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Coalgebras

Coalgebras provide a unifying framework for a wide range of state-based
systems.
Examples: infinite labelled trees, finite automata, streams, transition
systems, Kripke structures.

Given an endofunctor T : C → C, a T -coalgebra is a C-morphism

ξ : X → TX

T induces a notion of behaviour equivalence that generalizes the
bisimilarity defined for each specific system.
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Moss’ logic

Moss defined a logic for coalgebras for T : Set→ Set which is parametric
in T .

The collection of formulas L is defined inductively by closing under infinite
conjunctions and by closing under the functor T itself, so that the logic
can be seen as an algebra

(P + T )(L)→ L

This means that L is closed under ∇, if γ ∈ T (L) then ∇γ ∈ L.
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Example: ∇ for the powerset functor P

If X is a Kripke frame with the accessibility relation R and γ is a set of
formulas then
 (x ,∇γ) when

for all α ∈ γ there is y ∈ R(x) s.t.  (y , α) and
for all y ∈ R(x) there exists α ∈ γ s.t.  (y , α).

In the standard modal language we have

∇γ = 2
∨
γ ∧

∧
3γ

but also 2 and 3 can be defined in terms of ∇.
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The semantics of ∇

The semantics of the logic w.r.t. a coalgebra ξ : X → TX and a state x in X is
described via a relation

ξ ⊆ X × L

The semantics of the operator ∇ is then given using the relation lifting T via
the inductive clause

 (x ,∇γ) ⇔ T ()(ξ(x), γ).

Thus the next diagram commutes in the category Rel of sets and relations

TL ∇ //

UT ()
��

L
U
��

TX � // X

We need T to preserve weak pullbacks. Under this assumption Moss also
showed that ∇ is invariant under bisimilarity.
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Classical result on relation lifting

Theorem
For a functor T : Set→ Set the following are equivalent:

There is a monotone functor T : Rel(Set)→ Rel(Set) such that the
square

Rel(Set) T //______ Rel(Set)

Set

(−)�
OO

T
// Set

(−)�
OO

commutes.
T preserves weak pullbacks.
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Moving to the many-valued setting

The satisfaction relation : X × L → 2 could take more values, say in [0,1].

The idea is to use ‘relations’ in an enriched setting, so we will consider

: X op ⊗ L → V

where V is a commutative quantale.
We will enrich all our categories, functors, etc. in a (co)complete symmetric
monoidal closed base category V .
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Commutative Quantales

A commutative quantale

V = (Vo,⊗, I, [−,−])

is a symmetric monoidal structure such that
Vo is a complete lattice with the lattice order written as ≤, the symbol ⊥
denotes the least element and > the greatest element of Vo.
⊗ is a symmetric monoidal structure on Vo with a unit element I.
The closed structure (the internal hom) of Vo is denoted by [x , y ]. Hence
we have adjunction relations

x ⊗ y ≤ z iff y ≤ [x , z]

for every x , y , z in Vo.
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Examples of quantales

1 The unit interval [0;1] with the usual order and
the Łukasiewicz tensor x ⊗ y = max{x + y − 1,0}.
The internal hom is given by [x , y ] = if x ≤ y then 1 else 1− x + y .

2 The unit interval [0;1] with the usual order and
the Gödel tensor x ⊗ y = min{x , y}.
The internal hom is given by [x , y ] = if x ≤ y then 1 else y .

3 The unit interval [0;1] with the usual order and
the product tensor x ⊗ y = x · y .
The internal hom is given by [x , y ] = if x ≤ y then 1 else

y
x

.
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More examples

1 Vo is the two-element chain 2, i.e., there are two objects 0 and 1 with
0 ≤ 1.
The tensor in 2 is the meet and the internal hom is implication.

2 Vo is the unit interval [0;1] with ≤ being the reversed order ≥R of the real
numbers.
The unit I is 0 and x ⊗ y = max{x , y} where the maximum is taken w.r.t.
the usual order ≤R.
The internal hom is given by [0,1](x , y) = if x ≥R y then 0 else y .

3 Vo is the interval [0;∞] with ≤ being the reversed order ≥R of the reals.
Extend the usual addition of nonnegative reals by putting
x +∞ =∞+ x =∞, for every x ∈ [0;∞] and let x ⊗ y = x + y , the unit I
being 0.
The internal hom is given by truncated substraction
[0,1](x , y) = y −. x = if x ≥R y then 0 else y − x .
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V -categories

Definition
A category A enriched in V (or, a V -category ) consists of:

1 A class of objects denoted by a, b, . . .
2 For every pair a, b of objects a hom-object A (a,b) in Vo.

such that
1 For every object a there is an inequality

I ≤ A (a,a)

witnessing the “choice of the identity morphism on a”.
2 For every triple a, b, c of objects there is an inequality

A (b, c)⊗A (a,b) ≤ A (a, c)

witnessing “the composition of morphisms”.
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Examples

1 When V = 2, a V -category is a preorder.
2 When V is [0,1] with the reversed order, a V -category A is a generalised

ultrametric space: the hom-object A (a,b) is the “distance” of a and b
3 When V is [0,∞] with the reversed order, a V -category A is a

generalised metric space: the hom-object A (a,b) is the “distance” of a
and b
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V -functors

Definition
Given V -categories A , B, a V -functor f : A → B is given by the following
data:

1 An object assignment : for every object a in A , there is a unique object fa
in B.

2 An action on hom-objects: for every pair a, a′ of objects of A there is an
inequality

A (a,a′) ≤ B(fa, fa′)

in Vo.
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Relations in enriched setting
For a general base category V , a “relation”

R : A � // B

from a V -category A to a V -category B is a V -functor of the form

R : Bop ⊗A → V

called a module and
Given modules

R : A � // B S : B � // C

we define their composite

S · R : A � // C

to be the functor with values

S · R(c,a) =
∨
b

S(c,b)⊗ R(b,a)

for all c and a.
By V-mod we denote the 2-category of V -modules (= “relations”)
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A 2-functor (−)� : V-cat→ V-mod

Definition
Given f : A → B in V-cat, the module f� : A � //B given by

f�(b,a) = B(b, fa)

is called the graph of f .

every module f� is a left adjoint in V-mod, having the module

f �(a,b) = B(fa,b)

as a right adjoint.
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When can we lift a V-cat functor to V-mod?

A relation lifting of a 2-functor T : V-cat→ V-cat is a 2-functor
T : V-mod→ V-mod, making the square

V-mod
T // V-mod

V-cat

(−)�
OO

T
// V-cat

(−)�
OO

commutative.
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Exact squares

Definition
Call a lax square

P
p1

//

p0
��

B

g
��

A
f

//

↗

C

in V-cat exact , if the equality

C (fa,gb) =
∨
w

A (a,p0w)⊗B(p1w ,b)

holds, naturally in a and b.
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The main result

Theorem
For T : V-cat→ V-cat, the following are equivalent:

1 There exists T : V-mod→ V-mod such that the following square

V-mod
T // V-mod

V-cat
T

//

(−)�
OO

V-cat

(−)�
OO

commutes.
2 T preserves exact squares.
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Relations in enriched setting

A module can be represented by a cospan

B

i0
''NNNNNNN A

i1
wwooooooo

Coll(R)

called the collage of R that becomes a two-sided discrete fibration in (V-cat)op.
the category Coll(R) is defined as follows:

1 Objects of Coll(R) are the disjoint union of objects of A and B.
2 Coll(R)(a,a′) = A (a,a′) in case both a and a′ are in A .
3 Coll(R)(b,b′) = B(b,b′) in case both b and b′ are in B.
4 Coll(R)(b,a) = R(b,a) in case b is in B and a is in A .
5 Coll(R)(a,b) = ⊥ in case a is in A and b is in B.
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Examples of functors with BCC

The Kripke-polynomial 2-functors T : V-cat→ V-cat, given by the grammar

T ::= Id | constX | T + T | T × T | T ⊗ T | T ∂ | LT

The 2-functor T ∂ (the dual of the 2-functor T ) is defined as the following
composite

V-cat
(−)op

// V-catco T co
// V-catco

(−)op
// V-cat

A
� // A op � // T (A op) � // (T (A op))op

The 2-functor L sends A to [A op,V ] and f : A → B is sent to the left Kan
extension along f op.
The 2-functor U is defined as L∂ . It sends A to [A ,V ]op.
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The powerset functor on preorders

A preorder A is mapped to the set of all subsets of the carrier of A , ordered
by the so-called Egli-Milner order

B ≤ A ⇔

 ∀b ∈ B . ∃a ∈ A . b ≤A a
∧
∀a ∈ A . ∃b ∈ B . b ≤A a

The Pos-collapse of P is the convex powerspace functor, which provides the
Kripke semantics for negation-free modal logic in the same way as the usual
powerset provides the Kripke semantics for classical modal logic.
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The powerset functor on V-cat

The objects of PA are arbitrary V -subsets ϕ : |A | → V of A . For any
ϕ,ψ : |A | → V put

PA (ϕ,ψ) = [|A |,V ](ϕ,ψ↓)⊗ [|A |,V ](ψ,ϕ↑)

or, in a detailed formula, by

PA (ϕ,ψ) =
∧
a

[ϕ(a),
∨
a′

ψ(a′)⊗A (a,a′)]⊗
∧
a′

[ψ(a′),
∨
a

ϕ(a)⊗A (a,a′)]

that can be perceived as the “Egli-Milner condition in the V -setting”.
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The powerset functor on V-cat

Given a V -functor f : A → B and V -subset ϕ : |A | → V , define
Pf (ϕ) : |B| → V by

b 7→
∨
a

|B|(fa,b)⊗ ϕa.

In other words, Pf (ϕ) is the value of a left Kan extension of ϕ along
|f | : |A | → |B|. In particular, the equality

[|B|,V ](Pf (ϕ), ψ) = [|A |,V ](ϕ,ψ · |f |)

holds for all ϕ : |A | → V , ψ : |B| → V .

Then P : V-cat→ V-cat is a 2-functor.
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Coalgebras and bisimilarity in enriched setting

Definition
A T -coalgebra is a V -functor ξ : X → TX . Elements of X are called states
and ξ is the transition structure. A coalgebra morphism from ξ : X → TX to
ξ′ : X ′ → TX ′ is V -functor f : X →X ′ such that ξ′ · f = Tf · ξ. The category
of T -coalgebras is denoted by Coalg(T ) and we write U : Coalg(T )→ V-cat
and V : V-cat→ Set for the respective forgetful functors.

Definition
Bisimilarity, or behavioural equivalence, is the smallest equivalence relation
on elements of coalgebras generated by pairs

(x ,VUf (x))

where x is an element of a coalgebra and f is a coalgebra morphism.
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∇ over V-cat

The satisfaction relation should be a V -module

: X ⊗ L → V ,

or equivalently,

: L � //X op .

Next we want to assume that L comes equipped with a ∇-operator.
The op makes it necessary to take formulas of the kind ∇γ not from TL but
from T ∂L.
Recall that T ∂(X ) = (T (X op))op, so that T and T ∂ agree on discrete X . So
we assume that we have an algebra

T ∂L → L
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Semantics of ∇

Given a T -coalgebra ξ, we define the semantics of ∇ via the relation lifting of
T ∂ :

(x ,∇γ) = T ∂()(ξ(x), γ)

Notice that T ∂ preserves exact squares whenever T does.
In a diagram

T ∂L �
∇� //

UT ∂()
��

L
U 
��

T ∂(X op) = (TX )op �
(ξop)�

// X op
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Invariance under bisimulations

Proposition
If T preserves exact squares, then ∇ is invariant under bisimilarity.

Idea of the proof: To : X ⊗ L → V corresponds a V -functor
[[·]] : L → [X ,V ]. The fact that all ϕ ∈ L are invariant under bisimilarity implies
that

[[·]]ξ : L → [Uξ,V ]

is natural in ξ.
We have to show that

[[∇·]]ξ : T ∂L → [Uξ,V ]

is also natural in ξ. We use the commutativity of:

T ∂L
∇ //

T ∂ [[·]]
��

L

[[·]]
��

T ∂ [X ,V ]
δX op

// [TX ,V ]
[ξ,V ]

// [X ,V ]
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Example: ∇ for U-coalgebras

Recall that ∇ is an algebra for the functor U∂ = L, hence

∇ : L(L)→ L.

We have
Given a U-coalgebra ξ : X → UX and γ ∈ U∂(L) = L(L) we have

(x ,∇γ) = U∂()(ξ(x), γ)

=
∧

y∈X

[ξ(x)(y),
∨
ϕ∈L

(y , ϕ)⊗ γ(ϕ)]

For γ = L(−, ϕ) we obtain the semantics of 2 from Bou et al.

(x ,∇L(−, ϕ)) =
∧

y∈X

[ξ(x)(y),(y , ϕ)]
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Example: ∇ for L-coalgebras

Given a L-coalgebra ξ : X → LX and γ ∈ L∂(L) = U(L) we have

(x ,∇γ) = L∂()(ξ(x), γ)

=
∧
ϕ∈L

[γ(ϕ),
∨

y∈X

(y , ϕ)⊗ ξ(x)(y)]

If γ = L(ϕ,−), we obtain the semantics of the 3-operator from Bou et al.

(x ,∇L(ϕ,−)) =
∨

y∈X

(y , ϕ)⊗ ξ(x)(y).
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Example: ∇ for P-coalgebras

Consider a quantale V such that ⊗ = ∧. Given a P-coalgebra ξ : X → PX ,
the ∇-semantics wrt ξ is given as follows. Observe that P = P∂ , thus L is a
P-algebra. For every x ∈X and γ ∈ P∂(L) = P(L) we have

(x ,∇γ) = P∂()(ξ(x), γ)

=
∧

y∈X

[ξ(x)(y),
∨
ϕ∈L

(y , ϕ)⊗ γ(ϕ)]

⊗
∧
ϕ∈L

[γ(ϕ),
∨

y∈X

(y , ϕ)⊗ ξ(x)(y)]
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