Coalgebras over enriched categories

Daniela Petrişan

joint work with Marta Bílková, Alexander Kurz and Jiří Velebil

Lyon 17 June 2013

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.
- Given an endofunctor $T : C \rightarrow C$, a *T*-coalgebra is a *C*-morphism

$$\xi: X \to TX$$

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.
- Given an endofunctor $T : C \rightarrow C$, a *T*-coalgebra is a *C*-morphism

$$\xi: X \to TX$$

• *T* induces a notion of behaviour equivalence that generalizes the bisimilarity defined for each specific system.

 Moss defined a logic for coalgebras for *T* : Set → Set which is parametric in *T*.

Moss' logic

- Moss defined a logic for coalgebras for *T* : Set → Set which is parametric in *T*.
- The collection of formulas \mathcal{L} is defined inductively by closing under infinite conjunctions and by closing under the functor \mathcal{T} itself, so that the logic can be seen as an algebra

 $(\mathcal{P}+T)(\mathcal{L}) \to \mathcal{L}$

Moss' logic

- Moss defined a logic for coalgebras for T : Set → Set which is parametric in T.
- The collection of formulas \mathcal{L} is defined inductively by closing under infinite conjunctions and by closing under the functor \mathcal{T} itself, so that the logic can be seen as an algebra

$$(\mathcal{P}+T)(\mathcal{L}) \to \mathcal{L}$$

• This means that \mathcal{L} is closed under ∇ , if $\gamma \in \mathcal{T}(\mathcal{L})$ then $\nabla \gamma \in \mathcal{L}$.

Example: ∇ for the powerset functor *P*

If X is a Kripke frame with the accessibility relation R and γ is a set of formulas then

- \Vdash ($x, \nabla \gamma$) when
 - for all $\alpha \in \gamma$ there is $y \in R(x)$ s.t. $\Vdash (y, \alpha)$ and
 - for all $y \in R(x)$ there exists $\alpha \in \gamma$ s.t. $\Vdash (y, \alpha)$.

In the standard modal language we have

$$\nabla \gamma = \Box \bigvee \gamma \land \bigwedge \Diamond \gamma$$

but also \Box and \diamond can be defined in terms of ∇ .

The semantics of $\boldsymbol{\nabla}$

The semantics of the logic w.r.t. a coalgebra $\xi : X \to TX$ and a state x in X is described via a relation

$$\vdash_{\xi} \subseteq X imes \mathcal{L}$$

The semantics of the operator ∇ is then given using the relation lifting \overline{T} via the inductive clause

$$\Vdash (\mathbf{x}, \nabla \gamma) \Leftrightarrow \overline{T}(\Vdash)(\xi(\mathbf{x}), \gamma).$$

Thus the next diagram commutes in the category Rel of sets and relations

We need T to preserve weak pullbacks. Under this assumption Moss also showed that ∇ is invariant under bisimilarity.

Classical result on relation lifting

Theorem

For a functor T : Set \rightarrow Set the following are equivalent:

• There is a monotone functor \overline{T} : Rel(Set) \rightarrow Rel(Set) such that the square

commutes.

• T preserves weak pullbacks.

Moving to the many-valued setting

The satisfaction relation $\Vdash: X \times \mathcal{L} \rightarrow 2$ could take more values, say in [0, 1].

The idea is to use 'relations' in an enriched setting, so we will consider

 $\Vdash: X^{op} \otimes \mathcal{L} \to \mathscr{V}$

where \mathscr{V} is a commutative quantale.

We will enrich all our categories, functors, etc. in a (co)complete symmetric monoidal closed base category \mathscr{V} .

Commutative Quantales

A commutative quantale

$$\mathscr{V} = (\mathscr{V}_o, \otimes, I, [-, -])$$

is a symmetric monoidal structure such that

- *V_o* is a complete lattice with the lattice order written as ≤, the symbol ⊥
 denotes the least element and ⊤ the greatest element of *V_o*.
- \otimes is a symmetric monoidal structure on \mathscr{V}_o with a unit element *I*.
- The closed structure (the internal hom) of 𝒞_o is denoted by [x, y]. Hence we have adjunction relations

$$x \otimes y \leq z$$
 iff $y \leq [x, z]$

for every x, y, z in \mathcal{V}_o .

Examples of quantales

- The unit interval [0; 1] with the usual order and the Łukasiewicz tensor x ⊗ y = max{x + y − 1,0}. The internal hom is given by [x, y] = if x ≤ y then 1 else 1 − x + y.
- The unit interval [0; 1] with the usual order and the Gödel tensor x ⊗ y = min{x, y}. The internal hom is given by [x, y] = if x ≤ y then 1 else y.
- So The unit interval [0; 1] with the usual order and the product tensor $x \otimes y = x \cdot y$.

The internal hom is given by $[x, y] = \text{if } x \leq y \text{ then 1 else } \frac{y}{x}$.

More examples

• \mathcal{V}_o is the two-element chain 2, i.e., there are two objects 0 and 1 with $0 \le 1$.

The tensor in 2 is the meet and the internal hom is implication.

- 𝒞_o is the unit interval [0; 1] with ≤ being the reversed order ≥_ℝ of the real numbers. The unit *I* is 0 and x ⊗ y = max{x, y} where the maximum is taken w.r.t. the usual order ≤_ℝ. The internal hom is given by [0, 1](x, y) = if x ≥_ℝ y then 0 else y.
- 𝒞₀ is the interval [0; ∞] with ≤ being the reversed order ≥_ℝ of the reals. Extend the usual addition of nonnegative reals by putting x + ∞ = ∞ + x = ∞, for every x ∈ [0; ∞] and let x ⊗ y = x + y, the unit *I* being 0. The internal hom is given by truncated substraction [0, 1](x, y) = y ∸ x = if x ≥_ℝ y then 0 else y − x.

𝒱-categories

Definition

A category \mathscr{A} enriched in \mathscr{V} (or, a \mathscr{V} -category) consists of:

A class of objects denoted by a, b, ...

So For every pair *a*, *b* of objects a *hom-object* $\mathscr{A}(a, b)$ in \mathscr{V}_o .

such that

Sor every object a there is an inequality

 $I \leq \mathscr{A}(a, a)$

witnessing the "choice of the identity morphism on a".

For every triple a, b, c of objects there is an inequality

 $\mathscr{A}(b,c)\otimes\mathscr{A}(a,b)\leq\mathscr{A}(a,c)$

witnessing "the composition of morphisms".

Examples

- When $\mathscr{V} = 2$, a \mathscr{V} -category is a preorder.
- When 𝒴 is [0, 1] with the reversed order, a 𝒴 category 𝒴 is a generalised ultrametric space: the hom-object 𝒴 (a, b) is the "distance" of a and b
- When 𝒴 is [0,∞] with the reversed order, a 𝒴-category 𝒴 is a generalised metric space: the hom-object 𝒴 (a, b) is the "distance" of a and b

\mathscr{V} -functors

Definition

Given \mathscr{V} -categories \mathscr{A} , \mathscr{B} , a \mathscr{V} -functor $f : \mathscr{A} \to \mathscr{B}$ is given by the following data:

- An object assignment: for every object a in A, there is a unique object fa in B.
- An action on hom-objects: for every pair a, a' of objects of A there is an inequality

$$\mathscr{A}(a,a') \leq \mathscr{B}(\mathit{fa},\mathit{fa'})$$

in \mathscr{V}_o .

Relations in enriched setting

For a general base category \mathscr{V} , a "relation"

 $R: \mathscr{A} \longrightarrow \mathscr{B}$

from a \mathscr{V} -category \mathscr{A} to a \mathscr{V} -category \mathscr{B} is a \mathscr{V} -functor of the form

 $R:\mathscr{B}^{op}\otimes\mathscr{A}\to\mathscr{V}$

called a *module* and Given modules

 $R: \mathscr{A} \longrightarrow \mathscr{B} \qquad S: \mathscr{B} \longrightarrow \mathscr{C}$

we define their *composite*

$$S \cdot R : \mathscr{A} \longrightarrow \mathscr{C}$$

to be the functor with values

$$S \cdot R(c, a) = \bigvee_{b} S(c, b) \otimes R(b, a)$$

for all c and a.

By \mathscr{V} -mod we denote the 2-category of \mathscr{V} -modules (= "relations")

A 2-functor $(-)_\diamond$: \mathscr{V} -cat \rightarrow \mathscr{V} -mod

Definition

Given $f : \mathscr{A} \to \mathscr{B}$ in \mathscr{V} -cat, the module $f_{\diamond} : \mathscr{A} \longrightarrow \mathscr{B}$ given by

 $f_\diamond(b,a) = \mathscr{B}(b,fa)$

is called the graph of f.

every module f_{\diamond} is a left adjoint in \mathscr{V} -mod, having the module

 $f^{\diamond}(a,b) = \mathscr{B}(fa,b)$

as a right adjoint.

When can we lift a /-cat functor to /-mod?

A relation lifting of a 2-functor $T : \mathscr{V}$ -cat $\rightarrow \mathscr{V}$ -cat is a 2-functor $\overline{T} : \mathscr{V}$ -mod $\rightarrow \mathscr{V}$ -mod, making the square

commutative.

Exact squares

Definition

Call a lax square

$$\begin{array}{c} \mathscr{P} \xrightarrow{p_1} \mathscr{B} \\ \mathcal{P}_0 \downarrow & \nearrow & \downarrow g \\ \mathscr{A} \xrightarrow{f} \mathscr{C} \end{array}$$

in *Y*-cat *exact*, if the equality

$$\mathscr{C}(\mathit{fa},\mathit{gb}) = \bigvee_{w} \mathscr{A}(a,p_0w) \otimes \mathscr{B}(p_1w,b)$$

holds, naturally in *a* and *b*.

The main result

Theorem

For $T : \mathscr{V}$ -cat $\rightarrow \mathscr{V}$ -cat, the following are equivalent:

• There exists $\overline{T} : \mathscr{V}$ -mod $\rightarrow \mathscr{V}$ -mod such that the following square

commutes.

Relations in enriched setting

A module can be represented by a cospan

called the *collage* of *R* that becomes a two-sided discrete fibration in $(\mathscr{V}\text{-}cat)^{op}$. the category Coll(*R*) is defined as follows:

- Objects of Coll(R) are the disjoint union of objects of \mathscr{A} and \mathscr{B} .
- Ocll(R)(a, a') = $\mathscr{A}(a, a')$ in case both a and a' are in \mathscr{A} .
- Ocli(R)(b, b') = $\mathscr{B}(b, b')$ in case both b and b' are in \mathscr{B} .
- Scoll(R)(b, a) = R(b, a) in case b is in \mathcal{B} and a is in \mathcal{A} .
- Soll(R)(a, b) = \perp in case a is in \mathscr{A} and b is in \mathscr{B} .

Examples of functors with BCC

The Kripke-polynomial 2-functors $T: \mathscr{V}$ -cat $\rightarrow \mathscr{V}$ -cat, given by the grammar

$$T ::= Id \mid \text{const}_{\mathscr{X}} \mid T + T \mid T \times T \mid T \otimes T \mid T^{\partial} \mid \mathbb{L}T$$

The 2-functor T^{∂} (the *dual* of the 2-functor *T*) is defined as the following composite

$$\mathscr{V}\operatorname{cat} \xrightarrow{(-)^{op}} \mathscr{V}\operatorname{cat}^{co} \xrightarrow{T^{co}} \mathscr{V}\operatorname{cat}^{co} \xrightarrow{(-)^{op}} \mathscr{V}\operatorname{cat}$$
$$\mathscr{A} \longmapsto \mathscr{A}^{op} \longmapsto T(\mathscr{A}^{op}) \longmapsto (T(\mathscr{A}^{op}))^{op}$$

The 2-functor \mathbb{L} sends \mathscr{A} to $[\mathscr{A}^{op}, \mathscr{V}]$ and $f : \mathscr{A} \to \mathscr{B}$ is sent to the left Kan extension along f^{op} . The 2-functor \mathbb{U} is defined as \mathbb{L}^{∂} . It sends \mathscr{A} to $[\mathscr{A}, \mathscr{V}]^{op}$.

The powerset functor on preorders

A preorder \mathscr{A} is mapped to the set of *all subsets of the carrier* of \mathscr{A} , ordered by the so-called Egli-Milner order

$$B \le A \Leftrightarrow \begin{cases} \forall b \in B . \exists a \in A . b \le_{\mathscr{A}} a \\ \land \\ \forall a \in A . \exists b \in B . b \le_{\mathscr{A}} a \end{cases}$$

The Pos-collapse of \mathbb{P} is the convex powerspace functor, which provides the Kripke semantics for negation-free modal logic in the same way as the usual powerset provides the Kripke semantics for classical modal logic.

The powerset functor on 𝒴-cat

The objects of $\mathbb{P}\mathscr{A}$ are arbitrary \mathscr{V} -subsets $\varphi: |\mathscr{A}| \to \mathscr{V}$ of \mathscr{A} . For any $\varphi, \psi: |\mathscr{A}| \to \mathscr{V}$ put

$$\mathbb{P}\mathscr{A}(arphi,\psi)=[|\mathscr{A}|,\mathscr{V}](arphi,\psi^{\downarrow})\otimes[|\mathscr{A}|,\mathscr{V}](\psi,arphi^{\uparrow})$$

or, in a detailed formula, by

$$\mathbb{P}\mathscr{A}(\varphi,\psi) = \bigwedge_{a} [\varphi(a), \bigvee_{a'} \psi(a') \otimes \mathscr{A}(a,a')] \otimes \bigwedge_{a'} [\psi(a'), \bigvee_{a} \varphi(a) \otimes \mathscr{A}(a,a')]$$

that can be perceived as the "Egli-Milner condition in the \mathscr{V} -setting".

The powerset functor on /-cat

Given a \mathscr{V} -functor $f : \mathscr{A} \to \mathscr{B}$ and \mathscr{V} -subset $\varphi : |\mathscr{A}| \to \mathscr{V}$, define $\mathbb{P}f(\varphi) : |\mathscr{B}| \to \mathscr{V}$ by $b \mapsto \bigvee_{a} |\mathscr{B}|(fa, b) \otimes \varphi a.$

In other words, $\mathbb{P}f(\varphi)$ is the value of a left Kan extension of φ along $|f| : |\mathscr{A}| \to |\mathscr{B}|$. In particular, the equality

$$[|B|, \mathscr{V}](\mathbb{P}f(\varphi), \psi) = [|\mathscr{A}|, \mathscr{V}](\varphi, \psi \cdot |f|)$$

holds for all $\varphi: |\mathscr{A}| \to \mathscr{V}, \psi: |\mathscr{B}| \to \mathscr{V}.$

Then $\mathbb{P}: \mathscr{V}$ -cat $\rightarrow \mathscr{V}$ -cat is a 2-functor.

Coalgebras and bisimilarity in enriched setting

Definition

A *T*-coalgebra is a \mathscr{V} -functor $\xi : \mathscr{X} \to T \mathscr{X}$. Elements of \mathscr{X} are called states and ξ is the transition structure. A coalgebra morphism from $\xi : \mathscr{X} \to T \mathscr{X}$ to $\xi' : \mathscr{X}' \to T \mathscr{X}'$ is \mathscr{V} -functor $f : \mathscr{X} \to \mathscr{X}'$ such that $\xi' \cdot f = Tf \cdot \xi$. The category of *T*-coalgebras is denoted by Coalg(*T*) and we write $U : \text{Coalg}(T) \to \mathscr{V}$ -cat and $V : \mathscr{V}$ -cat \to Set for the respective forgetful functors.

Definition

Bisimilarity, or behavioural equivalence, is the smallest equivalence relation on elements of coalgebras generated by pairs

(x, VUf(x))

where x is an element of a coalgebra and f is a coalgebra morphism.

∇ over \mathscr{V} -cat

The satisfaction relation should be a \mathscr{V} -module

$$\Vdash: \mathscr{X} \otimes \mathcal{L} \to \mathscr{V},$$

or equivalently,

$$\vdash: \mathcal{L} \longrightarrow \mathscr{X}^{op} .$$

Next we want to assume that \mathcal{L} comes equipped with a ∇ -operator. The ^{op} makes it necessary to take formulas of the kind $\nabla \gamma$ not from $T\mathcal{L}$ but from $T^{\partial}\mathcal{L}$.

Recall that $T^{\partial}(\mathscr{X}) = (T(\mathscr{X}^{op}))^{op}$, so that T and T^{∂} agree on discrete \mathscr{X} . So we assume that we have an algebra

$$T^{\partial}\mathcal{L} \to \mathcal{L}$$

Semantics of ∇

Given a *T*-coalgebra ξ , we define the semantics of ∇ via the relation lifting of T^{∂} :

$$\Vdash (\mathbf{x}, \nabla \gamma) = \overline{T^{\partial}} (\Vdash) (\xi(\mathbf{x}), \gamma)$$

Notice that T^{∂} preserves exact squares whenever T does. In a diagram

Invariance under bisimulations

Proposition

If T preserves exact squares, then ∇ is invariant under bisimilarity.

Idea of the proof: To $\Vdash: \mathscr{X} \otimes \mathcal{L} \to \mathscr{V}$ corresponds a \mathscr{V} -functor $\llbracket \cdot \rrbracket : \mathcal{L} \to [\mathscr{X}, \mathscr{V}]$. The fact that all $\varphi \in \mathcal{L}$ are invariant under bisimilarity implies that

$$\llbracket \cdot
rbracket_{\xi} : \mathcal{L} o [U\xi, \mathscr{V}]$$

is natural in ξ . We have to show that

$$\llbracket \nabla \cdot \rrbracket_{\xi} : T^{\partial} \mathcal{L} \to [U\xi, \mathscr{V}]$$

is also natural in ξ . We use the commutativity of:

Example: ∇ for \mathbb{U} -coalgebras

Recall that ∇ is an algebra for the functor $\mathbb{U}^\partial=\mathbb{L},$ hence

$$abla : \mathbb{L}(\mathcal{L}) \to \mathcal{L}.$$

We have

Given a U-coalgebra $\xi : \mathscr{X} \to \mathbb{U}\mathscr{X}$ and $\gamma \in \mathbb{U}^{\partial}(\mathcal{L}) = \mathbb{L}(\mathcal{L})$ we have

$$\begin{split} \Vdash(\pmb{x}, \nabla\gamma) &= \overline{\mathbb{U}^{\partial}}(\Vdash)(\xi(\pmb{x}), \gamma) \\ &= \bigwedge_{\pmb{y} \in \mathscr{X}} [\xi(\pmb{x})(\pmb{y}), \bigvee_{\varphi \in \mathcal{L}} \Vdash(\pmb{y}, \varphi) \otimes \gamma(\varphi)] \end{split}$$

For $\gamma = \mathcal{L}(-, \varphi)$ we obtain the semantics of \Box from Bou et al.

$$\Vdash (\mathbf{x}, \nabla \mathcal{L}(-, \varphi)) = \bigwedge_{\mathbf{y} \in \mathscr{X}} [\xi(\mathbf{x})(\mathbf{y}), \Vdash (\mathbf{y}, \varphi)]$$

Example: ∇ for \mathbb{L} -coalgebras

Given a L-coalgebra $\xi : \mathscr{X} \to \mathbb{L}\mathscr{X}$ and $\gamma \in \mathbb{L}^{\partial}(\mathcal{L}) = \mathbb{U}(\mathcal{L})$ we have

$$\begin{array}{lll} \mathbb{P}(\pmb{x}, \nabla \gamma) &=& \overline{\mathbb{L}^{\partial}}(\mathbb{P})(\xi(\pmb{x}), \gamma) \\ &=& \bigwedge_{\varphi \in \mathcal{L}} [\gamma(\varphi), \bigvee_{\pmb{y} \in \mathscr{X}} \mathbb{P}(\pmb{y}, \varphi) \otimes \xi(\pmb{x})(\pmb{y})] \end{array}$$

If $\gamma = \mathcal{L}(\varphi, -)$, we obtain the semantics of the \diamond -operator from Bou et al.

$$\Vdash (\mathbf{x}, \nabla \mathcal{L}(\varphi, -)) = \bigvee_{\mathbf{y} \in \mathscr{X}} \Vdash (\mathbf{y}, \varphi) \otimes \xi(\mathbf{x})(\mathbf{y}).$$

Example: ∇ for \mathbb{P} -coalgebras

Consider a quantale \mathscr{V} such that $\otimes = \wedge$. Given a \mathbb{P} -coalgebra $\xi : \mathscr{X} \to \mathbb{P}\mathscr{X}$, the ∇ -semantics wrt ξ is given as follows. Observe that $\mathbb{P} = \mathbb{P}^{\partial}$, thus \mathcal{L} is a \mathbb{P} -algebra. For every $x \in \mathscr{X}$ and $\gamma \in \mathbb{P}^{\partial}(\mathcal{L}) = \mathbb{P}(\mathcal{L})$ we have

$$\begin{split} \Vdash(\mathbf{x}, \nabla \gamma) &= & \overline{\mathbb{P}^{\partial}}(\Vdash)(\xi(\mathbf{x}), \gamma) \\ &= & \bigwedge_{\mathbf{y} \in \mathscr{X}} [\xi(\mathbf{x})(\mathbf{y}), \bigvee_{\varphi \in \mathcal{L}} \Vdash(\mathbf{y}, \varphi) \otimes \gamma(\varphi)] \\ &\otimes & \bigwedge_{\varphi \in \mathcal{L}} [\gamma(\varphi), \bigvee_{\mathbf{y} \in \mathscr{X}} \Vdash(\mathbf{y}, \varphi) \otimes \xi(\mathbf{x})(\mathbf{y})] \end{split}$$