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From proofs to graphs
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Linear Logic

Studying models of the λ-calculus, Girard realized that the implication
A→ B is decomposed as:

!A⊸ B

⊸ is a linear implication — which uses its argument exactly once;
! is a modality allowing the duplication;

He then introduced linear logic to mirror these semantics remarks in
the syntax. The restriction to linear implication induces a splitting of
the conjunction and disjunction into multiplicative (⊗, `) and additive
(&, ⊕) variants.
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Example

ax
⊢ A,A� ⊢ Γ,A ⊢∆,A�

cut⊢ Γ,∆
⊢ Γ,A ⊢ Γ,B ⊗⊢ Γ,∆,A⊗B

⊢ Γ,A,B `⊢ Γ,A`B
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Example

A ⊢ B
ax

A ⊢ A
ax

B ⊢ B ∧
A,B ⊢ A ∧B

cut
A,A ⊢ A ∧B

ctr
A ⊢ A ∧B →
⊢ A→ A ∧B
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Example

A ⊢ B
ax

A ⊢ A
ax

B ⊢ B ⊗
A,B ⊢ A⊗B

cut
A,A ⊢ A⊗B

ctr
A ⊢ A⊗B →
⊢ A→ A⊗B
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Thomas Seiller Geometry of Interaction 6 / 32



Example

A ⊢ B
ax

A ⊢ A
ax

B ⊢ B ⊗
A,B ⊢ A⊗B

cut
A,A ⊢ A⊗B

der
!A, !A ⊢ A⊗B

ctr
!A ⊢ A⊗B →
⊢ A→ A⊗B

Thomas Seiller Geometry of Interaction 6 / 32



Example

A ⊢ B
ax

A ⊢ A
ax

B ⊢ B ⊗
A,B ⊢ A⊗B

cut
A,A ⊢ A⊗B

der
!A, !A ⊢ A⊗B

ctr
!A ⊢ A⊗B ⊸
⊢ !A⊸ A⊗B
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Restricting modalities

Linear Logic allows a detailed control on duplication;
Restricting the rules of the ! connective, one can define systems
with less proofs which turn out to be interesting for the study of
complexity.

For instance:
The ELL system (Elementary Linear Logic):

The proofs of type !nat⊸ nat in ELL are exactly the functions
computable in elementary time.
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For instance:
The LLL system (Light Linear Logic):

The proofs of type !nat⊸ nat in LLL are exactly the functions
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Proof Nets

Proof structures:

● ●
●
ax

● ●
●
cut

● ●
●
⊗

●

● ●
●
`

●

Théorème
R is sequentializable

iif
∀s ∈ S, στs is cyclic.

R

. . .

Axiomes σ

Conclusions

⊗, `, cut {τs}s∈S
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Example

A ⊢ B
ax

A ⊢ A
ax

B ⊢ B ⊗
A,B ⊢ A⊗B

cut
A,A ⊢ A⊗B ⊗
A⊗A ⊢ A⊗B ⊸
⊢ A⊗A⊸ A⊗B

● ●
●
ax

● ●
●
ax

● ●
●
⊗

●

A ⊢ B
● ●● ●

●
cut
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Geometry of Interaction: Interpretation of proofs

In a first approximation, the geometry of interaction program aims at
defining a semantics of proofs that accounts for the dynamics of
cut-elimination.

A proof is interpreted by its set of axiom links;
Cut-elimination corresponds to the computation of paths in the
graph.
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Example

● ●
●
ax

● ●
●
ax

● ●
●
ax

● ●
●
ax

● ●

●
cut

● ●

●
cut
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Example

● ●
●
ax

● ●
●
ax

● ●
●
ax

● ●
●
ax

● ●

●
cut

● ●

●
cut
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A remark on Proof Nets

One can notice that the tests for A coming from the correctness
criterion are in correspondence with the proofs of A�.

Tests for A = Proofs of A�

Proofs of A = Tests for A�

Thomas Seiller Geometry of Interaction 12 / 32



Geometry of Interaction: Negation

Geometry of interaction aims at more than a mere interpretation of
proofs. It is a complete reconstruction of logic around the dynamics of
cut-elimination.
Based on the duality between tests for a A and proofs of A�:

one considers a set of more general objects (paraproofs)
representing both proofs and tests;
one defines a notion of orthogonality that translates the
correctness criterion.
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Geometry of Interaction: Formulas and Connectives

One defines formulas (or types) as sets of paraproofs closed by
bi-orthogonality or, equivalently:

Definition
A formula is a set of paraproofs A such that A = B� for B a given set of
tests.

Connectives are defined on paraproofs, and this definition induces a
construction on types.
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Principle

⋅

⋅

paraproofs

⋅

⋅

proofs

paraproofs in A

Type A

Proofs

Paraproofs
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Interaction Graphs
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Basics

Paraproofs are graphs (with a natural number);
Cut-elimination corresponds to taking the graph of paths;
Orthogonality is defined by counting the cycles between two
graphs.
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Execution

The execution F ∶∶G of two graphs F,G is the graph of alternating
paths of source and target in V F∆V G.

1 2 3 4

F

G

Thomas Seiller Geometry of Interaction 18 / 32



Execution

The execution F ∶∶G of two graphs F,G is the graph of alternating
paths of source and target in V F∆V G.

1 2 3 4

1
2

λ
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Execution

The execution F ∶∶G of two graphs F,G is the graph of alternating
paths of source and target in V F∆V G.

3 4

λ
2
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Cycles

In some cases, cycles appear during this operation.

1 2 3 4

F

H
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Cycles

In some cases, cycles appear during this operation.

1 2
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Cycles

In some cases, cycles appear during this operation.

1 2

We will write nF ;G the number of cycles appearing during the execution
of the graphs F and G.
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Counting Cycles

To take into account the appearance of cycles, we will count them in
order to keep track of them.

Definition
A paraproof f will be a graph F together with a natural number nF .

Definition

≪f,g≫m = nF + nG + nF ;G

Definition
The execution f ∶∶g of two paraproofs f = (F,nF ) and g = (G,nG) is
equal to (F ∶∶G,≪f,g≫m).
When F and G have no common vertices, F ∶∶G is the union of F and
G, and nF ;G = 0. In this case, we will write f⊗ g instead of f ∶∶g.
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The adjunction

1 2 3 4

Proposition

≪f,g⊗ h≫m = ≪f ∶∶g,h≫m
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Definition
Two paraproofs f = (F,nF ) and g = (G,nG) are orthogonal when they
have the same sets of vertices and ≪f,g≫m = 1.

This is the correctness criterion of proof nets.

Definition
A type is a set of paraproofs equal to its bi-orthogonal.
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Definition
If A,B are types, one can define:

A⊗B = {a⊗ b ∣ a ∈A,b ∈ B}‹‹

A⊸ B = {f ∣ ∀a ∈A, f ∶∶a ∈ B}

Proposition

A⊸ B = (A⊗B‹)‹

We get a model of multiplicative linear logic.
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Relation to Girard’s constructions

Instead of counting cycles, we measure them (edges are weighted). We
obtain a family of constructions parametrized by a "measure" m.

. . . . . . . . .

m(x) = ∞ m(x) = −log(1 − x)

IG

GoI

(Nilpotency)

GoI

(FK Det)
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ELL

In a generalization of this setting one can define several
exponential connectives !.
In particular, we can define a ! connective yielding a restricted
system: ELL;
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Logarithmic Space
joint work with Clément Aubert (Paris 13)

Thomas Seiller Geometry of Interaction 26 / 32



Representation of Integers

Principle: an integer n is represented as a binary list, i.e. as a
proof of

!(X ⊸X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

⊸ !(X ⊸X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

⊸ !(X ⊸X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋆
The list can be read from the contraction rules.
The GoI interpretation of these proofs are matrices (Mn)
representing the sets of axiom links: we obtain a 6×6 matrix whose
coefficients are k × k matrices (k = log2(n) is the length of the list).
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Representation of Integers: Example

⋆ ●S●E
0

1 ●o●i
3

1 ●o●i
2

0 ●o●i
1

(0o,0) (0i,0) (1o,0) (1i,0) (S,0) (E,0)

(0o,1) (0i,1) (1o,1) (1i,1) (S,1) (E,1)

(0o,2) (0i,2) (1o,2) (1i,2) (S,2) (E,2)

(0o,3) (0i,3) (1o,3) (1i,3) (S,3) (E,3)

!(X ⊸ X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

⊸ !(X ⊸ X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

⊸ !(X ⊸ X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋆

0

1

2

3
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The blue indices in the previous slide are "states" of the integer
(the integer is a function as in λ-calculus);
As a consequence, a graph interacts with an integer only through
the interface {0o,0i,1o,1i, S,E};
We say a graph G (which can have "states" in the same way
integers do) accepts an integer n when there are no cycles between
G and Mn;
The language [G] recognized by a graph G is the set of integers it
accepts.
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Results

In the formal setting:

M6(C) ⊗R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

integers

⊗Mn(C)

we define "machines" as a set R of operators inM6 ⊗Mn and we
can show that [R] = {[r], r ∈ R} is the set of regular languages.
In the more complex setting:

M6(C) ⊗ ((⊗
n∈N
R) ⋊G) ⊗Mn(C)

we define two sets P+ and P+,1 of operators inM6 ⊗Mn and show:

[P+] = co-NL [P+,1] = L
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Conclusion
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Perspectives

Use tools and/or invariants of operator algebras to obtain results
in algorithmic complexity;
Use the concepts of GoI to study other notions of computation:

▸ Quantum computation;
▸ Pi-calculus;
▸ . . .

Understand the links with homotopy.
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