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@ From proofs to graphs
@ Interaction Graphs
@ Logarithmic Space
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From proofs to graphs
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Linear Logic

Studying models of the A-calculus, Girard realized that the implication

A — B is decomposed as:
1A —- B

@ — is a linear implication — which uses its argument exactly once;
e ! is a modality allowing the duplication;

He then introduced linear logic to mirror these semantics remarks in
the syntax. The restriction to linear implication induces a splitting of
the conjunction and disjunction into multiplicative (®, %) and additive
(&, @) variants.
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Example

FT,A 0 FA AL

4 AL t
FAA ~T.A cu
FILA +I,B o +1,A,B -
“T.AA® B FT.ANB
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Example

ax

Ar A ™ BrB |
A+ B A B-AAB

AA-AANB

A-ANB
FA—-AAB

cut
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Example

ax

ArA " B+-B
A+ B A B-A®B
AA-A®B .

ArAe®B |
FA—- A®B

cut
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Example

ax

A-A Y "BrB ®
A+ B A B-A®B

AA-rA®B
IAJJA-A®B
ArAe®B |
FA—>A®B

cut

der

ctr
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Restricting modalities

o Linear Logic allows a detailed control on duplication;

@ Restricting the rules of the ! connective, one can define systems
with less proofs which turn out to be interesting for the study of
complexity.

For instance:
The ELL system (Elementary Linear Logic):

The proofs of type Inat — nat in ELL are exactly the functions
computable in elementary time. J
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Proof Nets

Proof structures:

£ L)
s LoJ

Théoreme
R is sequentializable
iif

VselS, ors is cyclic.
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Example

ax

ArA " B+ B ®
A+ B A BrA®B

AA-A®B

A@ArAeDB .
HFA®A—-AQB

cut

70 D e U
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Geometry of Interaction: Interpretation of proofs

In a first approximation, the geometry of interaction program aims at
defining a semantics of proofs that accounts for the dynamics of
cut-elimination.

o A proof is interpreted by its set of axiom links;

o Cut-elimination corresponds to the computation of paths in the
graph.
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A remark on Proof Nets

@ One can notice that the tests for A coming from the correctness
criterion are in correspondence with the proofs of A*.

Tests for A = Proofs of A+
Proofs of A = Tests for A*
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Geometry of Interaction: Negation

Geometry of interaction aims at more than a mere interpretation of
proofs. It is a complete reconstruction of logic around the dynamics of
cut-elimination.
Based on the duality between tests for a A and proofs of A*:
@ one considers a set of more general objects (paraproofs)
representing both proofs and tests;

@ one defines a notion of orthogonality that translates the
correctness criterion.
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Geometry of Interaction: Formulas and Connectives

One defines formulas (or types) as sets of paraproofs closed by
bi-orthogonality or, equivalently:

Definition

A formula is a set of paraproofs A such that A = B* for B a given set of
tests.

Connectives are defined on paraproofs, and this definition induces a
construction on types.
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Interaction Graphs
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Basics

e Paraproofs are graphs (with a natural number);
e Cut-elimination corresponds to taking the graph of paths;

o Orthogonality is defined by counting the cycles between two
graphs.
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Execution

The execution F': G of two graphs F,G is the graph of alternating
paths of source and target in VEAVE,
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Cycles

In some cases, cycles appear during this operation.
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Cycles

In some cases, cycles appear during this operation.

I
N

We will write np, the number of cycles appearing during the execution
of the graphs F' and G.
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Counting Cycles

To take into account the appearance of cycles, we will count them in
order to keep track of them.

Definition
A paraproof § will be a graph F together with a natural number ng.

Definition

<f,g>>m =np+ng +np,g

Definition

The execution f: g of two paraproofs f= (F,np) and g = (G,ng) is
equal to (F=G,<f,g>n).

When F' and G have no common vertices, F': G is the union of F' and
G, and np.g = 0. In this case, we will write f ® g instead of f=g.
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Definition

Two paraproofs f = (F,np) and g = (G,n¢) are orthogonal when they
have the same sets of vertices and <«f, g>>,, = 1.

@ This is the correctness criterion of proof nets.

A type is a set of paraproofs equal to its bi-orthogonal.

Definition J
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Definition

If A,B are types, one can define:
A®B={a®b| acA,beB}**

A—~B={f| VacA,f:acB}

Proposition

A —-B=(A®B"Y)"

@ We get a model of multiplicative linear logic.
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Relation to Girard’s constructions

Instead of counting cycles, we measure them (edges are weighted). We
obtain a family of constructions parametrized by a "measure" m.

1G
m(ggy \wz ~log(1 - z)
Gol o Gol
(Nilpotency) (FK Det)
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ELL

e In a generalization of this setting one can define several
exponential connectives !.

o In particular, we can define a ! connective yielding a restricted
system: ELL;
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Logarithmic Space

joint work with Clément Aubert (Paris 13)
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Representation of Integers

@ Principle: an integer n is represented as a binary list, i.e. as a
proof of
(X = X) o l(X -X)—-!(X—X)

0 1 *

@ The list can be read from the contraction rules.

e The Gol interpretation of these proofs are matrices (M)
representing the sets of axiom links: we obtain a 6 x 6 matrix whose
coefficients are k x k matrices (k = logy(n) is the length of the list).
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Representation of Integers: Example

0 3 2 1
B8 48— d(1)% —— 4(0)s

3 | (00,3) (04,3) (1l0,3) (14,3) (95,3) (E,3)

2 1(00,2) (0i,2) (1lo,2) (14,2) (S,2) (FE,2)

1 |(00,1) (0:,1) (lo,1) (13,1) \(S,1) (E,1)

0 | (00,0) (04,00~ (10,0) (13,0) (5,0)  (E,0)
(X — X) (X — X))

0 1 *
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The blue indices in the previous slide are "states" of the integer
(the integer is a function as in A-calculus);

As a consequence, a graph interacts with an integer only through
the interface {00, 0i, 1o, 17, S, E'};

We say a graph G (which can have "states" in the same way
integers do) accepts an integer n when there are no cycles between
G and M,;

The language [G] recognized by a graph G is the set of integers it
accepts.
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Results

o In the formal setting:

Me(C) @ RoM,,(C)
—_—
integers

we define "machines" as a set R of operators in Mg ® M,, and we
can show that [R] = {[r],r € R} is the set of regular languages.

@ In the more complex setting:

Ms(€) & ((@g R) = es) © My (C)

we define two sets P, and P, ; of operators in Mg ® M,, and show:

[P:] = co-NL [Pi1]=L
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Conclusion
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Perspectives

e Use tools and/or invariants of operator algebras to obtain results
in algorithmic complexity;
o Use the concepts of Gol to study other notions of computation:

» Quantum computation;
» Pi-calculus;

’...

@ Understand the links with homotopy.

Thomas Seiller Geometry of Interaction 32 /32



