The Geometry of Interaction Program Proofs, Programs, Operators and Algorithmic Complexity

Thomas Seiller

Séminaire 68nqrt, IRISA, Rennes, June 13th 2013

K ロ ト K 倒 ト K ヨ ト K ヨ ト

The Geometry of Interaction Program Proofs, Programs, Graphs and Algorithmic Complexity

Thomas Seiller

Séminaire 68nqrt, IRISA, Rennes, June 13th 2013

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- **•** From proofs to graphs
- ² Interaction Graphs
- ³ Logarithmic Space

G.

 4 ロ) 4 何) 4 글) 4 글)

From proofs to graphs

K ロ ▶ K @ ▶ K 평 ▶ K 평 ▶ ○ 평

Studying models of the λ -calculus, Girard realized that the implication $A \rightarrow B$ is decomposed as:

$$
!A\multimap B
$$

 $\bullet \rightarrow \text{ is a linear implication}$ — which uses its argument exactly once;

• is a modality allowing the duplication;

He then introduced linear logic to mirror these semantics remarks in the syntax. The restriction to linear implication induces a splitting of the conjunction and disjunction into *multiplicative* (\otimes, \mathcal{X}) and *additive* $(\&,\oplus)$ variants.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニョー・クダウ

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → K 9 Q Q*

$$
\begin{array}{c|c}\nA \vdash A & \xrightarrow{A \vdash A} \text{ax} & B \vdash B & \text{ax} \\
\hline\nA, B \vdash A \land B & \text{cut} \\
\underline{A, A \vdash A \land B} & \text{ctr} \\
\underline{A \vdash A \land B} & \text{ctr} \\
\hline\nA \rightarrow A \land B & \rightarrow\n\end{array}
$$

$$
\begin{array}{c|c}\nA \vdash A & \xrightarrow{A \vdash A} \text{ax} & B \vdash B & \text{ax} \\
\hline\nA, B \vdash A \otimes B & \text{cut} \\
\underline{A, A \vdash A \otimes B} & \text{ctr} \\
\underline{A \vdash A \otimes B} & \text{ctr} \\
\hline\n\vdash A \rightarrow A \otimes B & \rightarrow\n\end{array}
$$

$$
\begin{array}{c|c}\nA \vdash A & \xrightarrow{A \vdash A} \text{ax} & B \vdash B & \text{ax} \\
\hline\nA, B \vdash A \otimes B & \text{out} \\
\underline{A, A \vdash A \otimes B} & \text{out} \\
\underline{1A, 1A \vdash A \otimes B} & \text{at} \\
\underline{A \vdash A \otimes B} & \text{out} \\
\hline\nA \vdash A \otimes B & \text{out} \\
\hline\nA \rightarrow A \otimes B & \n\end{array}
$$

$$
\begin{array}{c|c}\nA \vdash A & \xrightarrow{A \vdash A} \text{ax} & B \vdash B & \text{ax} \\
\hline\nA, B \vdash A \otimes B & \text{cut} \\
\underline{A, A \vdash A \otimes B} & \text{cut} \\
\underline{1A, 1A \vdash A \otimes B} & \text{ctr} \\
\underline{1A \vdash A \otimes B} & \text{ctr} \\
\hline\n\vdash A \rightarrow A \otimes B & \n\end{array}
$$

$$
\begin{array}{c|c}\nA \vdash A & B \vdash B \text{ ax } \\
\hline\nA, B \vdash A \otimes B & \text{ex }\n\end{array}
$$
\n
$$
\begin{array}{c|c}\nA \vdash A \otimes B & \text{ex }\n\end{array}
$$
\n
$$
\begin{array}{c}\nA, A \vdash A \otimes B & \text{ex }\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n\text{I}A, \text{I} \land A \otimes B & \text{ex }\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n\text{I}A \vdash A \otimes B & \text{ex }\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n\text{I}A \rightarrow A \otimes B & \text{ex }\n\end{array}
$$

- Linear Logic allows a detailed control on duplication;
- Restricting the rules of the ! connective, one can define systems with less proofs which turn out to be interesting for the study of complexity.

For instance:

The ELL system (Elementary Linear Logic):

The proofs of type !nat ⊸ nat in ELL are exactly the functions computable in elementary time.

スター・ステート ステート

- Linear Logic allows a detailed control on duplication;
- Restricting the rules of the ! connective, one can define systems with less proofs which turn out to be interesting for the study of complexity.

For instance:

The LLL system (Light Linear Logic):

The proofs of type !nat ⊸ nat in LLL are exactly the functions computable in polynomial time.

スター・ステート ステート

Proof Nets

Proof structures:

 \leftarrow \Box

4 闯 × 重き → 重→ 重

G.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

In a first approximation, the geometry of interaction program aims at defining a semantics of proofs that accounts for the dynamics of cut-elimination.

- A proof is interpreted by its set of axiom links;
- Cut-elimination corresponds to the computation of paths in the graph.

イロト イ団 ト イヨ ト イヨ トー

メロト メタト メモト メモト

● ● ● ax

 E Ω

メロト メタト メモト メモト

メロト メタト メモト メモトー

メロト メタト メモト メモト

 \bullet One can notice that the tests for A coming from the correctness criterion are in correspondence with the *proofs* of A^{\perp} .

重

イロメ イ御 ト イヨメ イヨメー

Geometry of interaction aims at more than a mere interpretation of proofs. It is a complete reconstruction of logic around the dynamics of cut-elimination.

Based on the duality between tests for a A and proofs of A^{\perp} :

- one considers a set of more general objects (paraproofs) representing both proofs and tests;
- one defines a notion of orthogonality that translates the correctness criterion.

重。

イロト イ団 ト イヨ ト イヨ トー

One defines formulas (or types) as sets of paraproofs closed by bi-orthogonality or, equivalently:

Definition

A formula is a set of paraproofs A such that $A = B^{\perp}$ for B a given set of tests.

Connectives are defined on paraproofs, and this definition induces a construction on types.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Principle

Interaction Graphs

重

メロメ メ御 メメ きょうくきょう

- Paraproofs are graphs (with a natural number);
- Cut-elimination corresponds to taking the graph of paths;
- Orthogonality is defined by counting the cycles between two graphs.

重

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The execution $F : G$ of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

4 0 8

The execution $F : G$ of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

←ロ ▶ → 伊 ▶

重

 \rightarrow \equiv \rightarrow

B.K.

The execution $F : G$ of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

4.000

ЭX

€

Cycles

In some cases, cycles appear during this operation.

K ロ ⊁ K 倒 ≯ K

 $\mathbf{y} = \mathbf{y} \oplus \mathbf{y}$

÷.

重

In some cases, cycles appear during this operation.

高。

メロト メタト メモト メモト

In some cases, cycles appear during this operation.

高

メロト メタト メモト メモト

In some cases, cycles appear during this operation.

We will write $n_{F;G}$ the number of cycles appearing during the execution of the graphs F and G .

重

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Counting Cycles

To take into account the appearance of cycles, we will count them in order to keep track of them.

Definition

A paraproof f will be a graph F together with a natural number n_F .

Definition

$$
<\!\!<\!\!\mathfrak{f},\mathfrak{g}\!\!>\!\!>_m=n_F+n_G+n_{F;G}
$$

Definition

The execution f : g of two paraproofs $f = (F, n_F)$ and $g = (G, n_G)$ is equal to $(F:G,\ll f,\mathfrak{g}\gg_m)$. When F and G have no common vertices, $F : G$ is the union of F and

G, and $n_{F,G} = 0$. In this case, we will write $f \otimes g$ instead of $f : g$.

ミー

イロメ イ御 ト イヨメ イヨメー

The adjunction

Proposition

$$
\ll \mathfrak{f}, \mathfrak{g} \otimes \mathfrak{h} \gg_m = \ll \mathfrak{f} \colon \mathfrak{g}, \mathfrak{h} \gg_m
$$

Thomas Seiller [Geometry of Interaction](#page-0-0) 21 / 32

 299

重∴

メロト メタト メモト メモトー

Definition

Two paraproofs $f = (F, n_F)$ and $g = (G, n_G)$ are orthogonal when they have the same sets of vertices and $\ll f, g \gg m = 1$.

This is the correctness criterion of proof nets.

Definition

A type is a set of paraproofs equal to its bi-orthogonal.

Definition

If A, B are types, one can define:

$$
\mathbf{A} \otimes \mathbf{B} = \{ \mathfrak{a} \otimes \mathfrak{b} \mid \mathfrak{a} \in \mathbf{A}, \mathfrak{b} \in \mathbf{B} \}^{\perp \perp}
$$

$$
\mathbf{A} \rightarrow \mathbf{B} = \{ \mathfrak{f} \mid \forall \mathfrak{a} \in \mathbf{A}, \mathfrak{f} \colon \mathfrak{a} \in \mathbf{B} \}
$$

Proposition

$$
\mathbf{A} \multimap \mathbf{B} = (\mathbf{A} \otimes \mathbf{B}^{\perp})^{\perp}
$$

We get a model of multiplicative linear logic.

重

イロメ イ押メ イヨメ イヨメー

Relation to Girard's constructions

Instead of counting cycles, we measure them (edges are weighted). We obtain a family of constructions parametrized by a "measure" m.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

- In a generalization of this setting one can define several exponential connectives !.
- In particular, we can define a ! connective yielding a restricted system: ELL;

重

イロメ イ押メ イヨメ イヨメー

Logarithmic Space joint work with Clément Aubert (Paris 13)

重

イロメ イ押メ イヨメ イヨメー

 \bullet Principle: an integer *n* is represented as a binary list, i.e. as a proof of

$$
\underbrace{!(X \multimap X)}_{0} \xrightarrow{\bullet} \underbrace{!(X \multimap X)}_{1} \xrightarrow{\bullet} \underbrace{!(X \multimap X)}_{\star}
$$

- The list can be read from the contraction rules.
- The GoI interpretation of these proofs are matrices (M_n) representing the sets of axiom links: we obtain a 6×6 matrix whose coefficients are $k \times k$ matrices $(k = \log_2(n))$ is the length of the list).

イロメ イ母メ イヨメ イヨメー ヨー

Representation of Integers: Example

- The blue indices in the previous slide are "states" of the integer (the integer is a function as in λ -calculus);
- As a consequence, a graph interacts with an integer only through the interface $\{0, 0i, 10, 1i, S, E\};$
- \bullet We say a graph G (which can have "states" in the same way integers do) accepts an integer n when there are no cycles between G and M_n ;
- The language $[G]$ recognized by a graph G is the set of integers it accepts.

イロト イ押 トイヨト イヨト 一重

Results

• In the formal setting:

$$
\underbrace{\mathcal{M}_6(\mathbb{C}) \otimes \mathcal{R}}_{\text{integers}} \otimes \mathcal{M}_n(\mathbb{C})
$$

we define "machines" as a set R of operators in $\mathcal{M}_6 \otimes \mathcal{M}_n$ and we can show that $[R] = \{ [r], r \in R \}$ is the set of regular languages.

• In the more complex setting:

$$
\mathcal{M}_{6}(\mathbb{C}) \otimes \Biggl((\bigotimes_{n \in \mathbb{N}} \mathcal{R}) \rtimes \mathfrak{G} \Biggr) \otimes \mathcal{M}_{n}(\mathbb{C})
$$

we define two sets P_+ and P_{+1} of operators in $\mathcal{M}_6 \otimes \mathcal{M}_n$ and show:

$$
[P_{+}] = \mathbf{co-NL} \qquad [P_{+,1}] = \mathbf{L}
$$

KID KAR KERKER E KORO

Conclusion

K ロンバイ (型) X (型) X (型) (二)型

- Use tools and/or invariants of operator algebras to obtain results in algorithmic complexity;
- Use the concepts of GoI to study other notions of computation:
	- ▸ Quantum computation;
	- ▸ Pi-calculus;
	- \triangleright ...
- Understand the links with homotopy.

重

イロメ イ押メ イヨメ イヨメー