Components, Coalgebras, and Chu Spaces

Jean-Bernard Stefani

INRIA Grenoble-Rhône-Alpes

PiCoq 11/2010

1 / 27

- Coalgebras
- Components as coalgebras

- Coalgebras
- Components as coalgebras

Two questions re Software Components in PiCoq

2 Calculus ?

- Formal component metamodel
- Various form of behavioral composition
- Sharing & aspects
- Extensions : stochastic & hybrid models

- Process calculus for component constructs
- Universality wrt component metamodel
 - Any r.e. component can be realized
- Coalgebraic semantics

- Coalgebras
- Components as coalgebras

Components as coalgebrasCoalgebras

- Streams
- Infinite data structures
- Labelled transition systems
- Self-applicative & reflective programs

- $x : X \times X \to X$ $y : X \times X \times X \to X$ $z : 1 \to X$
- $f: \Sigma(X) \to X$
- homomorphism: from f : Σ(A) → A to g : Σ(B) → B
 h : A → B extends to Σ(h) : Σ(A) → Σ(B)
- initial Σ -algebra: $id_{\Sigma_*} : \Sigma(\Sigma_*) \to \Sigma_*$ there exists a unique homomorphism h_f from $id_{\Sigma_*} : \Sigma(\Sigma_*) \to \Sigma_*$ to $f : \Sigma(X) \to X$
- Σ_{*} is the least fixed point of operator Σ
 (Σ conceived as operator on sets)

э

- $f: X \to \Gamma(X)$
- homomorphism: from f : A → Γ(A) to g : B → Γ(B)
 h : A → B extends to Γ(h) : Γ(A) → Γ(B)
- final Γ-coalgebra (Γ monotone): *id*_{Γ*} : Γ* → Γ(Γ*) there exists a unique homomorphism
 h_f from *f* : *A* → Γ(*A*) to *id*_{Γ*} : Γ* → Γ(Γ*)
- Γ^* is the greatest fixed point of operator Γ

PiCog 11/2010

11 / 27

- Simple set-based models: "concrete" and "intuitive"
- Working up-to bisimulation equivalence factored-in
- Greatest non-trivial fixed-points for key operators

What's an hyperset ?

• A non-well-founded set

•
$$\Omega = \{\Omega\}$$

• $s = \langle a, s \rangle$
• $x = \{\langle a, y \rangle, \langle b, x \rangle\}$
 $y = \{\langle c, z \rangle, \langle a, x \rangle\}$
 $z = \{\langle c, z \rangle, \langle b, x \rangle\}$

• The unique solution of a flat system of equation (Anti-Foundation Axiom)

- A flat system of equation is a function: $e: X \to \mathcal{P}(X \cup A)$
 - X a set of variables
 - A a set disjoint from \boldsymbol{X}
- A pointed coalgebra of the functor $\mathcal{P}(X \cup A)$

- Functor: $\Gamma : \mathcal{U}_{afa} \to \mathcal{U}_{afa}$ \mathcal{U}_{afa} class of all (hyper)sets
- Monotone functor: $a \subseteq b \implies \Gamma(a) \subseteq \Gamma(b)$
- G fixed point of Γ is $G = \Gamma(G)$
- Least fixed point Γ_* : for any G fixed point $\Gamma_* \subseteq G$
 - Induction principle: to prove $\Gamma_* \subseteq G$, show that $\Gamma(G \cap \Gamma_*) \subseteq G$
- Greatest fixed point Γ^* : for any G fixed point $G \subseteq \Gamma^*$
 - Coinduction principle: to prove $G \subseteq \Gamma^*$, show that $G \subseteq \Gamma(G \cup \Gamma^*)$
- $\bullet\,$ Every monotone functor Γ has a least and a greatest fixed point

Г(а)	Γ*	Γ^* (with FA)	Γ* (with <i>AFA</i>)
а	Ø	\mathcal{U}_{wf}	\mathcal{U}_{afa}
$\mathcal{P}(a)$	\mathcal{U}_{wf}	\mathcal{U}_{wf}	\mathcal{U}_{afa}
A imes a	Ø	Ø	infinite streams over A
$A \times a \times a$	Ø	Ø	infinite binary trees over A
$\mathcal{P}(A \times a)$	Ø	Ø	canonical LTS over A

→ < ∃→

• • • • • • • •

æ

Theorem (Representation theorem for greatest fixed points)

If Γ is uniform (i.e. monotone + some other conditions)

 $\Gamma^* = \{ solution(\mathcal{E}) \mid \mathcal{E} \ a \ \Gamma\text{-}coalgebra \}$

Definition

Let Γ be a monotone functor. A Γ -invariant is a predicate P on Γ^* , i.e. a subset of Γ^* , such that if P(c) holds then P(k) holds for all $k \in TC(c) \cap \Gamma^*$.

Theorem

Let Γ be a uniform functor, and let P be a predicate on Γ^* . Let P^* be the greatest Γ -invariant contained in P. Then $\langle P^*, id_{P^*} \rangle$ is a Γ -coalgebra.

э

(日) (同) (目) (日)

Components as coalgebras Coalgebras

• Components as coalgebras

PiCoq 11/2010

17 / 27

Definition (The Fractal functor)

 $\Gamma(X) = \mathcal{M}_f(X) \times \mathcal{P}(\mathcal{M}_f(\Sigma(X)) \times \mathcal{M}_f(\Sigma(X)) \times \mathcal{M}_f(X))$

- $\Sigma(X) = \coprod_{k \in \mathbb{N}} (L \times \Delta(X))^k$
- $\Delta(X) = L + V + X$
- L set of names
- V set of values
- $\mathcal{M}_f(S)$ finite multisets of elements from S
- $\mathcal{P}(S)$ subsets of S
- $\Gamma^* = \Gamma(\Gamma^*)$ set of components
- Σ(Γ^{*}) set of signals
- $\Delta(\Gamma^*)$ set of arguments

Fractal components as pointed coalgebras

- Fractal component are solutions to pointed equations: $e_x: X \to \Gamma(X)$
- Example:

$$\begin{aligned} x &= \{y_1, y_2\} \cdot \{\langle \{s_1, s_2\}, \{r\}, y \rangle, \langle \{\texttt{ping}\}, \{\texttt{ok}\}, x \rangle \} \\ y &= \{y_1\} \cdot \{\langle \{s_3\}, \{\texttt{ok}\}, x \rangle \} \\ s_1 &= \langle \texttt{op} : \texttt{lock} \rangle \\ s_2 &= \langle \texttt{op} : \texttt{get}, \texttt{arg} : \texttt{snd} \rangle \\ r &= \langle \texttt{return} : y_2 \rangle \\ s_3 &= \langle \texttt{op} : \texttt{insert}, \texttt{arg} : y_2 \rangle \end{aligned}$$

• in component $x = \{y_1, y_2\} \cdot \{t_1, t_2\}$:

- y₁, y₂ are x's sub-components
- t_1, t_2 are x's transitions
- in transition $t_1 = \langle \{s_1, s_2\}, \{r\}, y \rangle$:
 - y is t₁'s residue
 - s₁, s₂ are t₁'s input signals
 - r is t₁'s output signal

- Coalgebras
- Components as coalgebras

The nature of composition

• Composition as algebraic operator:

$$op: \Sigma(X) \to X$$

• Composition and types:

- Chu space $\mathbf{A} = (A, \Sigma, \vDash)$
 - A tokens (components), Σ types
 - $a \vDash \alpha$: token *a* is of type α

Composition identifies tokens in a composite:

Composition combines types in a composite:

Composition as Chu-morphism

$$\boldsymbol{c} \vDash f_i^{\boldsymbol{\alpha}}(\alpha_i) \Longleftrightarrow f_i^{\boldsymbol{\omega}}(\boldsymbol{c}) \vDash \alpha_i$$

Image: A matrix and a matrix

Ξ.

Model an assemblage A as a collection of Chu spaces and Chu morphisms

$$\{\mathsf{A}_i\}_{i\in I} \cup \{f_k: \mathsf{A}_{i_k} \to \mathsf{A}_{j_k}\}_{k\in K}$$

Theorem

Every composition system has a colimit and it is unique up to isomorphism.

- How to reconcile the two views ?
 - Components as pointed coalgebras
 - Composition as Chu-morphism
 - Cf Abramsky: category of Chu spaces as full subcategory of Grothendiek category of coalgebras
- Can we find a universal component functor ?
 - Every composition can be realized
- Can we find a universal language for the component functor ?
 - Every r.e. pointed coalgebra can be realized

- S. Abramsky. *Coalgebras, Chu Spaces, and Representations of Physical Systems*, LICS 2010.
- J. Barwise & L. Moss. *Vicious Circles*. CSLI Lecture Notes 60, CSLI Publications, Stanford, 1996.
- J. Barwise & J. Seligman. *Information Flow*. Cambridge Tracts in Theor. Comp. Science 44, Cambridge Univ. Press, 1997.
- B. Jacobs. Introduction to Coalgebra Towards Mathematics of States and Observations. Draft, 2005.
- J J. M. M. Rutten. *Universal coalgebra: a theory of systems*. Theor. Comput. Sci. 249(1), 2000.