Coalgebras over enriched categories

Daniela Petrişan

joint work with Marta Bílková, Alexander Kurz and Jiří Velebil

Lyon 17 June 2013

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.
- **•** Given an endofunctor $T : C \rightarrow C$, a *T*-coalgebra is a *C*-morphism

$$
\xi: X \to TX
$$

Coalgebras

- Coalgebras provide a unifying framework for a wide range of state-based systems.
- Examples: infinite labelled trees, finite automata, streams, transition systems, Kripke structures.
- **•** Given an endofunctor $T : C \rightarrow C$, a *T*-coalgebra is a *C*-morphism

$$
\xi:X\to TX
$$

T induces a notion of behaviour equivalence that generalizes the bisimilarity defined for each specific system.

• Moss defined a logic for coalgebras for $T : Set \rightarrow Set$ which is parametric in *T*.

Moss' logic

- \bullet Moss defined a logic for coalgebras for $T : Set \rightarrow Set$ which is parametric in *T*.
- \bullet The collection of formulas $\mathcal L$ is defined inductively by closing under infinite conjunctions and by closing under the functor *T* itself, so that the logic can be seen as an algebra

 $({\cal P} + {\cal T})({\cal L}) \rightarrow {\cal L}$

Moss' logic

- \bullet Moss defined a logic for coalgebras for $T : Set \rightarrow Set$ which is parametric in *T*.
- \bullet The collection of formulas $\mathcal L$ is defined inductively by closing under infinite conjunctions and by closing under the functor *T* itself, so that the logic can be seen as an algebra

$$
(\mathcal{P}+\mathcal{T})(\mathcal{L})\to\mathcal{L}
$$

• This means that L is closed under ∇ , if $\gamma \in \mathcal{T}(\mathcal{L})$ then $\nabla \gamma \in \mathcal{L}$.

Example: ∇ for the powerset functor *P*

If X is a Kripke frame with the accessibility relation *R* and γ is a set of formulas then

- \Vdash $(x, \nabla \gamma)$ when
	- for all $\alpha \in \gamma$ there is $y \in R(x)$ s.t. $\Vdash (y, \alpha)$ and
	- for all $y \in R(x)$ there exists $\alpha \in \gamma$ s.t. $\Vdash (y, \alpha)$.

In the standard modal language we have

$$
\nabla \gamma = \Box \bigvee \gamma \wedge \bigwedge \Diamond \gamma
$$

but also \Box and \diamondsuit can be defined in terms of ∇ .

The semantics of ∇

The semantics of the logic w.r.t. a coalgebra $\xi : X \to TX$ and a state x in X is described via a relation

$$
\Vdash_\xi \ \subseteq X \times \mathcal{L}
$$

The semantics of the operator ∇ is then given using the relation lifting \overline{T} via the inductive clause

$$
\Vdash (x,\nabla \gamma) \Leftrightarrow \overline{T}(\Vdash)(\xi(x),\gamma).
$$

Thus the next diagram commutes in the category Rel of sets and relations

We need *T* to preserve weak pullbacks. Under this assumption Moss also showed that ∇ is invariant under bisimilarity.

Classical result on relation lifting

Theorem

For a functor T : Set \rightarrow Set *the following are equivalent:*

There is a monotone functor T : Rel(Set) → Rel(Set) *such that the square*

$$
\text{Rel}(\text{Set}) \text{---} \overline{T} \text{---} \rightarrow \text{Rel}(\text{Set})
$$
\n
$$
(-)_{\diamond} \uparrow \qquad \qquad \uparrow (-)_{\diamond}
$$
\n
$$
\text{Set} \longrightarrow \text{Set}
$$

commutes.

T preserves weak pullbacks.

Moving to the many-valued setting

The satisfaction relation $\Vdash: X \times \mathcal{L} \to Z$ could take more values, say in [0, 1].

The idea is to use 'relations' in an enriched setting, so we will consider

 $\Vdash: X^{op}\otimes \mathcal{L}\to\mathscr{V}$

where $\mathscr V$ is a commutative quantale.

We will enrich all our categories, functors, etc. in a (co)complete symmetric monoidal closed base category $\mathscr V$.

Commutative Quantales

A *commutative quantale*

$$
\mathscr{V}=(\mathscr{V}_o,\otimes,I,[-,-])
$$

is a symmetric monoidal structure such that

- V*^o* is a complete lattice with the lattice order written as ≤, the symbol ⊥ denotes the least element and \top the greatest element of \mathcal{V}_o .
- ⊗ is a symmetric monoidal structure on V*^o* with a unit element *I*.
- The closed structure (the internal hom) of \mathcal{V}_o is denoted by $[x, y]$. Hence we have adjunction relations

$$
x\otimes y\leq z \quad \text{iff} \quad y\leq [x,z]
$$

for every *x*, *y*, *z* in \mathcal{V}_o .

Examples of quantales

- \bullet The unit interval [0; 1] with the usual order and the Łukasiewicz tensor $x \otimes y = \max\{x + y - 1, 0\}$. The internal hom is given by $[x, y] =$ if $x \le y$ then 1 else $1 - x + y$.
- **2** The unit interval [0; 1] with the usual order and the Gödel tensor $x \otimes y = \min\{x, y\}.$ The internal hom is given by $[x, y] =$ if $x \le y$ then 1 else *y*.
- ³ The unit interval [0; 1] with the usual order and the product tensor $x \otimes y = x \cdot y$.

The internal hom is given by $[x, y] =$ if $x \le y$ then 1 else $\frac{y}{x}$.

More examples

 \bullet \mathcal{V}_0 is the two-element chain 2, i.e., there are two objects 0 and 1 with $0 < 1.$

The tensor in 2 is the meet and the internal hom is implication.

- 2 \mathcal{V}_o is the unit interval [0; 1] with \leq being the reversed order $\geq_{\mathbb{R}}$ of the real numbers. The unit *I* is 0 and $x \otimes y = \max\{x, y\}$ where the maximum is taken w.r.t. the usual order $\leq_{\mathbb{R}}$. The internal hom is given by $[0, 1](x, y) =$ if $x \geq_{\mathbb{R}} y$ then 0 else y.
- \bullet \mathscr{V}_o is the interval $[0;\infty]$ with \leq being the reversed order $\geq_{\mathbb{R}}$ of the reals. Extend the usual addition of nonnegative reals by putting $x + \infty = \infty + x = \infty$, for every $x \in [0, \infty]$ and let $x \otimes y = x + y$, the unit *I* being 0. The internal hom is given by truncated substraction $[0, 1](x, y) = y - x =$ if $x \ge_R y$ then 0 else $y - x$.

V -categories

Definition

A category $\mathscr A$ *enriched* in $\mathscr V$ (or, a $\mathscr V$ -category) consists of:

¹ A class of *objects* denoted by *a*, *b*, . . .

2 For every pair *a*, *b* of objects a *hom-object* $\mathscr{A}(a, b)$ in \mathscr{V}_o .

such that

1 For every object *a* there is an inequality

 $I \leq \mathscr{A}$ (*a*, *a*)

witnessing the "choice of the identity morphism on *a*".

² For every triple *a*, *b*, *c* of objects there is an inequality

 $\mathscr{A}(b, c) \otimes \mathscr{A}(a, b) \leq \mathscr{A}(a, c)$

witnessing "the composition of morphisms".

Examples

- **1** When $V = 2$, a V -category is a preorder.
- 2 When $\mathscr V$ is [0, 1] with the reversed order, a $\mathscr V$ -category $\mathscr A$ is a *generalised ultrametric space*: the hom-object $\mathcal{A}(a, b)$ is the "distance" of *a* and *b*
- O When $\mathscr V$ is [0, ∞] with the reversed order, a $\mathscr V$ -category $\mathscr A$ is a *generalised metric space*: the hom-object $\mathcal{A}(a, b)$ is the "distance" of a and *b*

$\mathscr V$ -functors

Definition

Given $\mathscr V$ -categories $\mathscr A$, $\mathscr B$, a $\mathscr V$ -functor $f : \mathscr A \to \mathscr B$ is given by the following data:

- **1** An *object assignment*: for every object a in $\mathscr A$, there is a unique object fa in \mathscr{B}
- 2 An *action on hom-objects*: for every pair *a*, *a'* of objects of $\mathscr A$ there is an inequality

$$
\mathscr{A}(a,a') \leq \mathscr{B}(fa,fa')
$$

in \mathcal{V}_o .

Relations in enriched setting

For a general base category $\mathscr V$, a "relation"

 $R: \mathscr{A} \longrightarrow \mathscr{B}$

from a $\mathcal V$ -category $\mathcal A$ to a $\mathcal V$ -category $\mathcal B$ is a $\mathcal V$ -functor of the form

 $R: \mathcal{B}^{op} \otimes \mathcal{A} \rightarrow \mathcal{V}$

called a *module* and Given modules

 $R: \mathscr{A} \longrightarrow \mathscr{B} \quad S: \mathscr{B} \longrightarrow \mathscr{C}$

we define their *composite*

$$
S\cdot R:\mathscr{A}\longrightarrow\hspace{-3mm}\rightarrow\hspace{-3mm}\mathscr{C}
$$

to be the functor with values

$$
S\cdot R(c,a) = \bigvee_b S(c,b)\otimes R(b,a)
$$

for all *c* and *a*.

By $\mathcal V$ -mod we denote the 2-category of $\mathcal V$ -modules (= "relations")

A 2-functor $(-)_\diamond$: $\mathscr{V}\text{-cat} \to \mathscr{V}\text{-mod}$

Definition

Given $f : \mathscr{A} \to \mathscr{B}$ in $\mathscr{V}\text{-}\mathsf{cat},$ the module $f_\diamond : \mathscr{A} \longrightarrow \mathscr{B}$ given by

$$
f_{\diamond}(b,a) = \mathscr{B}(b, fa)
$$

is called the *graph of f*.

every module f_0 is a left adjoint in $\mathcal V$ -mod, having the module

$$
f^\diamond(a,b) = \mathscr{B}(\textit{fa},b)
$$

as a right adjoint.

When can we lift a $\mathscr{V}\text{-cat}$ functor to $\mathscr{V}\text{-mod}$?

A *relation lifting* of a 2-functor $T : \mathcal{V}\text{-cat} \to \mathcal{V}\text{-cat}$ is a 2-functor \overline{T} : \mathscr{V} -mod $\rightarrow \mathscr{V}$ -mod, making the square

commutative.

Exact squares

Definition

Call a lax square

$$
\begin{array}{c}\n\mathscr{P} \xrightarrow{\mathsf{p}_1} \mathscr{B} \\
\mathsf{p}_0 \downarrow \nearrow \downarrow \mathsf{g} \\
\mathscr{A} \xrightarrow{\mathsf{f}} \mathscr{C}\n\end{array}
$$

in V-cat *exact*, if the equality

$$
\mathscr{C}(\mathit{fa},\mathit{gb})=\bigvee_{w}\mathscr{A}(a,p_0w)\otimes\mathscr{B}(p_1w,b)
$$

holds, naturally in *a* and *b*.

The main result

Theorem

For $T : \mathcal{V}\text{-cat} \to \mathcal{V}\text{-cat}$, the following are equivalent:

¹ *There exists T* : V*-*mod → V*-*mod *such that the following square*

commutes.

Relations in enriched setting

A module can be represented by a *cospan*

called the *collage* of R that becomes a two-sided discrete fibration in (%cat)^{op}. the category $Coll(R)$ is defined as follows:

- **1** Objects of Coll(*R*) are the disjoint union of objects of $\mathscr A$ and $\mathscr B$.
- **2** Coll $(R)(a, a') = \mathscr{A}(a, a')$ in case both *a* and *a'* are in $\mathscr{A}.$
- \bullet Coll $(R)(b,b') = \mathscr{B}(b,b')$ in case both b and b' are in $\mathscr{B}.$
- \bigcirc Coll $(R)(b, a) = R(b, a)$ in case *b* is in $\mathscr B$ and *a* is in $\mathscr A$.
- **5** Coll $(R)(a, b) = \perp$ in case *a* is in $\mathscr A$ and *b* is in $\mathscr B$.

Examples of functors with BCC

The *Kripke-polynomial* 2-functors $T : \mathcal{V}\text{-cat} \to \mathcal{V}\text{-cat}$, given by the grammar

$$
T ::= Id \mid \text{const}_{\mathscr{X}} \mid T + T \mid T \times T \mid T \otimes T \mid T^{\partial} \mid \mathbb{L}T
$$

The 2-functor \mathcal{T}^∂ (the *dual* of the 2-functor $\mathcal{T})$ is defined as the following composite

$$
\begin{aligned}\n\mathscr{V}\text{cat} & \xrightarrow{(-)^{op}} \mathscr{V}\text{cat}^{co} \xrightarrow{\mathcal{T}^{co}} \mathscr{V}\text{cat}^{co} \xrightarrow{(-)^{op}} \mathscr{V}\text{cat} \\
\varnothing & \longmapsto \mathscr{A}^{op} \longmapsto \mathcal{T}(\mathscr{A}^{op}) \longmapsto (\mathcal{T}(\mathscr{A}^{op}))^{op}\n\end{aligned}
$$

The 2-functor $\mathbb L$ sends $\mathscr A$ to $[\mathscr A^{op},\mathscr V]$ and $f:\mathscr A\to\mathscr B$ is sent to the left Kan extension along f^{op} . The 2-functor $\bar{\mathbb{U}}$ is defined as $\mathbb{L}^\partial.$ It sends \mathscr{A} to $[\mathscr{A},\mathscr{V}]^{op}.$

The powerset functor on preorders

A preorder $\mathscr A$ is mapped to the set of *all subsets of the carrier* of $\mathscr A$, ordered by the so-called Egli-Milner order

$$
B \le A \Leftrightarrow \left\{\begin{array}{c}\forall b \in B \ . \ \exists a \in A \ . \ b \leq_{\mathscr{A}} a \\
\land \quad \forall a \in A \ . \ \exists b \in B \ . \ b \leq_{\mathscr{A}} a\end{array}\right.
$$

The Pos-collapse of $\mathbb P$ is the convex powerspace functor, which provides the Kripke semantics for negation-free modal logic in the same way as the usual powerset provides the Kripke semantics for classical modal logic.

The powerset functor on $\mathcal V$ -cat

The objects of $\mathbb{P} \mathscr{A}$ are arbitrary \mathscr{V} -subsets $\varphi : |\mathscr{A}| \to \mathscr{V}$ of \mathscr{A} . For any $\varphi, \psi : |\mathscr{A}| \to \mathscr{V}$ put

$$
\mathbb{P}{\mathscr{A}}(\varphi,\psi)=[|{\mathscr{A}}|,\mathscr{V}](\varphi,\psi^\downarrow)\otimes[|{\mathscr{A}}|,\mathscr{V}](\psi,\varphi^\uparrow)
$$

or, in a detailed formula, by

$$
\mathbb{P}\mathscr{A}(\varphi,\psi)=\bigwedge_{\mathbf{a}}[\varphi(\mathbf{a}),\bigvee_{\mathbf{a}'}\psi(\mathbf{a}')\otimes\mathscr{A}(\mathbf{a},\mathbf{a}')]\otimes\bigwedge_{\mathbf{a}'}[\psi(\mathbf{a}'),\bigvee_{\mathbf{a}}\varphi(\mathbf{a})\otimes\mathscr{A}(\mathbf{a},\mathbf{a}')]
$$

that can be perceived as the "Egli-Milner condition in the $\mathscr V$ -setting".

The powerset functor on $\mathcal V$ -cat

Given a $\mathscr V$ -functor $f : \mathscr A \to \mathscr B$ and $\mathscr V$ -subset $\varphi : |\mathscr A| \to \mathscr V$, define $\mathbb{P}f(\varphi): |\mathscr{B}| \to \mathscr{V}$ by $b \mapsto \bigvee$ *a* |B|(*fa*, *b*) ⊗ ϕ*a*.

In other words, $\mathbb{P}f(\varphi)$ is the value of a left Kan extension of φ along $|f| : |\mathscr{A}| \to |\mathscr{B}|$. In particular, the equality

$$
[|B|,\mathscr{V}](\mathbb{P}f(\varphi),\psi)=[|\mathscr{A}|,\mathscr{V}](\varphi,\psi\cdot|f|)
$$

holds for all $\varphi : |\mathscr{A}| \to \mathscr{V}, \psi : |\mathscr{B}| \to \mathscr{V}.$

Then $\mathbb{P}: \mathscr{V}\text{-cat} \to \mathscr{V}\text{-cat}$ is a 2-functor.

Coalgebras and bisimilarity in enriched setting

Definition

A *T*-coalgebra is a $\mathscr V$ -functor $\xi : \mathscr X \to T\mathscr X$. Elements of $\mathscr X$ are called states and ξ is the transition structure. A coalgebra morphism from $\xi : \mathscr{X} \to T\mathscr{X}$ to $\xi':\mathscr{X}'\to \mathcal{T}\mathscr{X}'$ is \mathscr{V} -functor $f:\mathscr{X}\to\mathscr{X}'$ such that $\xi'\cdot f=\mathcal{T}f\cdot\xi.$ The category of *T*-coalgebras is denoted by Coalg(*T*) and we write $U: \text{Coalg}(T) \to \mathcal{V}$ -cat and $V : \mathcal{V}\text{-cat} \to \mathsf{Set}$ for the respective forgetful functors.

Definition

Bisimilarity, or behavioural equivalence, is the smallest equivalence relation on elements of coalgebras generated by pairs

 $(x, VUf(x))$

where *x* is an element of a coalgebra and *f* is a coalgebra morphism.

∇ over V-cat

The satisfaction relation should be a $\mathcal V$ -module

$$
\Vdash: \mathscr{X} \otimes \mathcal{L} \to \mathscr{V},
$$

or equivalently,

$$
\Vdash:\mathcal{L}\longrightarrow \mathscr{X}^{op}.
$$

Next we want to assume that $\mathcal L$ comes equipped with a ∇ -operator.

The ^{op} makes it necessary to take formulas of the kind $\nabla \gamma$ not from $T\mathcal{L}$ but from $T^{\partial} \mathcal{L}$.

Recall that $\mathcal{T}^\partial(\mathscr{X}) = (\mathcal{T}(\mathscr{X}^{op}))^{op}$, so that $\mathcal T$ and $\mathcal T^\partial$ agree on discrete $\mathscr{X}.$ So we assume that we have an algebra

$$
\mathcal{T}^\partial \mathcal{L} \to \mathcal{L}
$$

Semantics of $∇$

Given a *T*-coalgebra ξ , we define the semantics of ∇ via the relation lifting of *T* ∂ :

$$
\Vdash(x,\nabla\gamma)=\overline{T^{\partial}}(\Vdash)(\xi(x),\gamma)
$$

Notice that *T* [∂] preserves exact squares whenever *T* does. In a diagram

Invariance under bisimulations

Proposition

If T preserves exact squares, then $∇$ *is invariant under bisimilarity.*

Idea of the proof: To $\Vdash: \mathscr{X} \otimes \mathcal{L} \rightarrow \mathscr{V}$ corresponds a \mathscr{V} -functor $\llbracket \cdot \rrbracket : \mathcal{L} \to [\mathcal{X}, \mathcal{V}]$. The fact that all $\varphi \in \mathcal{L}$ are invariant under bisimilarity implies that

$$
\llbracket \cdot \rrbracket_\xi : \mathcal{L} \to [\mathsf{U}\xi,\mathscr{V}]
$$

is natural in ξ . We have to show that

$$
\llbracket \nabla \cdot \rrbracket_\xi : T^\partial \mathcal{L} \to [\mathsf{U}\xi,\mathscr{V}]
$$

is also natural in ξ . We use the commutativity of:

$$
\begin{array}{ccc}\nT^{\partial}\mathcal{L} & \longrightarrow & \mathcal{L} \\
T^{\partial}[\![\cdot]\!] & & & \downarrow \\
T^{\partial}[\mathcal{X}, \mathcal{V}] & \xrightarrow{\delta\mathcal{X}^{op}} [T\mathcal{X}, \mathcal{V}] \xrightarrow{[\xi, \mathcal{V}]} [\mathcal{X}, \mathcal{V}] \\
\end{array}
$$

Example: ∇ for U-coalgebras

Recall that ∇ is an algebra for the functor $\mathbb{U}^{\partial}=\mathbb{L},$ hence

$$
\nabla : \mathbb{L}(\mathcal{L}) \to \mathcal{L}.
$$

We have

Given a $\mathbb U$ -coalgebra $\xi:\mathscr X\to\mathbb U\mathscr X$ and $\gamma\in\mathbb U^\partial(\mathcal L)=\mathbb L(\mathcal L)$ we have

$$
\begin{array}{rcl} \Vdash (\mathsf{x}, \nabla \gamma) & = & \overline{\mathbb{U}^{\partial}}(\Vdash)(\xi(\mathsf{x}), \gamma) \\ & = & \bigwedge_{\mathsf{y} \in \mathscr{X}} \left[\xi(\mathsf{x})(\mathsf{y}), \bigvee_{\varphi \in \mathcal{L}} \Vdash(\mathsf{y}, \varphi) \otimes \gamma(\varphi) \right] \end{array}
$$

For $\gamma = \mathcal{L}(-, \varphi)$ we obtain the semantics of \Box from Bou et al.

$$
\Vdash(x, \nabla \mathcal{L}(-, \varphi)) = \bigwedge_{y \in \mathscr{X}} [\xi(x)(y), \Vdash(y, \varphi)]
$$

Example: ∇ for L-coalgebras

Given a $\mathbb{L}\text{-coalgebra }\xi:\mathscr{X}\to\mathbb{L}\mathscr{X}$ and $\gamma\in\mathbb{L}^\partial(\mathcal{L})=\mathbb{U}(\mathcal{L})$ we have

$$
\begin{array}{rcl} \Vdash (x, \nabla \gamma) & = & \overline{\mathbb{L}^{\partial}}(\Vdash)(\xi(x), \gamma) \\ & = & \bigwedge_{\varphi \in \mathcal{L}} [\gamma(\varphi), \bigvee_{y \in \mathscr{X}} \Vdash(y, \varphi) \otimes \xi(x)(y)] \end{array}
$$

If $\gamma = \mathcal{L}(\varphi, -)$, we obtain the semantics of the \diamond -operator from Bou et al.

$$
\Vdash (x, \nabla \mathcal{L}(\varphi, -)) = \bigvee_{y \in \mathscr{X}} \Vdash (y, \varphi) \otimes \xi(x)(y).
$$

Example: ∇ for ∇ -coalgebras

Consider a quantale $\mathscr V$ such that $\otimes = \wedge$. Given a $\mathbb P$ -coalgebra $\xi : \mathscr X \to \mathbb P \mathscr X$. the ∇ -semantics wrt ξ is given as follows. Observe that $\mathbb{P}=\mathbb{P}^{\partial},$ thus $\mathcal L$ is a $\mathbb P\text{-} \text{\rm algebra}.$ For every $x\in \mathscr X$ and $\gamma\in \mathbb P^{\partial}(\mathcal L)=\mathbb P(\mathcal L)$ we have

$$
\begin{array}{rcl} \Vdash (x, \nabla \gamma) & = & \overline{\mathbb{P}^{\partial}}(\Vdash)(\xi(x), \gamma) \\ & = & \bigwedge\limits_{\mathsf{y} \in \mathscr{X}} [\xi(x)(\mathsf{y}), \bigvee\limits_{\varphi \in \mathcal{L}} \Vdash (\mathsf{y}, \varphi) \otimes \gamma(\varphi)] \\ & \otimes & \bigwedge\limits_{\varphi \in \mathcal{L}} [\gamma(\varphi), \bigvee\limits_{\mathsf{y} \in \mathscr{X}} \Vdash (\mathsf{y}, \varphi) \otimes \xi(x)(\mathsf{y})] \end{array}
$$