Observations. Draft. 2005.
- J J. M. M. Rutten. *Universal coalgebra: a theory of systems*. Theor. Comput. Sci. 249(1), 2000.

つひひ