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Coalgebras

@ Coalgebras provide a unifying framework for a wide range of state-based
systems.

@ Examples: infinite labelled trees, finite automata, streams, transition
systems, Kripke structures.
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Coalgebras

@ Coalgebras provide a unifying framework for a wide range of state-based
systems.

@ Examples: infinite labelled trees, finite automata, streams, transition
systems, Kripke structures.

@ Given an endofunctor T : C — C, a T-coalgebra is a C-morphism
EX—>TX

@ T induces a notion of behaviour equivalence that generalizes the
bisimilarity defined for each specific system.



Moss’ logic

@ Moss defined a logic for coalgebras for T : Set — Set which is parametric
inT.
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Moss’ logic

@ Moss defined a logic for coalgebras for T : Set — Set which is parametric
inT.

@ The collection of formulas £ is defined inductively by closing under infinite
conjunctions and by closing under the functor T itself, so that the logic
can be seen as an algebra

(P+TYL)— L

@ This means that £ is closed under V, if v € T(£) then Vv € L.



Example: V for the powerset functor P

If X is a Kripke frame with the accessibility relation R and ~ is a set of
formulas then
IF (x, V) when

@ forall a € ythereis y € R(x) s.t. I- (y,«) and
o for all y € R(x) there exists a € v s.t. IF (¥, a).

In the standard modal language we have

Vy=0\/vA Oy

but also O and < can be defined in terms of V.



The semantics of V

The semantics of the logic w.r.t. a coalgebra £ : X — TX and a state x in X is
described via a relation
|F§ - XxL

The semantics of the operator V is then given using the relation liting T via
the inductive clause

I=(x,Vy) & T(F)(E(x),7)-
Thus the next diagram commutes in the category Rel of sets and relations

TELL

m% fk

TX—— X

We need T to preserve weak pullbacks. Under this assumption Moss also
showed that V is invariant under bisimilarity.
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Classical result on relation lifting

Theorem
For a functor T : Set — Set the following are equivalent:
@ There is a monotone functor T : Rel(Set) — Rel(Set) such that the

square
Rel(Set) — — T - Rel(Set)
)] [
Set T Set
commutes.

@ T preserves weak pullbacks.
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Moving to the many-valued setting

The satisfaction relation IF: X x £ — 2 could take more values, say in [0, 1].

The idea is to use ‘relations’ in an enriched setting, so we will consider
F: XPR LV

where ¥ is a commutative quantale.
We will enrich all our categories, functors, etc. in a (co)complete symmetric
monoidal closed base category 7.



Commutative Quantales

A commutative quantale
7/ = (%7 ®a Ia [_7 _])

is a symmetric monoidal structure such that

@ 7, is a complete lattice with the lattice order written as <, the symbol L
denotes the least element and T the greatest element of 7.

@ ® is a symmetric monoidal structure on ¥, with a unit element /.

@ The closed structure (the internal hom) of ¥; is denoted by [x, y]. Hence
we have adjunction relations

xey<z iff y<]xZ]

for every x, y, zin ;.



Examples of quantales

@ The unit interval [0; 1] with the usual order and

the Lukasiewicz tensor x @ y = max{x +y — 1,0}.

The internal hom is given by [x,y] = ifx <ythen1else1—x+y.
@ The unit interval [0; 1] with the usual order and

the Gddel tensor x ® y = min{x, y}.

The internal hom is given by [x,y] = if x < ythen 1 else y.
© The unit interval [0; 1] with the usual order and

the product tensor x @ y = x - y.

The internal hom is given by [x,y] = if x < y then 1 else 4

X



More examples

@ 7, is the two-element chain 2, i.e., there are two objects 0 and 1 with
0<1.
The tensor in 2 is the meet and the internal hom is implication.

@ 7, is the unit interval [0; 1] with < being the reversed order >y of the real
numbers.
The unit /is 0 and x ® y = max{x, y} where the maximum is taken w.r.t.
the usual order <g.
The internal hom is given by [0, 1](x, y) = if x > y then 0 else y.

@ 7, is the interval [0; oo] with < being the reversed order >y of the reals.
Extend the usual addition of nonnegative reals by putting
X+ 00 =00+ X = o0, for every x € [0; 0] and let x ® y = x + y, the unit /
being 0.
The internal hom is given by truncated substraction
[0,1](x,y) =y ~x= ifx >r ythen O else y — x.
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¥ -categories

Definition
A category < enriched in ¥ (or, a ¥ -category) consists of:
@ A class of objects denoted by a, b, ...

@ For every pair a, b of objects a hom-object </(a, b) in ¥,.

such that
@ For every object a there is an inequality

1< d(a,a)

witnessing the “choice of the identity morphism on a”.
@ For every triple a, b, ¢ of objects there is an inequality

g (b,c)® (a,b) < (a,c)

witnessing “the composition of morphisms”.
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Examples

@ When ¥ =2, a ¥-category is a preorder.

@ When 7 is [0, 1] with the reversed order, a ¥ -category < is a generalised
ultrametric space: the hom-object <7 (a, b) is the “distance” of aand b

@ When ¥ is [0, oo] with the reversed order, a ¥ -category < is a
generalised metric space: the hom-object <7 (a, b) is the “distance” of a
and b
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¥ -functors

Definition

Given ¥ -categories <7, %, a ¥ -functor f : o — 2 is given by the following
data:

@ An object assignment: for every object ain .27, there is a unique object fa

in £.

@ An action on hom-objects: for every pair a, a of objects of .= there is an

inequality
o (a,d) < B(fa, fd)

in 7.
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Relations in enriched setting
For a general base category 7/, a “relation”

R. &/ —+— %A
from a ¥'-category <7 to a ¥ -category £ is a ¥'-functor of the form
R:2B%@d =V

called a module and
Given modules
Rt —+—RB S:B—"+—F

we define their composite
SR/ —+—¢
to be the functor with values
S-R(c,a) = \/ S(c,b) @ R(b,a)
b

for all cand a.
By 7mod we denote the 2-category of »-modules (= “relations”)
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A 2-functor (—), : #“cat — #*mod

Definition
Given f : & — 2 in Y~cat, the module f, : &/ —+—% given by

fo(b, @) = A(b, fa)

is called the graph of f.

every module f; is a left adjoint in ¥mod, having the module
f°(a,b) = %(fa, b)

as a right adjoint.
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When can we lift a ¥“cat functor to ¥*mod?

A relation lifting of a 2-functor T : ¥“cat — ““cat is a 2-functor

T : ¥mod — ¥mod, making the square

¥*mod % ¥*mod

)] [
Y-cat — > Y~cat

T

commutative.
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Exact squares

Definition
Call a lax square
PRy
Po| lg
o T> €

in ¥cat exact, if the equality

% (fa,gb) = \/ 7/ (a, pow) @ %(p1w, b)

holds, naturally in a and b.
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The main result

Theorem
For T : ¥-<cat — ~cat, the following are equivalent:
@ There exists T : #mod — ¥mod such that the following square

¥-mod % ¥-mod

(—)ﬁ Je

—_—
Y-cat T Y-cat

commutes.
@ T preserves exact squares.
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Relations in enriched setting

A module can be represented by a cospan

# o
o "Goll(R)” "

called the collage of R that becomes a two-sided discrete fibration in (#“cat)%®
the category Coll(R) is defined as follows:

@ Objects of Coll(R) are the disjoint union of objects of &7 and 4.
@ Coll(R)(a,d) = #/(a,d) in case both aand & are in .«.

@ Coll(R)(b,b") = #(b,b') in case both b and b’ are in £.

@ Coll(R)(b,a) = R(b,a) incase bisin # and ais in «.

@ Coll(R)(a,b) = Lincase aisin & and bis in 4.
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Examples of functors with BCC

The Kripke-polynomial 2-functors T : #“cat — ¥“cat, given by the grammar
Tu=ld|consty | T4+ T|TxT|TQT|T?|LT

The 2-functor T? (the dual of the 2-functor T) is defined as the following
composite

_\op Tco (_ op
Y-cat —— #cat® Ycat® ¥-cat

| o OP | » T(/P) —— (T (27 °P))°P

The 2-functor L sends < to [&7%P, ¥ ] and f : &/ — A is sent to the left Kan
extension along f°°.
The 2-functor U is defined as I.?. It sends .« to [«, ¥]%.
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The powerset functor on preorders

A preorder < is mapped to the set of all subsets of the carrier of <7, ordered
by the so-called Egli-Milner order

VvbeB.JdJacA.b<ya
B<A & A
VacA.dbeB.b<y  a

The Pos-collapse of P is the convex powerspace functor, which provides the

Kripke semantics for negation-free modal logic in the same way as the usual
powerset provides the Kripke semantics for classical modal logic.
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The powerset functor on #“cat

The objects of P/ are arbitrary ¥-subsets ¢ : |«7/| — ¥ of «7. For any
0,V || — ¥ put

o (p.0) = 1], (e, 0 @ 1], V1(v, ")

or, in a detailed formula, by

0= (@ v o (@) o \lo(@). V@) @ o (a.4)]

a

that can be perceived as the “Egli-Milner condition in the ¥ -setting”.
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The powerset functor on #“cat

Given a ¥-functor f : &/ — % and ¥ -subset ¢ : |&/| — ¥, define
Pf(p) : |B| — ¥ by

b \/|2(fa, b) @ pa.
a

In other words, Pf(y) is the value of a left Kan extension of ¢ along
|f| : |«/| — |#). In particular, the equality

(1B, 71(Bf(0), ) = ||, ¥ 1(, ¥ - |f])
holds for all ¢ : || — ¥, v : | B — 7.

Then P : ¥“cat — ¥“cat is a 2-functor.
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Coalgebras and bisimilarity in enriched setting

Definition

A T-coalgebrais a ¥-functor ¢ : 2~ — T2 . Elements of 2" are called states
and ¢ is the transition structure. A coalgebra morphism from ¢ : 2" — T2 to
& — TZ'is ¥-functor f : 2 — 2 such that ¢’ - f = Tf-£. The category
of T-coalgebras is denoted by Coalg(T) and we write U : Coalg(T) — ¥“cat
and V : ¥cat — Set for the respective forgetful functors.

Definition

Bisimilarity, or behavioural equivalence, is the smallest equivalence relation
on elements of coalgebras generated by pairs

(x, VUf(x))

where x is an element of a coalgebra and f is a coalgebra morphism.
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V over ¥-cat

The satisfaction relation should be a ¥-module

F ZeL—7,
or equivalently,

- L —— 2P .

Next we want to assume that £ comes equipped with a V-operator.
The °%? makes it necessary to take formulas of the kind V-~ not from T £ but
from TOL.

Recall that T9(.2°) = (T(2° %)), so that T and T? agree on discrete 2". So
we assume that we have an algebra

ToL > L



Semantics of V

Given a T-coalgebra &, we define the semantics of V via the relation lifting of
T9:

IF(x, V) = T2(IF)(£(x), 7)

Notice that T? preserves exact squares whenever T does.
In a diagram

T

\Y
ToL

To(IF) f f I
TO(XO 0 (Eop)o
(XP) = (TX)P / X°P

26/30



Invariance under bisimulations

Proposition
If T preserves exact squares, then V is invariant under bisimilarity. J

Idea of the proof: To IF: 2" ® L — ¥ corresponds a ¥ -functor
[1: £—[2,7]. The fact that all ¢ € £ are invariant under bisimilarity implies
that

is natural in &.
We have to show that
[V :T7L - [Ug, 7]

is also natural in £&. We use the commutativity of:

ToL v c

Ta[[-]]l - J[[-]]

. v
T2, 7] LEZN [T, V"5 (2, 7]
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Example: V for U-coalgebras

Recall that V is an algebra for the functor U? = L, hence

V:L(L) = L.

We have
Given a U-coalgebra ¢ : 2" — U2 and v € U?(£) = (L) we have

F(x, Vy) = T2(F)(E(x),7)
= N KXW, V IF.9) @)

YeX pel

For v = L(—, ¢) we obtain the semantics of O from Bou et al.

IH(x, = N\ EG)W),IFy, 9)]

yex
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Example: V for L-coalgebras

Given a L-coalgebra ¢ : 2 — L2 and v € L?(£) = U(L) we have

Fx,Vy) = L(F)(E(x),7)
= ADh), V Fy.9) @x)w)

peLl yex

If v = L(p, —), we obtain the semantics of the <-operator from Bou et al.

FGVE(p =) =\ Ry, 9) @ E00().

YeEX
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Example: V for P-coalgebras

Consider a quantale ¥ such that @ = A. Given a P-coalgebra ¢ : 2" — P2,
the V-semantics wrt ¢ is given as follows. Observe that P = P?, thus L is a
PP-algebra. For every x € 2" and v € P?(£) = P(£) we have

F(F)(6(x),7)
= A EOO). V Hy.0) ©1()]

yex peL

AB@). \ Hy.9) @ )]

peLl ye&

I-(x, V)

®
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