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Abstract
We introduce bisimulation up to congruence as a technique for
proving language equivalence of non-deterministic finite automata.
Exploiting this technique, we devise an optimisation of the classical
algorithm by Hopcroft and Karp [16]. We compare our approach to
the recently introduced antichain algorithms, by analysing and re-
lating the two underlying coinductive proof methods. We give con-
crete examples where we exponentially improve over antichains;
experimental results moreover show non negligible improvements.

Keywords Language Equivalence, Automata, Bisimulation, Coin-
duction, Up-to techniques, Congruence, Antichains.

1. Introduction
Checking language equivalence of finite automata is a classical
problem in computer science, which finds applications in many
fields ranging from compiler construction to model checking.

Equivalence of deterministic finite automata (DFA) can be
checked either via minimisation [9, 15] or through Hopcroft and
Karp’s algorithm [2, 16], which exploits an instance of what is
nowadays called a coinduction proof principle [24, 27, 29]: two
states recognise the same language if and only if there exists a
bisimulation relating them. In order to check the equivalence of
two given states, Hopcroft and Karp’s algorithm creates a relation
containing them and tries to build a bisimulation by adding pairs of
states to this relation: if it succeeds then the two states are equiva-
lent, otherwise they are different.

On the one hand, minimisation algorithms have the advantage of
checking the equivalence of all the states at once (while Hopcroft
and Karp’s algorithm only check a given pair of states). On the
other hand, they have the disadvantage of needing the whole au-
tomata from the beginning1, while Hopcroft and Karp’s algorithm
can be executed “on-the-fly” [12], on a lazy DFA whose transitions
are computed on demand.

This difference is fundamental for our work and for other re-
cently introduced algorithms based on antichains [1, 33]. Indeed,
when starting from non-deterministic finite automata (NFA), the

1 There are few exceptions, like [19] which minimises labelled transition
systems w.r.t. bisimilarity rather than trace equivalence.

[Copyright notice will appear here once ’preprint’ option is removed.]

powerset construction used to get deterministic automata induces
an exponential factor. In contrast, the algorithm we introduce in this
work for checking equivalence of NFA (as well as those in [1, 33])
usually does not build the whole deterministic automaton, but just
a small part of it. We write “usually” because in few bad cases, the
algorithm still needs exponentially many states of the DFA.

Our algorithm is grounded on a simple observation on deter-
minised NFA: for all sets X and Y of states of the original NFA,
the union (written +) of the language recognised by X (written
[[X]]) and the language recognised by Y ([[Y ]]) is equal to the lan-
guage recognised by the union ofX and Y ([[X+Y ]]). In symbols:

[[X + Y ]] = [[X]] + [[Y ]] (1)

This fact leads us to introduce a sound and complete proof tech-
nique for language equivalence, namely bisimulation up to context,
that exploits both induction (on the operator +) and coinduction:
if a bisimulation R equates both the (sets of) states X1, Y1 and
X2, Y2, then [[X1]] = [[Y1]] and [[X2]] = [[Y2]] and, by (1), we can
immediately conclude that also X1 + X2 and Y1 + Y2 are lan-
guage equivalent. Intuitively, bisimulations up to context are bisim-
ulations which do not need to relate X1 +X2 and Y1 + Y2 when
X1 (resp. X2) and Y1 (resp. Y2) are already related.

To illustrate this idea, let us check the equivalence of states x
and u in the following NFA. (Final states are overlined, labelled
edges represent transitions.)

x

a

��
z

a
oo

a ''
y

a
ff u

a ''

a

��
w

a
ff v

a
oo

The determinised automaton is depicted below.

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

GG

6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

Each state is a set of states of the NFA, final states are overlined:
they contain at least one final state of the NFA. The numbered
lines show a relation which is a bisimulation containing x and u.
Actually, this is the relation that is built by Hopcroft and Karp’s
algorithm (the numbers express the order in which pairs are added).

The dashed lines (numbered by 1, 2, 3) form a smaller relation
which is not a bisimulation, but a bisimulation up to context: the
equivalence of states {x, y} and {u, v, w} could be immediately
deduced from the fact that {x} is related to {u} and {y} to {v, w},
without the need of further exploring the determinised automaton.

Bisimulations up-to, and in particular bisimulations up to con-
text, have been introduced in the setting of concurrency theory [24,
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25, 28] as a proof technique for bisimilarity of CCS or π-calculus
processes. As far as we know, they have never been used for prov-
ing language equivalence of NFA.

Among these techniques one should also mention bisimulation
up to equivalence, which, as we show in this paper, is implicitly
used in the original Hopcroft and Karp’s algorithm. This technique
can be briefly explained by noting that not all bisimulations are
equivalence relations: it might be the case that a bisimulation re-
lates (for instance) X and Y , Y and Z but not X and Z. However,
since [[X]] = [[Y ]] and [[Y ]] = [[Z]], we can immediately conclude
that X and Z recognise the same language. Analogously to bisim-
ulations up to context, a bisimulation up to equivalence does not
need to relate X and Z when they are both related to some Y .

The techniques of up-to equivalence and up-to context can be
combined resulting in a powerful proof technique which we call
bisimulation up to congruence. Our algorithm is in fact just an ex-
tension of Hopcroft and Karp’s algorithm that attempts to build
a bisimulation up to congruence instead of a bisimulation up to
equivalence. An important consequence, when using up to congru-
ence, is that we do not need to build the whole deterministic au-
tomata, but just those states that are needed for the bisimulation
up-to. For instance, in the above NFA, the algorithm stops after
equating z and u+ v and does not build the remaining four states.
Despite their use of the up to equivalence technique, this is not the
case with Hopcroft and Karp’s algorithm, where all accessible sub-
sets of the deterministic automata have to be visited at least once.

The ability of visiting only a small portion of the determinised
automaton is also the key feature of the antichain algorithm [33]
and its optimisation exploiting similarity [1]. The two algorithms
are designed to check language inclusion rather than equivalence,
but we can relate these approaches by observing that the two prob-
lems are equivalent ([[X]] = [[Y ]] iff [[X]] ⊆ [[Y ]] and [[Y ]] ⊆ [[X]];
and [[X]] ⊆ [[Y ]] iff [[X]] + [[Y ]] = [[Y ]] iff [[X + Y ]] = [[Y ]]).

In order to compare with these algorithms, we make explicit
the coinductive up-to technique underlying the antichain algo-
rithm [33]. We prove that this technique can be seen as a restriction
of up to congruence, for which symmetry and transitivity are not al-
lowed. As a consequence, the antichain algorithm usually needs to
explore more states than our algorithm. Moreover, we show how to
integrate the optimisation proposed in [1] in our setting, resulting
in an even more efficient algorithm.

Summarising, the contributions of this work are

(1) the observation that Hopcroft and Karp implicitly use bisimula-
tions up to equivalence (Section 2),

(2) an efficient algorithm for checking language equivalence (and
inclusion), based on a powerful up to technique (Section 3),

(3) a comparison with antichain algorithms, by recasting them into
our coinductive framework (Sections 4 and 5).

Outline
Section 2 recalls Hopcroft and Karp’s algorithm for DFA, show-
ing that it implicitly exploits bisimulation up to equivalence. Sec-
tion 3 describes the novel algorithm, based on bisimulations up to
congruence. We compare this algorithm with the antichain one in
Section 4, and we show how to exploit similarity in Section 5. Sec-
tion 6 is devoted to benchmarks. Sections 7 and 8 discuss related
and future works. Omitted proofs can be found in the Appendix.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is their
Cartesian product,X ]Y is the disjoint union and XY is the set of
functions f : Y → X . Finite iterations of a function f : X → X

are denoted by fn (formally, f0(x) = x, fn+1(x) = f(fn(x))).
The collection of subsets of X is denoted by P(X). The (omega)
iteration of a function f : P(X) → P(X) is denoted by fω

(formally, fω(Y ) =
⋃
n≥0 f

n(Y )). For a set of letters A, A?

denotes the set of all finite words over A; ε the empty word; and
w1w2 the concatenation of words w1, w2 ∈ A?. We use 2 for the
set {0, 1} and 2A

?

for the set of all languages over A.

2. Hopcroft and Karp’s algorithm for DFA
A deterministic finite automaton (DFA) over the alphabet A is a
triple (S, o, t), where S is a finite set of states, o : S → 2 is
the output function, which determines if a state x ∈ S is final
(o(x) = 1) or not (o(x) = 0), and t : S → SA is the transition
function which returns, for each state x and for each letter a ∈ A,
the next state ta(x). For a ∈ A, we write x a→ x′ to mean that
ta(x) = x′. For w ∈ A?, we write x w→ x′ for the least relation

such that (1) x ε→ x and (2) x aw′→ x′ iff x a→ x′′ and x′′ w
′
→ x′.

For any DFA, there exists a function [[−]] : S → 2A
?

mapping
states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) , [[x]](aw) = [[ta(x)]](w) .

The language [[x]] is called the language accepted by x. Given two
automata (S1, o1, t1) and (S2, o2, t2), the states x1 ∈ S1 and
x2 ∈ S2 are said to be language equivalent (written x1 ∼ x2)
iff they accept they same language.

Remark 1. In the following, we will always consider the prob-
lem of checking the equivalence of states of one single and fixed
automaton (S, o, t). We do not loose generality since for any two
automata (S1, o1, t1) and (S2, o2, t2) it is always possible to build
an automaton (S1 ] S2, o1 ] o2, t1 ] t2) such that the language
accepted by every state x ∈ S1 ] S2 is the same as the language
accepted by x in the original automaton (Si, oi, ti). For this rea-
son, we also work with automata without explicit initial states: we
focus on the equivalence of two arbitrary states of a fixed DFA.

2.1 Proving language equivalence via coinduction
We first define bisimulation. We make explicit the underlying no-
tion of progression which we need in the sequel.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S × S on states, R progresses to R′, denoted R� R′, if
whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

As expected, bisimulation is a sound and complete proof tech-
nique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language equivalent
iff there exists a bisimulation that relates them.

2.2 Naive algorithm
Figure 1 shows a naive version of Hopcroft and Karp’s algorithm
for checking language equivalence of the states x and y of a de-
terministic finite automaton (S, o, t). Starting from x and y, the
algorithm builds a relation R that, in case of success, is a bisimula-
tion. In order to do that, it employs the set (of pairs of states) todo
which, intuitively, at any step of the execution, contains the pairs
(x′, y′) that must be checked: if (x′, y′) already belongs to R, then
it has already been checked and nothing else should be done. Other-
wise, the algorithm checks if x′ and y′ have the same outputs (i.e.,
if both are final or not). If o(x′) 6= o(y′), then x and y are different.
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Naive(x, y)

(1) R is empty; todo is empty;
(2) insert (x, y) in todo;
(3) while todo is not empty , do {

(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then skip;

(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ta(x
′), ta(y

′)) in todo;
(3.5) insert (x′, y′) in R;

(4) return true;

Figure 1. Naive algorithm for checking the equivalence of states
x and y of a DFA (S, o, t); R and todo are sets of pairs of states.
The code of HK(x, y) is obtained by replacing step 3.2 with if
(x′, y′) ∈ e(R) then skip.

x
a //

1

y

a
((

2

z
a

hh

3

u
a
// v

a
((
w

a

hh

x
a,b //

1

y
a,b //

2 5

z a,bdd

3

4

v

a,b
((
w

a,b

hh

u
a

66

b

;;

Figure 2. Checking for DFA equivalence.

If o(x′) = o(y′), then the algorithm inserts (x′, y′) in R and, for
all a ∈ A, the pairs (ta(x′), ta(y′)) in todo.

Proposition 2. For all x, y ∈ S, x ∼ y iff Naive(x, y).

Proof. We first observe that if Naive(x, y) returns true then the
relation R that is built before arriving to step 4 is a bisimulation.
Indeed, the following proposition is an invariant for the loop corre-
sponding to step 3:

R� R ∪ todo
This invariant is preserved since at any iteration of the algorithm, a
pair (x′, y′) is removed from todo and inserted in R after checking
that o(x′) = o(y′) and adding (ta(x

′), ta(y
′)) for all a ∈ A in

todo. Since todo is empty at the end of the loop, we eventually
have R� R, i.e., R is a bisimulation. By Proposition 1, x ∼ y.

We now prove that if Naive(x, y) returns false, then x 6∼ y.
Note that for all (x′, y′) inserted in todo, there exists a word
w ∈ A? such that x w→ x′ and y w→ y′. Since o(x′) 6= o(y′),
then [[x′]](ε) 6= [[y′]](ε) and thus [[x]](w) = [[x′]](ε) 6= [[y′]](ε) =
[[y]](w), that is x 6∼ y.

Since both Hopcroft and Karp’s algorithm and the one we in-
troduce in Section 3 are simple variations of this naive one, it is
important to illustrate its execution with an example. Consider the
DFA with input alphabetA = {a} in the left-hand side of Figure 2,
and suppose we want to check that x and u are language equivalent.

During the initialisation, (x, u) is inserted in todo. At the first
iteration, since o(x) = 0 = o(u), (x, u) is inserted in R and (y, v)
in todo. At the second iteration, since o(y) = 1 = o(v), (y, v)
is inserted in R and (z, w) in todo. At the third iteration, since
o(z) = 0 = o(w), (z, w) is inserted in R and (y, v) in todo. At
the fourth iteration, since (y, v) is already in R, the algorithm does
nothing. Since there are no more pairs to check in todo, the relation
R is a bisimulation and the algorithm terminates returning true.

These iterations are concisely described by the numbered
dashed lines in Figure 2. The line i means that the connected pair
is inserted in R at iteration i. (In the sequel, when enumerating
iterations, we ignore those where a pair from todo is already in R
so that there is nothing to do.)

Remark 2. Unless it finds a counter-example, Naive constructs
the smallest bisimulation that relates the two starting states (see
Proposition 8 in Appendix A). On the contrary, minimisation al-
gorithms [9, 15] are designed to compute the largest bisimulation
relation for a given automaton. For instance, taking automaton on
the left of Figure 2, they would equate the states x and w which are
language equivalent, while Naive(x, u) does not relate them.

2.3 Hopcroft and Karp’s algorithm
The naive algorithm is quadratic: a new pair is added to R at
each non-trivial iteration, and there are only n2 such pairs, where
n = |S| is the number of states of the DFA. To make this algorithm
(almost) linear, Hopcroft and Karp actually record a set of equiva-
lence classes rather than a set of visited pairs. As a consequence,
their algorithm may stop earlier, when an encountered pair of states
is not already inR but in its reflexive, symmetric, and transitive clo-
sure. For instance in the right-hand side example from Figure 2, we
can stop when we encounter the dotted pair (y, w), since these two
states already belong to the same equivalence class according to the
four previous pairs.

With this optimisation, the produced relationR contains at most
n pairs (two equivalence classes are merged each time a pair is
added). Formally, and ignoring the concrete data structure to store
equivalence classes, Hopcroft and Karp’s algorithm consists in
simply replacing step 3.2 in Figure 1 with

(3.2) if (x′, y′) ∈ e(R) then skip;

where e : P(S × S) → P(S × S) is the function mapping each
relation R ⊆ S × S into its symmetric, reflexive, and transitive
closure. We hereafter refer to this algorithm as HK.

2.4 Bisimulations up-to
We now show that the optimisation used by Hopcroft and Karp
corresponds to exploiting an “up-to technique”.

Definition 2 (Bisimulation up-to). Let f : P(S×S)→ P(S×S)
be a function on relations on S. A relation R is a bisimulation up
to f if R� f(R), i.e., whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) f(R) ta(y).

With this definition, Hopcroft and Karp’s algorithm just consists
in trying to build a bisimulation up to e. To prove the correctness
of the algorithm it suffices to show that any bisimulation up to
e is contained in a bisimulation. We use for that the notion of
compatible function [26, 28]:

Definition 3 (Compatible function). A function f : P(S × S) →
P(S × S) is compatible if it is monotone and it preserves progres-
sions: for all R,R′ ⊆ S × S,

R� R′ entails f(R)� f(R′) .

Proposition 3. Let f be a compatible function. Any bisimulation
up to f is contained in a bisimulation.

Proof. Suppose that R is a bisimulation up to f , i.e., that R �
f(R). Using compatibility of f and by a simple induction on n, we
get ∀n, fn(R)� fn+1(R). Therefore, we have⋃

n

fn(R)�
⋃
n

fn(R) ,
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in other words, fω(R) =
⋃
n f

n(R) is a bisimulation. This latter
relation trivially contains R, by taking n = 0.

We could prove directly that e is a compatible function; we how-
ever take a detour to ease our correctness proof for the algorithm
we propose in Section 3.

Lemma 1. The following functions are compatible:

id: the identity function;
f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s ∪ id)(R) is the symmetric
closure ofR, (r∪s∪ id)(R) is its reflexive and symmetric closure,
and (r ∪ s ∪ t ∪ id)ω(R) is its symmetric, reflexive and transitive
closure: e = (r ∪ s ∪ t ∪ id)ω . Another way to understand this
decomposition of e is to recall that for a given R, e(R) can be
defined inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Theorem 1. Any bisimulation up to e is contained in a bisimula-
tion.

Proof. By Proposition 3, it suffices to show that e is compatible,
which follows from Lemma 1 and Lemma 2.

Corollary 1. For all x, y ∈ S, x ∼ y iff HK(x, y).

Proof. Same proof as for Proposition 2, by using the invariant
R� e(R)∪ todo. We deduce thatR is a bisimulation up to e after
the loop. We conclude with Theorem 1 and Proposition 1.

Returning to the right-hand side example from Figure 2, Hopcroft
and Karp’s algorithm constructs the relation

RHK = {(x, u), (y, v), (z, w), (z, v)}
which is not a bisimulation, but a bisimulation up to e: it contains
the pair (x, u), whose b-transitions lead to (y, w), which is not in
RHK but in its equivalence closure, e(RHK).

3. Optimised algorithm for NFA
We now move from DFA to non-deterministic automata (NFA). We
start with standard definitions about semi-lattices, determinisation,
and language equivalence for NFA.

A semi-lattice (X,+, 0) consists of a set X and a binary op-
eration +: X × X → X which is associative, commutative,
idempotent (ACI), and has 0 ∈ X as identity. Given two semi-
lattices (X1,+1, 01) and (X2,+2, 02), an homomorphism of semi-
lattices is a function f : X1 → X2 such that for all x, y ∈ X1,
f(x +1 y) = f(x) +2 f(y) and f(01) = 02. The set 2 = {0, 1}
is a semi-lattice when taking + to be the ordinary Boolean or. Also
the set of all languages 2A

?

carries a semi-lattice where + is the
union of languages and 0 is the empty language. More generally,
for any set X , P(X) is a semi-lattice where + is the union of sets
and 0 is the empty set. In the sequel, we indiscriminately use 0
to denote the element 0 ∈ 2, the empty language in 2A

?

, and the

empty set in P(X). Similarly, we use + to denote the Boolean or
in 2, the union of languages in 2A

?

, and the union of sets in P(X).

A non-deterministic finite automaton (NFA) over the input al-
phabet A is a triple (S, o, t), where S is a finite set of states,
o : S → 2 is the output function (as for DFA), and t : S → P(S)A
is the transition relation, which assigns to each state x ∈ S and
input letter a ∈ A a set of possible successor states.

The powerset construction transforms any NFA (S, o, t) in
the DFA (P(S), o], t]) where o] : P(S) → 2 and t] : P(S) →
P(S)A are defined for all X ∈ P(S) and a ∈ A as follows:

o](X) =


o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

t]a(X) =


ta(x) if X = {x} with x ∈ S
0 if X = 0

t]a(X1) + t]a(X2) if X = X1 +X2

Observe that in (P(S), o], t]), the states form a semi-lattice
(P(S),+, 0), and o] and t] are, by definition, semi-lattices homo-
morphisms. These properties are fundamental for the up-to tech-
nique we are going to introduce; in order to highlight the difference
with generic DFA (which usually do not carry this structure), we
introduce the following definition.

Definition 4. A determinised NFA is a DFA (P(S), o], t]) ob-
tained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing states of
determinised NFA: in place of the singleton {x} we just write x
and, in place of {x1, . . . , xn}, we write x1 + · · ·+ xn.

For an example, consider the NFA (S, o, t) depicted below (left)
and part of the determinised NFA (P(S), o], t]) (right).

x

a

BB

a ''
y

a
gg z

aoo x
a // y + z

a // x+ y
a // x+ y + z

a

FF

In the determinised NFA, x makes one single a-transition going
into y + z. This state is final: o](y + z) = o](y) + o](z) =
o(y)+o(z) = 1+0 = 1; it makes an a-transition into t]a(y+z) =
t]a(y) + t]a(z) = ta(y) + ta(z) = x+ y.

The language accepted by the states of a NFA (S, o, t) can be
conveniently defined via the powerset construction: the language
accepted by x ∈ S is the language accepted by the singleton {x}
in the DFA (P(S), o], t]), in symbols [[{x}]]. Therefore, in the fol-
lowing, instead of considering the problem of language equivalence
of states of the NFA, we focus on language equivalence of sets of
states of the NFA: given two sets of statesX and Y inP(S), we say
that X and Y are language equivalent (X ∼ Y ) iff [[X]] = [[Y ]].
This is exactly what happens in standard automata theory, where
NFA are equipped with sets of initial states.

3.1 Extending coinduction to NFA
In order to check if two sets of states X and Y of an NFA (S, o, t)
are language equivalent, we can simply employ the bisimulation
proof method on (P(S), o], t]). More explicitly, a bisimulation for
a NFA (S, o, t) is a relation R ⊆ P(S) × P(S) on sets of states,
such that whenever X R Y then (1) o](X) = o](Y ), and (2) for
all a ∈ A, t]a(X) R t]a(Y ). Since this is just the old definition
of bisimulation (Definition 1) applied to (P(S), o], t]), we get that
X ∼ Y iff there exists a bisimulation relating them.
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Remark 3 (Linear time v.s. branching time). It is important not
to confuse these bisimulation relations with the standard Milner-
and-Park bisimulations [24] (which strictly imply language equiv-
alence): in a standard bisimulation R, if the following states x and
y of an NFA are in R,

x1
...x

a 55

a ))
xn

y1
...y

a 55

a ))
ym

then each xi should be in R with some yj (and vice-versa). Here,
instead, we first transform the transition relation into

x
a // x1 + · · ·+ xn y

a // y1 + · · ·+ ym ,

using the powerset construction, and then we require that the sets
x1 + · · ·+ xn and y1 + · · ·+ ym are related by R.

3.2 Bisimulation up to congruence
The semi-lattice structure (P(S),+, 0) carried by determinised
NFA makes it possible to introduce a new up-to technique, which
is not available with plain DFA: up to congruence. This technique
relies on the following function.

Definition 5 (Congruence closure). Let u : P(P(S) × P(S)) →
P(P(S) × P(S)) be the function on relations on sets of states
defined for all R ⊆ P(S)× P(S) as:

u(R) = {(X1 +X2, Y1 + Y2) | X1 R Y1 and X2 R Y2} .

The function c = (r ∪ s ∪ t ∪ u ∪ id)ω is called the congruence
closure function.

Intuitively, c(R) is the smallest equivalence relation which is
closed with respect to + and which includes R. It could alterna-
tively be defined inductively using the rules r, s, t, and id from the
previous section, and the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

We call bisimulations up to congruence the bisimulations up to
c. We report the explicit definition for the sake of clarity:

Definition 6 (Bisimulation up to congruence). A bisimulation up
to congruence for a NFA (S, o, t) is a relation R ⊆ P(S)× P(S)
on sets of states, such that whenever X R Y then

1. o](X) = o](Y ) and
2. for all a ∈ A, t]a(X) c(R) t]a(Y ).

We then show that bisimulations up to congruence are sound,
using the notion of compatibility:

Lemma 3. The function u is compatible.

Proof. We assume that R � R′, and we prove that u(R) �
u(R′). If X u(R) Y , then X = X1 + X2 and Y = Y1 + Y2

for some X1, X2, Y1, Y2 such that X1 R Y1 and X2 R Y2. By
assumption, we have o](X1) = o](Y1), o](X2) = o](Y2), and for
all a ∈ A, t]a(X1) R

′ t]a(Y1) and t]a(X2) R
′ t]a(Y2). Since o] and

t] are homomorphisms, we deduce o](X1 +X2) = o](Y1 + Y2),
and for all a ∈ A, t]a(X1 +X2) u(R

′) t]a(Y1 + Y2).

Theorem 2. Any bisimulation up to congruence is contained in a
bisimulation.

Proof. By Proposition 3, it suffices to show that c is compatible,
which follows from Lemmas 1, 2 and 3.

x

a

EE

a &&
y

a
gg z

aoo

u

a

DD

x
a //

1

y + z
a //

2

x+ y
a //

3

x+ y + z

a

FF
4

u

a

DD

Figure 3. Bisimulations up to congruence, on a single letter NFA.

In the Introduction, we already gave an example of bisimulation
up to context, which is a particular case of bisimulation up to
congruence (up to context corresponds to use just the function
(r ∪ u ∪ id)ω , without closing under s and t).

A more involved example illustrating the use of all ingredients
of the congruence closure function (c) is given in Figure 3. The
relation R expressed by the dashed numbered lines (formally R =
{(x, u), (y + z, u)}) is neither a bisimulation, nor a bisimulation
up to equivalence, since y + z

a→ x + y and u
a→ u, but

(x+y, u) /∈ e(R). However,R is a bisimulation up to congruence.
Indeed, we have (x+ y, u) ∈ c(R):

x+ y c(R) u+ y ((x, u) ∈ R)
c(R) y + z + y ((y + z, u) ∈ R)
= y + z

c(R) u ((y + z, u) ∈ R)

In contrast, we need four pairs to get a bisimulation up to e contain-
ing (x, u): this is the relation depicted with both dashed and dotted
lines in Figure 3.

Note that we can deduce many other equations from R; in fact,
c(R) defines the following partition of sets of states:

{0}, {y}, {z}, {x, u, x+y, x+z, and the 9 remaining subsets}.

3.3 Optimised algorithm for NFA
Algorithms for NFA can be obtained by computing the deter-
minised NFA on-the-fly [12]: starting from the algorithms for DFA
(Figure 1), it suffices to work with sets of states, and to inline the
powerset construction. The corresponding code is given in Figure 4.
The naive algorithm (Naive) does not use any up to technique,
Hopcroft and Karp’s algorithm (HK) reasons up to equivalence in
step 3.2, and the optimised algorithm, referred as HKC in the se-
quel, relies on up to congruence: step 3.2 becomes

(3.2) if (X ′, Y ′) ∈ c(R ∪ todo) then skip;

Observe that we use c(R ∪ todo) rather than c(R): this allows
us to skip more pairs, and this is safe since all pairs in todo will
eventually be processed.

Corollary 2. For all X,Y ∈ P(S), X ∼ Y iff HKC(X,Y ).

Proof. Same proof as for Proposition 2, by using the invariant
R� c(R∪ todo) for the loop. We deduce that R is a bisimulation
up to congruence after the loop. We conclude with Theorem 2 and
Proposition 1.

The most important point about these three algorithms is that
they compute the states of the determinised NFA lazily. This means
that only accessible states need to be computed, which is of prac-
tical importance since the determinised NFA can be exponentially
large. In case of a negative answer, the three algorithms stop even
before all accessible states have been explored; otherwise, if a
bisimulation (possibly up-to) is found, it depends on the algorithm:
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Naive(X,Y )

(1) R is empty; todo is empty;
(2) insert (X,Y ) in todo;
(3) while todo is not empty , do {

(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ R then skip;

(3.3) if o](X ′) 6= o](Y ′) then return false;
(3.4) for all a ∈ A,

insert (t]a(X
′), t]a(Y

′)) in todo;
(3.5) insert (X ′, Y ′) in R;

(4) return true;

Figure 4. On-the-fly naive algorithm, for checking the equivalence
of sets of states X and Y of a NFA (S, o, t). The code for on-
the-fly HK(X,Y ) is obtained by replacing the test in step 3.2 with
(X ′, Y ′) ∈ e(R); the code for HKC(X,Y ) is obtained by replacing
this test with (X ′, Y ′) ∈ c(R ∪ todo).

• with Naive, all accessible states need to be visited, by definition
of bisimulation;
• with HK, the only case where some accessible states can be

avoided is when a pair (X,X) is encountered: the algorithm
skips this pair so that the successors of X are not necessarily
computed (this situation rarely happens in practice—it actually
never happens when starting with disjoint automata). In the
other cases where a pair (X,Y ) is skipped, then X and Y are
necessarily already related to some other states in R, so that
their successors will eventually be explored;
• with HKC, only a small portion of the accessible states is built

(check the experiments in Section 6). To see a concrete exam-
ple, let us execute HKC on the NFA from Figure 3. After two
iterations, R = {(x, u), (y + z, u)}. Since x + y c(R) u, the
algorithm stops without building the states x+y and x+y+z.
Similarly, in the example from the Introduction, HKC does not
construct the four states corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinised NFA comes
from the up to congruence technique, which allows one to infer
properties about states that were not necessarily encountered be-
fore. As we shall see in Section 4 the efficiency of antichains algo-
rithms [1, 33] also comes from their ability to skip large parts of
the determinised NFA.

3.4 Computing the congruence closure
For the optimised algorithm to be effective, we need a way to
check whether some pairs belong to the congruence closure of
some relation (step 3.2). We present here a simple solution based
on set rewriting; the key idea is to look at each pair (X,Y ) in a
relation R as a pair of rewriting rules:

X → X + Y Y → X + Y ,

which can be used to compute normal forms for sets of states.
Indeed, by idempotence, X R Y entails X c(R) X + Y .

Definition 7. LetR ⊆ P(S)×P(S) be a relation on sets of states.
We define R ⊆ P(S)×P(S) as the smallest irreflexive relation
that satisfies the following rules:

X R Y

X  R X + Y

X R Y

Y  R X + Y

Z  R Z
′

U + Z  R U + Z′

Lemma 4. For all relations R, the relation R is convergent.

In the sequel, we denote by X↓R the normal form of a set X
w.r.t.  R. Intuitively, the normal form of a set is the largest set

of its equivalence class. Recalling the example from Figure 3, the
common normal form of x + y and u can be computed as follows
(R is the relation {(x, u), (y + z, u)}):

x+ y
**

u
ww

x+ y + u
++

x+ u
ss

x+ y + z + u

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we
have X↓R = Y ↓R iff (X,Y ) ∈ c(R).

Thus, in order to check if (X,Y ) ∈ c(R ∪ todo) we only have
to compute the normal form of X and Y with respect to R∪todo.
Note that each pair ofR∪todomay be used only once as a rewriting
rule, but we do not know in advance in which order to apply these
rules. Therefore, the time required to find one rule that applies is in
the worst case rn where r = |R ∪ todo| is the size of the relation
R∪todo, and n = |S| is the number of states of the NFA (assuming
linear time complexity for set-theoretic union and containment of
sets of states). Since we cannot apply more than r rules, the time
for checking whether (X,Y ) ∈ c(R ∪ todo) is bounded by r2n.

We tried other solutions, notably by using binary decision dia-
grams [8]. We have chosen to keep the presented rewriting algo-
rithm for its simplicity and because it behaves well in practice.

3.5 Complexity hints
The complexity of Naive, HK and HKC is closely related to the size
of the relation that they build. Hereafter, we use v = |A| to denote
the number of letters in A.

Lemma 5. The three algorithms require at most 1 + v·|R| itera-
tions, where |R| is the size of the produced relation; moreover, this
bound is reached whenever they return true.

Therefore, we can conveniently reason about |R|.
Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

As shown below in Section 4.2.4, RHKC can be exponentially
smaller than RHK. Notice however that the problem of deciding
NFA language equivalence is PSPACE-complete [23], and that
none of the algorithms presented here is in PSPACE: all of them
store a set of visited pairs, and in the worst case, this set can
become exponentially large with all of them. (This also holds for
the antichain algorithms [1, 33] which we describe in Section 4.)
Instead, the standard PSPACE algorithm does not store any set of
visited pairs: it checks all words of length smaller than 2n. While
this can be done in polynomial space, this systematically requires
exponential time.

3.6 Using HKC for checking language inclusion
For NFA, language inclusion can be reduced to language equiva-
lence in a rather simple way. Since the function [[−]] : P(S)→ 2A

?

is a semi-lattice homomorphism (see Theorem 7 in Appendix A),
for any given sets of states X and Y , [[X+Y ]] = [[Y ]] iff
[[X]] + [[Y ]] = [[Y ]] iff [[X]] ⊆ [[Y ]]. Therefore, it suffices to run
HKC(X+Y, Y ) to check the inclusion [[X]] ⊆ [[Y ]].

In such a situation, all pairs that are eventually manipulated
by HKC have the shape (X ′+Y ′, Y ′) for some sets X ′, Y ′. The
step 3.2 of HKC, where it checks whether the current pair belongs
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to the congruence closure of the relation, can thus be simplified.
First, the pairs in the current relation can only be used to rewrite
from right to left. Second, the following lemma allows one to avoid
unnecessary normal form computations:

Lemma 7. For all sets X,Y and for all relations R, we have
X+Y c(R) Y iff X ⊆ Y ↓R.

Proof. We first prove that for allX,Y, X↓R = Y ↓R iffX ⊆ Y ↓R
and Y ⊆ X↓R, using the fact that the normalisation function
↓R : X 7→ X↓R is monotone and idempotent. The announced
result follows by Theorem 3, since Y ⊆ (X+Y )↓R is always true
and X+Y ⊆ Y ↓R iff X ⊆ Y ↓R.

However, as shown below, checking an equivalence by decom-
posing it into two inclusions cannot be more efficient than checking
the equivalence directly.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y ) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

On the contrary, checking the equivalence directly actually al-
lows one to skip some pairs that cannot be skipped when reasoning
by double inclusion. As an example, consider the DFA on the right
of Figure 2. The relation computed by HKC(x, u) contains only four
pairs (because the fifth one follows from transitivity). Instead, the
relations built by HKC(x, x+u) and HKC(u+x, u) would both con-
tain five pairs: transitivity cannot be used since our relations are
now oriented (from y ≤ v, z ≤ v and z ≤ w, we cannot deduce
y ≤ w). Another example, where we get an exponential factor by
checking the equivalence directly rather than through the two in-
clusions, can be found in Section 4.2.4.

In a sense, the behaviour of the coinduction proof method here
is similar to that of standard proofs by induction, where one often
has to strengthen the induction predicate to get a (nicer) proof.

4. Antichain algorithm
In [33], De Wulf et al. have proposed the antichain approach for
checking language inclusion of NFA. We show that this approach
can be explained in terms of simulations up to upward-closure
that, in turn, can be seen as a special case of bisimulations up
to congruence. Before doing so, we recall the standard notion of
antichain and we describe the antichain algorithm (AC).

Given a partial order (X,v), an antichain is a subset Y ⊆ X
containing only incomparable elements (that is, for all y1, y2 ∈ Y ,
y1 6v y2 and y2 6v y1). AC exploits antichains over the set
S × P(S), where the ordering is given by (x1, Y1) v (x2, Y2)
iff x1 = x2 and Y1 ⊆ Y2.

In order to check [[X]] ⊆ [[Y ]] for two sets of states X,Y
of an NFA (S, o, t), AC maintains an antichain of pairs (x′, Y ′),
where x′ is a state of the NFA and Y ′ is a state of the deter-
minised automaton. More precisely, the automaton is explored non-
deterministically (via t) for obtaining the first component of the pair
and deterministically (via t]) for the second one. If a pair such that
x′ is accepting (o(x′) = 1) and Y ′ is not (o](Y ′) = 0) is en-
countered, then a counter-example has been found. Otherwise all
derivatives of the pair along the automata transitions have to be in-
serted into the antichain, so that they will be explored. If one these
pairs p is larger than a previously encountered pair p′ (p′ v p) then
the language inclusion corresponding to p is subsumed by p′ so
that p can be skipped; otherwise, if p v p1, . . . , pn for some pairs

p1, . . . , pn that are already in the antichain, then one can safely re-
move these pairs: they are subsumed by p and, by doing so, the set
of visited pairs remains an antichain.

Remark 4. An important difference between HKC and AC consists
in the fact that the former inserts pairs in todo without checking
whether they are redundant (this check is performed when the
pair is processed), while the latter removes all redundant pairs
whenever a new one is inserted. Therefore, the cost of an iteration
with HKC is merely the cost of the corresponding congruence check,
while the cost of an iteration with AC is merely that of inserting all
successors of the corresponding pair and simplifying the antichain.

Note that the above description corresponds to the “forward”
antichain algorithm, as described in [1]. Instead, the original an-
tichain algorithm, as first described in [33], is “backward” in the
sense that the automata are traversed in the reversed way, from ac-
cepting states to initial states. The two versions are dual [33] and
we could similarly define the backward counterpart of HKC and HK.
We however stick to the forward versions for the sake of clarity.

4.1 Coinductive presentation
Leaving apart the concrete data structures used to manipulate an-
tichains, we can rephrase this algorithm using a coinductive frame-
work, like we did for Hopcroft and Karp’s algorithm.

First define a notion of simulation, where the left-hand side
automaton is executed non-deterministically:

Definition 8 (Simulation). Given two relations T, T ′ ⊆ S×P(S),
T s-progresses to T ′, denoted T �s T

′, if whenever x T Y then

1. o(x) ≤ o](Y ) and
2. for all a ∈ A, x′ ∈ ta(x), x′ T ′ t]a(Y ).

A simulation is a relation T such that T �s T .

As expected, we obtain the following coinductive proof principle:

Proposition 4 (Coinduction). For all sets X,Y , we have [[X]] ⊆
[[Y ]] iff there exists a simulation T such that for all x ∈ X , x T Y .

(Note that like for our notion of bisimulation, the above notion
of simulation is weaker than the standard one from concurrency
theory [24], which strictly entails language inclusion—Remark 3.)

To account for the antichain algorithm, where we can discard
pairs using the preorder v, it suffices to define the upward closure
function � : P(S × P(S))→ P(S × P(S)) as

�T = {(x, Y ) | ∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v (x, Y )} .

A pair belongs to the upward closure �T of a relation T ⊆ S ×
P(S), if and only if this pair is subsumed by some pair in T . In
fact, rather than trying to construct a simulation, AC attempts to
construct a simulation up to upward closure.

Like for HK and HKC, this method can be justified by defining the
appropriate notion of s-compatible function, showing that any sim-
ulation up to an s-compatible function is contained in a simulation,
and showing that the upward closure function (�) is s-compatible.

Theorem 4. Any simulation up to � is contained in a simulation.

Corollary 3. For all X,Y ∈ P(S), [[X]] ⊆ [[Y ]] iff AC(X,Y ).

4.2 Comparing HKC and AC

The efficiency of the two algorithms strongly depends on the num-
ber of pairs that they need to explore. In the following (Sections
4.2.3 and 4.2.4), we show that HKC can explore far fewer pairs than
AC, when checking language inclusion of automata that share some
states, or when checking language equivalence. We would also like
to formally prove that (a) HKC never explores more than AC, and
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(b) when checking inclusion of disjoint automata, AC never ex-
plores more than HKC. Unfortunately, the validity of these state-
ments highly depends on numerous assumptions about the two
algorithms (e.g., on the exploration strategy) and their potential
proofs seem complicated and not really informative. For these rea-
sons, we preferred to investigate the formal correspondence at the
level of the coinductive proof techniques, where it is much cleaner.

4.2.1 Language inclusion: HKC can mimic AC
As explained in Section 3.6, we can check the language inclusion
of two sets X,Y by executing HKC(X+Y, Y ). We now show that
for any simulation up to upward closure that proves the inclusion
[[X]] ⊆ [[Y ]], there exists a bisimulation up to congruence of the
same size which proves the same inclusion. For T ⊆ S × P(S),
let T̂ ⊆ P(S)× P(S) denote the relation {(x+ Y, Y ) | x T Y }.

Lemma 9. We have �̂T ⊆ c(T̂ ).

Proof. If (x + Y, Y ) ∈ �̂T , then there exists Y ′ ⊆ Y such that
(x, Y ′) ∈ T . By definition, (x+ Y ′, Y ′) ∈ T̂ and (Y, Y ) ∈ c(T̂ ).
By the rule (u), (x+ Y ′ + Y, Y ′ + Y ) ∈ c(T̂ ) and since Y ′ ⊆ Y ,
(x+ Y, Y ) ∈ c(T̂ ).

Proposition 5. If T is a simulation up to �, then T̂ is a bisimulation
up to c.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T ). By Lemma 9, T̂ �
uω(c(T̂ )) = c(T̂ ).

(Note that transitivity and symmetry are not used in the above
proofs: the constructed bisimulation up to congruence is actually
a bisimulation up to context (r ∪ u ∪ id)ω .)

The relation T̂ is not the one computed by HKC, since the former
contains pairs of the shape (x+ Y, Y ), while the latter has pairs of
the shape (X + Y, Y ) with X possibly not a singleton. However,
note that manipulating pairs of the two kinds does not change
anything since by Lemma 7, (X +Y, Y ) ∈ c(R) iff for all x ∈ X ,
(x+ Y, Y ) ∈ c(R).

4.2.2 Inclusion: AC can mimic HKC on disjoint automata
As shown in Section 4.2.3 below, HKC can be faster than AC, thanks
to the up to transitivity technique. However, in the special case
where the two automata are disjoint, transitivity cannot help, and
the two algorithms actually match each other.

Suppose that the automaton (S, o, t) is built from two disjoint
automata (S1, o1, t1) and (S2, o2, t2) as described in Remark 1.
Let R be the relation obtained by running HKC(X0+Y0, Y0) with
X0 ⊆ S1 and Y0 ⊆ S2. All pairs in R are necessarily of the shape
(X+Y, Y ) withX ⊆ S1 and Y ⊆ S2. LetR ⊆ S×P(S) denote
the relation {(x, Y ) | ∃X, x ∈ X and X+Y R Y }.

Lemma 10. If S1 and S2 are disjoint, then c(R) ⊆ �(R).

Proof. Suppose that x c(R) Y , i.e., x ∈ X with X + Y c(R) Y .
By Lemma 7, we have X ⊆ Y ↓R, and hence, x ∈ Y ↓R. By def-
inition of R the pairs it contains can only be used to rewrite from
right to left; moreover, since S1 and S2 are disjoint, such rewriting
steps cannot enable new rewriting rules, so that all steps can be per-
formed in parallel: we have Y ↓R =

∑
X′+Y ′RY ′⊆Y X

′. There-
fore, there exists some X ′, Y ′ with x ∈ X ′, X ′+Y ′ R Y ′, and
Y ′ ⊆ Y . It follows that (x, Y ′) ∈ R, hence (x, Y ) ∈ �(R).

Proposition 6. If S1 and S2 are disjoint, and ifR is a bisimulation
up to congruence, then R is a simulation up to upward closure.

x
a //a,b :: x1

a,b // · · ·
a,b // xn

y
b //a,b :: y1

a,b // · · ·
a,b // yn

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

Figure 5. Family of examples where HKC exponentially improves
over AC and HK; we have x+ y ∼ z.

Proof. First observe that for all relations R,R′, if R � R′, then
R�s R′. Therefore, if R� c(R), then R�s c(R). We deduce
R�s �(R) by Lemma 10.

4.2.3 Inclusion: AC cannot mimic HKC on merged automata
The containment of Lemma 10 does not hold when S1 and S2 are
not disjoint, since c can exploit transitivity, while � cannot. For a
concrete grasp, take R = {(x + y, y), (y + z, z)} and observe
that (x, z) ∈ c(R) but (x, z) /∈ �(R). This difference makes it
possible to find bisimulations up to c that are much smaller than
the corresponding simulations up to �, and for HKC to be more
efficient than AC. Such an example, where HKC is exponentially
better than AC for checking language inclusion of automata sharing
some states, is given in [6].

4.2.4 Language equivalence: AC cannot mimic HKC.
AC can be used to check language equivalence, by checking the two
underlying inclusions. However, checking equivalence directly can
be better, even in the disjoint case. To see this on a simple example,
consider the DFA on the right-hand side of Figure 2. If we use AC
twice to prove x ∼ u, we get the following antichains

T1 = {(x, u), (y, v), (y, w), (z, v), (z, w)} ,
T2 = {(u, x), (v, y), (w, y), (v, z), (w, z)} ,

containing five pairs each. Instead, four pairs are sufficient with HK
or HKC, thanks to up to symmetry and up to transitivity.

For a more interesting example, consider the family of NFA
given in Figure 5, where n is an arbitrary natural number. Taken
together, the states x and y are equivalent to the state z: they recog-
nise the language (a+b)?(a+b)n+1. Alone, the state x (resp. y)
recognises the language (a+b)?a(a+b)n (resp. (a+b)?b(a+b)n).

For i ≤ n, let Xi = x+x1+ . . .+xi, Yi = y+y1+ . . .+yi,
and Zi = z+z1+ . . .+zi; for N ⊆ [1..i], furthermore set

XN
i = x+

∑
j∈N

xj , Y
N
i = y +

∑
j∈[1..n]\N

yj .

In the determinised NFA, x + y can reach all the states of the
shape XN

i +Y
N
i , for i ≤ n and N ⊆ [1..i]. For instance, for

n=i=2, we have x+y aa→ x+y+x1+x2, x+y ab→ x+y+y1+x2,
x+y

ba→ x+y+x1+y2, and x+y
bb→ x+y+y1+y2. Instead, z

reaches only n+1 distinct states, those of the form Zi.

The smallest bisimulation relating x+ y and z is

R ={(XN
i + Y

N
i , Zi) | i ≤ n,N ⊆ [1..i]},

which contains 2n+1−1 pairs. This is the relation computed by
Naive(x, y) and HK(x, y)—the up to equivalence technique (alone)
does not help in HK. With AC, we obtain the antichains Tx+Ty (for
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[[x+ y]] ⊆ [[z]]) and Tz (for [[x+ y]] ⊇ [[z]]), where:

Tx = {(xi, Zi) | i ≤ n},
Ty = {(yi, Zi) | i ≤ n},

Tz = {(zi, XN
i + Y

N
i ) | i ≤ n,N ⊆ [1..i]}.

Note that Tx and Ty have size n+ 1, and Tz has size 2n+1−1.
The language recognised by x or y are known for having a

minimal DFA with 2n states [17]. So, checking x + y ∼ z via
minimisation (e.g., [9, 15]) would also require exponential time.

This is not the case with HKC, which requires only polynomial
time in this case. Indeed, HKC(x+y, z) builds the relation

R′ = {(x+ y, z)}
∪ {(x+ Yi + yi+1, Zi+1) | i < n}
∪ {(x+ Yi + xi+1, Zi+1) | i < n}

which is a bisimulation up to congruence and which only contains
2n + 1 pairs. To see that this is a bisimulation up to congruence,
consider the pair (x+y+x1+y2, Z2) obtained from (x+y, z)
after reading the word ba. This pair does not belong to R′ but to
its congruence closure. Indeed, we have

x+y+x1+y2 c(R
′) Z1+y2 (x+y+x1 R′ Z1)

c(R′) x+y+y1+y2 (x+y+y1 R′ Z1)

c(R′) Z2 (x+y+y1+y2 R′ Z2)

(Check Lemma 18 in Appendix D for a complete proof.)

5. Exploiting Similarity
Looking at the example in Figure 5, a natural idea would be to
first quotient the automaton by graph isomorphism. By doing so,
we would merge the states xi, yi, zi, and we would obtain the
following automaton, for which checking x+y ∼ z is much easier.

x
a

&&

a,b ::

y
b
//a,b :: m1

a,b // · · ·
a,b // mn

z
a,b

88

a,b ::

As shown by Abdulla et al. [1], one can actually do better
with the antichain algorithm, by exploiting any preorder contained
in language inclusion (e.g., similarity [24]). In this section, we
rephrase this technique for antichains in our coinductive frame-
work, and we show how this idea can be embedded in HKC, resulting
in an even stronger algorithm.

5.1 AC with similarity: AC’
For the sake of clarity, we fix the preorder to be similarity, which
can be computed in quadratic time [13]:

Definition 9 (Similarity). Similarity is the largest relation on states
� ⊆ S × S such that x � y entails:

1. o(x) ≤ o(y) and
2. for all a ∈ A, x′ ∈ S such that x a→ x′, there exists some y′

such that y a→ y′ and x′ � y′.

One extends similarity to a preorder �∀∃ ⊆ P(S) × P(S) on
sets of states, and to a preorder v� ⊆ (S ×P(S))× (S ×P(S))
on antichain pairs, as:

X �∀∃ Y if ∀x ∈ X, ∃y ∈ Y, x � y ,

(x′, Y ′) v� (x, Y ) if x � x′ and Y ′ �∀∃ Y .

The new antichain algorithm [1], which we call AC’, is similar
to AC, but the antichain is now taken w.r.t. the new preorder v�.
Formally, let & : P(S × P(S)) → P(S × P(S)) be the function
defined for all relations T ⊆ S × P(S), as

&T = {(x, Y ) | x �∀∃ Y , or

∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v� (x, Y )}.

While AC consists in trying to build a simulation up to �, AC’ tries
to build a simulation up to &, i.e., it skips a pair (x, Y ) if either (a)
it is subsumed by another pair of the antichain or (b) x �∀∃ Y .

Theorem 5. Any simulation up to & is contained in a simulation.

Corollary 4. The antichain algorithm proposed in [1] is sound and
complete: for all sets X,Y , [[X]] ⊆ [[Y ]] iff AC’(X,Y ).

Optimisation 1(a) and optimisation 1(b) in [1] are simply (a) and
(b), as discussed above. Another optimisation, called Optimisation
2, is presented in [1]: if y1 � y2 and y1, y2 ∈ Y for some pair
(x, Y ), then y1 can be safely removed from Y . Note that while
this is useful to store smaller sets, it does not allow one to explore
less, since the pairs encountered with or without optimisation 2 are
always equivalent w.r.t. the ordering v�: Y �∀∃ Y \ y1 and, for
all a ∈ A, t]a(Y ) �∀∃ t]a(Y \ y1).

5.2 HKC with similarity: HKC’
Although HKC is primarily designed to check language equivalence,
we can also extend it to exploit the similarity preorder. It suffices to
notice that for any similarity pair x � y, we have x+y ∼ y.

Let� denote the relation {(x+y, y) | x � y}, let r′ denote the
constant to � function, and let c′ = (r′∪s∪t∪u∪id)ω . Accord-
ingly, we call HKC’ the algorithm obtained from HKC (Figure 4) by
replacing (X,Y ) ∈ c(R ∪ todo) with (X,Y ) ∈ c′(R ∪ todo)
in step 3.2. Notice that the latter test can be reduced to rewriting
thanks to Theorem 3 and the following lemma.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

In other words to check whether (X,Y ) ∈ c′(R ∪ todo), it
suffices to compute the normal forms of X and Y w.r.t. the rules
from R ∪ todo plus the rules x+ y ← y for all x � y.

Theorem 6. Any bisimulation up to c′ is contained in a bisimula-
tion.

Proof. Consider the constant function r′′ : P(P(S) × P(S)) →
P(P(S)×P(S)) mapping all relations to∼. Since language equiv-
alence (∼) is a bisimulation, we immediately obtain that this func-
tion is compatible. Thus so is the function c′′ = (r′′∪s∪t∪u∪id)ω .
We have that � is contained in ∼, so that any bisimulation up to c′

is a bisimulation up to c′′. Since c′′ is compatible, such a relation
is contained in a bisimulation, by Proposition 3.

Note that in the above proof, we can replace� by any other relation
contained in ∼. Intuitively, bisimulations up to c′′ correspond to
classical bisimulations up to bisimilarity [24] from concurrency.

Corollary 5. For all sets X,Y , we have X ∼ Y iff HKC’(X,Y ).

5.3 Relationship between HKC’ and AC’

Like in Section 4.2.1, we can show that for any simulation up to &
there exists a corresponding bisimulation up to c′, of the same size.

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂ ).

Proposition 7. If T is a simulation up to &, then T̂ is a bisimula-
tion up to c′.
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x
a //a,b :: x1

a,b // · · ·
a,b // xn

a

kk

y
b //a,b :: y1

a,b // · · ·
a,b // yn

c

kk

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

a,b

kk

x � z
x1 � z1

...
xn � zn

Figure 6. Family of examples where HKC’ exponentially improves
over AC’, for inclusion of disjoint automata: we have [[z]] ⊆ [[x+y]].

However, even for checking inclusion of disjoint automata, AC’
cannot mimic HKC’, because now the similarity relation allows one
to exploit transitivity. To see this, consider the example given in
Figure 6, where we want to check that [[z]] ⊆ [[x + y]], and for
which the similarity relation is shown on the right-hand side.

Since this is an inclusion of disjoint automata, HKC and AC,
which do not exploit similarity, behave the same (cf. Sections 4.2.1
and 4.2.2). Actually, they also behave like HK and they require
2n+1−1 pairs. On the contrary, the use of similarity allows HKC’
to prove the inclusion with only 2n + 1 pairs, by computing the
following bisimulation up to c′ (Lemma 19 in Appendix E):

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

where Xi = x+x1+ . . .+xi and Zi = z+z1+ . . .+zi.
Like in Section 4.2.4, to see that this is a bisimulation up to

c′ (where we do exploit similarity), consider the pair obtained
after reading the word ab: (Z2+x+y+x2+y1, x+y+x2+y1).
This pair does not belong to R′′ or c(R′′), but it does belong to
c′(R′′). Indeed, by Lemmas 7 and 11, this pair belong to c′(R′′) iff
Z2 ⊆ (x+y+x2+y1)↓R′′∪� , and we have

x+y+x2+y1

 R′′∪� Z1+x+y+y1+x2 (Z1+x+y+y1 R
′′ x+y+y1)

 R′′∪� Z1+X1+y+y1+x2 = Z1+X2+y+y1 (x1 � z1)

 R′′∪� Z2+X2+y+y1+x2 (Z2+X2+y R
′′ X2+y)

On the contrary, AC’ is not able to exploit similarity in this case,
and it behaves like AC: both of them compute the same antichain Tz
as in the example from Section 4.2.4, which has 2n+1−1 elements.

In fact, even when considering inclusion of disjoint automata,
the use of similarity tends to virtually merge states, so that HKC’
can use the up to transitivity technique which AC and AC’ lack.

5.4 A short recap
Figure 7 summarises the relationship amongst the presented algo-
rithms, in the general case and in the special case of language in-
clusion of disjoint automata. In this diagram, an arrow X→Y (from
an algorithm X to Y) means that (a) Y can explore less states than X,
and (b) Y can mimic X, i.e., the proof technique of Y is at least as
powerful as the one of X. (The labels on the arrows point to the sec-
tions showing these relations; unlabelled arrows are not illustrated
in this paper, they are easily inferred from what we have shown.)

6. Experimental assessment
To get an intuition of the average behaviour of HKC on various NFA,
and to compare it with HK and AC, we provide some benchmarks on
random automata and on automata obtained from model-checking
problems. In both cases, we conduct the experiments on a MacBook
pro 2.4GHz Intel Core i7, with 4GB of memory, running OS X

General case Disjoint inclusion case

HKC’

HKC

(5) 88

AC’

(5.3)ee

HK

(3) 99

AC

(4.2)ff (5) 99

Naive

(2.4)ee 88

HKC’

AC’

(5.3)
OO

HKC↔ AC (4.2.2)

OO

HK↔ Naive

OO

Figure 7. Relationship between the various algorithms.

Lion (10.7.4). We use our OCaml implementation for HK, HKC, and
HKC’ [6], and the libvataC++ library for AC and AC’ [20]. (To our
knowledge, libvata is the most efficient implementation currently
available for the antichain algorithms.)

6.1 Random automata
For a given size n, we generate a thousand random NFA with n
states and two letters. According to [31], we use a linear transi-
tion density of 1.25 (which means that the expected out-degree of
each state and with respect to each letter is 1.25): Tabakov and
Vardi empirically showed that one statistically gets more challeng-
ing NFA with this particular value. We generate NFA without ac-
cepting states: by doing so, we make sure that the algorithms never
encounter a counter-example, so that they always continue until
they find a (bi)simulation up to: these runs correspond to their worst
cases for all possible choices of accepting states for the given NFA.2

We run all algorithms on these NFA, starting from two distinct
singleton sets, to measure the required time and the number of
processed pairs: for HK, HKC, and HKC’, this is the number of pairs
put into the bisimulation up to (R); for AC and AC’, this is the
number of pairs inserted into the antichain. The timings for HKC’
and AC’ do not include the time required to compute similarity.

We report the median values (50%), the last deciles (90%), the
last percentiles (99%), and the maximum values (100%) in Table 1.
For instance, for n = 70, 90% of the examples require less than
155ms with HK; equivalently, 10% of the examples require more
than 155ms. (For a few tests, libvata ran out of memory, whence
the ∞ symbols in the table.) We also plotted on Figure 8 the
distribution of the number of processed pairs when n = 100.

HKC and AC are several orders of magnitude better than HK, and
HKC is usually two to ten times faster than AC. Moreover, for the
first four lines, HKC is much more predictable than AC, i.e., the last
percentiles and maximal values are of the same order as the median
value. (AC seems to become more predictable for larger values of
n.) The same relative behaviour can be observed between HKC’ and
AC’; moreover, HKC alone is apparently faster than AC’.

Also recall that the size of the relations generated by HK is a
lower bound for the number of accessible states of the determinised
NFA (Lemma 6 (2)); one can thus see in Table 1 that HKC usually
explores an extremely small portion of these DFA (e.g., less than
one per thousand for n = 100). The last column reports the median
size of the minimal DFA for the corresponding parameters, as given
in [31]. HK usually explores much many states than what would be
necessary with a minimal DFA, while HKC and AC need much less.

6.2 Automata from model-checking
Checking language inclusion of NFA can be useful for model-
checking, where one sometimes has to compute a sequence of NFA

2 To get this behaviour for AC and AC’, we actually had to trick libvata,
which otherwise starts by removing non-coaccessible states, and thus re-
duces any of these NFA to the empty one.
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required time (seconds) number of processed pairs mDFA size
n = |S| algo. 50% 90% 99% 100% 50% 90% 99% 100% 50%

50

HK 0.007 0.022 0.050 0.119 2511 6299 12506 25272

∼1000
AC 0.002 0.003 0.142 1.083 112 245 2130 5208
HKC 0.000 0.000 0.000 0.000 21 26 32 63
AC’ 0.002 0.002 0.038 0.211 79 131 1098 1926
HKC’ 0.000 0.000 0.000 0.000 18 23 28 58

70

HK 0.047 0.155 0.413 0.740 10479 28186 58782 87055

∼6000
AC 0.002 0.003 1.492 4.163 150 285 8383 15575
HKC 0.000 0.000 0.000 0.000 27 34 40 49
AC’ 0.002 0.003 0.320 0.884 110 172 3017 6096
HKC’ 0.000 0.000 0.000 0.000 23 29 36 44

100

HK 0.373 1.207 3.435 5.660 58454 164857 361227 471727

∼30000
AC 0.003 0.004 3.214 36.990 204 298 13801 48059
HKC 0.000 0.000 0.000 0.001 36 44 54 70
AC’ 0.003 0.004 0.738 6.966 152 211 4087 18455
HKC’ 0.000 0.000 0.000 0.001 31 39 46 64

300

AC 0.009 0.010 0.028 0.750 562 622 2232 14655

–HKC 0.001 0.002 0.003 0.009 86 104 118 132
AC’ 0.012 0.013 0.022 0.970 433 484 920 14160
HKC’ 0.001 0.001 0.002 0.006 76 91 104 116

500

AC 0.014 0.015 0.039 ∞ 918 986 2571 ∞
–HKC 0.002 0.005 0.008 0.018 130 154 176 193

AC’ 0.025 0.028 0.042 ∞ 710 772 1182 ∞
HKC’ 0.002 0.004 0.007 0.013 115 136 154 169

1000

AC 0.029 0.031 0.038 ∞ 1808 1878 2282 ∞
–HKC 0.007 0.022 0.055 0.093 228 271 304 337

AC’ 0.074 0.080 0.092 ∞ 1409 1488 1647 ∞
HKC’ 0.008 0.019 0.041 0.077 202 238 265 299

Table 1. Running the five presented algorithms to check language equivalence on random NFA with two letters.
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Figure 8. Distributions of the number of processed pairs, for the
1000 NFA with 100 states and 2 letters from Table 1.

by iteratively applying a transducer, until a fixpoint is reached [7].
To know that the fixpoint is reached, one typically has to check
whether an NFA is contained in another one.

Abdulla et al. [1] use such benchmarks to test their algorithm
(AC’) against the plain antichain algorithm (AC [33]). We reuse
them to test HKC’ against AC’ in a concrete scenario. We take
the sequences of automata kindly provided by L. Holik, which
roughly corresponds to those used in [1] and which come from the
model checking of various programs (the bakery algorithm, bubble
sort, and a producer-consumer system). For all these sequences,
we check the inclusions of consecutive pairs, in both directions.
We separate the results into those for which a counter-example is
found, and those for which the inclusion holds. We skip the trivial
inclusions which hold by similarity (�∀∃), and for which both HKC’
and AC’ stop immediately.

The results are given in Table 2. Even though these are inclu-
sions of disjoint automata, HKC’ is faster than AC’ on these ex-
amples: up to transitivity can be exploited thanks to the similarity
pairs, and larger parts of the determinised NFA can be skipped.

7. Related work
A similar notion of bisimulation up to congruence has already been
used to obtain decidability and complexity results about context-
free processes, under the name of self-bisimulations. Caucal [10]
introduced this concept to give a shorter and nicer proof of the
result by Baeten et al. [4]: bisimilarity is decidable for normed
context-free processes. Christensen et al [11] then generalised the
result to all context-free processes, also by using self-bisimulations.
Hirshfeld et al. [14] used a refinement of this notion to get a
polynomial algorithm for bisimilarity in the normed case.

There are two main differences with the ideas we presented
here. First, the above papers focus on bisimilarity rather than lan-
guage equivalence (recall that although we use bisimulation re-
lations, we check language equivalence since we work on the
determinised NFA—Remark 3). Second, we consider a notion
of bisimulation up to congruence where the congruence is taken
with respect to non-determinism (union of sets of states). Self-
bisimulations are also bisimulations up to congruence, but the con-
gruence is taken with respect to word concatenation. We cannot
consider this operation in our setting since we do not have the
corresponding monoid structure in plain NFA.

Other approaches, that are independent from the algebraic struc-
ture (e.g., monoids or semi-lattices) and the behavioural equiv-
alence (e.g., bisimilarity or language equivalence) are shown in
[5, 21, 22, 26]. These propose very general frameworks into which
our up to congruence technique fits as a very special case. To our
knowledge, bisimulation up to congruence has never been proposed
as a technique for proving language equivalence of NFA.
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required time (seconds) number of processed pairs number of tests
result algo. 50% 90% 99% 100% 50% 90% 99% 100%

counter-example AC’ 0.012 0.107 1.047 1.134 23 247 598 1352 518
HKC’ 0.001 0.005 0.025 0.383 11 24 112 290

inclusion holds AC’ 0.079 0.795 1.457 1.480 149 733 1854 3087 178
HKC’ 0.015 0.165 0.340 0.345 61 695 1076 1076

Table 2. Running HKC’ and AC’ to test language inclusion of disjoint NFA generated from model-checking.

8. Conclusions and future work
We showed that the standard algorithm by Hopcroft and Karp for
checking language equivalence of DFA relies on a bisimulation up
to equivalence proof technique; this allowed us to design a new
algorithm (HKC) for the non-deterministic case, where we exploit a
novel technique called up to congruence.

We then compared HKC to the recently introduced antichain al-
gorithms [33] (AC): when checking the inclusion of disjoint au-
tomata, the two algorithms are equivalent, in all the other cases
HKC is more efficient since it can use transitivity to prune a larger
portion of the state-space.

The difference between these two approaches becomes even
more striking when considering some optimisation exploiting sim-
ilarity. Indeed, as nicely shown with AC’ [1], the antichains ap-
proach can widely benefit from the knowledge one gets by first
computing similarity. Inspired by this work, we showed that both
our proof technique (bisimulation up to congruence) and our al-
gorithm (HKC) can be easily modified to exploit similarity. The re-
sulting algorithm (HKC’) is now more efficient than AC’ even for
checking language inclusion of disjoint automata.

We provided concrete examples where HKC and HKC’ are ex-
ponentially faster than AC and AC’ (Sections 4.2.4 and 5.3) and
we proved that the coinductive techniques underlying the formers
are at least as powerful as those exploited by the latters (Proposi-
tions 5 and 7). We finally compared the algorithms experimentally,
by running them on both randomly generated automata, and au-
tomata resulting from model checking problems. It appears that for
these examples, HKC and HKC’ perform better than AC and AC’.

Finally note that our implementation of the presented algo-
rithms is available online [6], together with an applet making it
possible to test them on user-provided examples.

As future work, we plan to extend our approach to tree au-
tomata. In particular, it seems promising to investigate if further
up-to techniques can be defined for regular tree expressions. For
instance, the algorithms proposed in [3, 18] exploit some optimisa-
tion which suggest us coinductive up-to techniques.
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A. Smallest bisimulation and compositionality
In this appendix, we show some (unrelated) properties that have
been discussed through the paper, but never formally stated.

The first property concerns the relation computed by Naive(x, y).
The following proposition shows that it is the smallest bisimulation
relating x and y.

Proposition 8. Let x and y be two states of a DFA. Let RNaive

be the relation built by Naive(x, y). If Naive(x, y) = true,
then RNaive is the smallest bisimulation relating x and y, i.e.,
RNaive ⊆ R, for all bisimulations R such that (x, y) ∈ R.

Proof. We have already shown in Proposition 2 that RNaive is a
bisimulation. We need to prove that it is the smallest. Let R be a
bisimulation such that (x, y) ∈ R. For all words w ∈ A∗ and pair
of states (x′, y′) such that x w→ x′ and y w→ y′, it must hold that
(x′, y′) ∈ R (by definition of bisimulation).

By construction, for all (x′, y′) ∈ RNaive there exists a word
w ∈ A∗, such that x w→ x′ and y w→ y′. Therefore all the pairs in
RNaive must be also in R, that is RNaive ⊆ R.

The second property is

[[X + Y ]] = [[X]] + [[Y ]] ,

which we have used in the Introduction to give an intuition of
bisimulation up to context and to show that the problem of lan-
guage inclusion can be reduced to language equivalence. We be-
lieve that this property is interesting, since it follows from the cate-
gorical observation made in [30] that determinised NFA are bialge-
bras [32], like CCS processes. For this reason, we prove here that
[[−]] : P(S)→ 2A

∗
is a semi-lattice homomorphism.

Theorem 7. Let (S, o, t) be a non-deterministic automaton and
(P(S), o], t]) be the corresponding deterministic automaton ob-
tained through the powerset construction. The function [[−]] : P(S)→
2A
∗

is a semi-lattice homomorphism, that is, for all X1, X2 ∈
P(S),

[[X1 +X2]] = [[X1]] + [[X2]] and [[0]] = 0 .

Proof. We prove that for all words w ∈ A∗, [[X1 + X2]](w) =
[[X1]](w) + [[X2]](w), by induction on w.

• for ε, we have:

[[X1 +X2]](ε) = o](X1 +X2)

= o](X1) + o](X2) = [[X1]](ε) + [[X2]](ε) .

• for a · w, we have:

[[X1 +X2]](a · w)
= [[t]a(X1 +X2)]](w) (by definition)

= [[t]a(X1) + t]a(X2)]](w) (by definition)

= [[t]a(X1)]](w) + [[t]a(X2)]](w) (by induction hypothesis)
= [[X1]](a · w) + [[X2]](a · w) . (by definition)

For the second part, we prove that for all words w ∈ A∗, [[0]](w) =
0, again by induction on w. Base case: [[0]](ε) = o](0) = 0.
Inductive case: [[0]](a · w) = [[t]a(0)]](w) = [[0]](w) that by
induction hypothesis is 0.

B. Proofs of Section 2

Proposition 1. Two states are language equivalent iff there exists a
bisimulation that relates them.

Proof. Let R[[−]] be the relation {(x, y) | [[x]] = [[y]]}. We
prove that R[[−]] is a bisimulation. If x R[[−]] y, then o(x) =
[[x]](ε) = [[y]](ε) = o(y). Moreover, for all a ∈ A and w ∈ A∗,
[[ta(x)]](w) = [[x]](a · w) = [[y]](a · w) = [[ta(y)]](w) that means
[[ta(x)]] = [[ta(y)]], that is ta(x) R[[−]] ta(y).

We now prove the other direction. Let R be a bisimulation.
We want to prove that x R y entails [[x]] = [[y]], i.e., for all
w ∈ A∗, [[x]](w) = [[y]](w). We proceed by induction on w.
For w = ε, we have [[x]](ε) = o(x) = o(y) = [[y]](ε). For
w = a · w′, since R is a bisimulation, we have ta(x) R ta(y)
and thus [[ta(x)]](w′) = [[ta(y)]](w

′) by induction. This allows us
to conclude since [[x]](a · w′) = [[ta(x)]](w

′) and [[y]](a · w′) =
[[ta(y)]](w

′).

Lemma 1. The following functions are compatible:

id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Proof. The first two points are straightforward;
For the third one, assume that F is a family of compatible

functions. Suppose that R� R′; for all f ∈ F , we have f(R)�
f(R′) so that

⋃
f∈F f(R)�

⋃
f∈F f(R

′).
For the last one, assume that f is compatible; for all n, fn is

compatible because (a) f0 = id is compatible (by the first point)
and (b) fn+1 = f ◦ fn is compatible (by the second point and
induction hypothesis). By definition fω =

⋃
n f

n and thus, by the
third point, fω is compatible.

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Proof. r: observe that the identity relation Id = {(x, x) | ∀x ∈
S} is always a bisimulation, i.e., Id � Id. Thus for all R,R′

r(R) = Id� Id = r(R′).
s: observe that the definition of progression is completely sym-

metric. Therefore, if R� R′, then s(R)� s(R′).
t: assume that R � R′. For each (x, z) ∈ t(R), there ex-

ists y such that (x, y) ∈ R and (y, z) ∈ R. By assump-
tion, (1) o′(x) = o′(y) = o′(z) and (2) for all a ∈ A,
t′a(x)R

′ t′a(y)R
′ t′a(z), that is t′a(x) t(R′) t′a(z).
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C. Proofs of Section 3

Lemma 4. For all relations R, the relation R is convergent.

Proof. We have that Z  R Z′ implies |Z′| > |Z|, where |X|
denotes the cardinality of the set X (note that  R is irreflexive).
Since |Z′| is bounded by |S|, the number of states of the NFA,
the relation  R is strongly normalising. We can also check that
whenever Z  R Z1 and Z  R Z2, either Z1 = Z2 or there is
some Z′ such that Z1  R Z′ and Z2  R Z′. Therefore, R is
convergent.

Lemma 13. The relation R is contained in c(R).

Proof. If Z  R Z′ then there exists (X,Y ) ∈ (s ∪ id)(R) such
that Z = Z+X and Z′ = Z+Y . Therefore Z c(R) Z′ and, thus,
 R is contained in c(R).

Lemma 14. Let X,Y ∈ P(S), we have (X + Y )↓R = (X↓R +
Y ↓R)↓R.

Proof. Follows from confluence (Lemma 4) and from the fact that
for all Z,Z′, U , Z  R Z

′ entails U + Z  =
R U + Z′.

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we have
X↓R = Y ↓R iff (X,Y ) ∈ c(R).

Proof. From right to left. We proceed by induction on the deriva-
tion of (X,Y ) ∈ c(R). The cases for rules r, s, and t are straight-
forward. For rule id, suppose that X R Y , we have to show
X↓R = Y ↓R:

• if X = Y , we are done;
• if X ( Y , then X  R X + Y = Y ;
• if Y ( X , then Y  R X + Y = X;
• if neither Y ⊆ X nor X ⊆ Y , then X,Y  R X + Y .

(In the last three cases, we conclude by confluence—Lemma 4.)
For rule u, suppose by induction that Xi↓R = Yi↓R for i ∈ 1, 2;
we have to show that (X1 + Y1)↓R = (X2 + Y2)↓R. This follows
by Lemma 14.
From left to right. By Lemma 13, we have X c(R) X↓R for any
set X , so that X c(R) X↓R = Y ↓R c(R) Y .

Lemma 5. The three algorithms require at most 1+v·|R| iterations,
where |R| is the size of the produced relation; moreover, this bound
is reached whenever they return true.

Proof. At each iteration, one pair is extracted from todo. The latter
contains one pair before entering the loop and v pairs are added to
it every time that a pair is added to R.

Lemma 15. Let x and y be two states of a DFA. LetRNaive andRHK

be relations computed by Naive(x, y) and HK(x, y), respectively.
If Naive(x, y) = HK(x, y) = true, then e(RNaive) = e(RHK).

Proof. By the proof of Proposition 3, eω(RHK) is a bisimulation.
Since e is idempotent, we have eω = e and thus e(RHK) is a
bisimulation; we can thus deduce by Proposition 8 that RNaive ⊆
e(RHK). Moreover, by definition of the algorithms, we have RHK ⊆
RNaive. Summarising,

RHK ⊆ RNaive ⊆ e(RHK)

It follows that e(RHK) = e(RNaive), e being monotonic and idem-
potent.

Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

Proof. For the first point, let PS denote the set of (determinised
NFA) states accessible from the two starting states, so that m =
|PS| ≤ 2n. Since RNaive ⊆ PS×PS, we deduce |RNaive| ≤ m2.
Since each pair added to RHK merges two distinct equivalence
classes in e(RHK), we necessarily have |RHK| ≤ m (the largest
partition of PS has exactly m singletons). Similarly, each pair
added to RHKC merges at least two distinct equivalence classes in
c(RHK), so that we also have |RHKC| ≤ m.

For the second point, |RHK| ≤ |RNaive| follows from the fact that
RHK ⊆ RNaive, by definition of the algorithms. The other inequality
is less obvious.

By construction, RHKC ⊆ RNaive and, since e is monotonic,
e(RHKC) ⊆ e(RNaive) = e(RHK) (the latter equality is given by
Proposition 15). In particular, there are more equivalence classes
in e(RHKC) than in e(RHK); using the same argument as above, we
deduce that |RHKC| ≤ |RHK|.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y ) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

Proof. Let (X ′, Y ′) ∈ R= and suppose that (X ′+Y ′, Y ′) ∈ R⊆
(the other case is symmetric).

First notice that all pairs in R⊇ necessarily have the shape
(t]w(X+Y ), t]w(X)), for some word w. Since R⊇ is a bisimula-
tion up to congruence, c(R⊇) is a bisimulation. Since (X+Y,X) ∈
c(R⊇) then, for all words w, (t]w(X+Y ), t]w(X)) ∈ c(R⊇)
and thus (X ′+Y ′, X ′) ∈ c(R⊇) (we have X ′ = t]w(X) and
Y ′ = t]w(Y ) for some word w).

Since c(R⊆) and c(R⊇) are bisimulations containing (X ′+Y ′, Y ′)
and (X ′+Y ′, X ′), it holds that:

1. o](X ′) = o](X ′ + Y ′) = o](Y ′);
2. for all a, t]a(X ′ + Y ′) c(R⊇) t

]
a(X

′) and t]a(X ′ + Y ′) c(R⊆)
t]a(Y

′).

By Lemma 7, t]a(Y ′) ⊆ t]a(X
′)↓R⊇ and X ′ ⊆ t]a(Y

′)↓R⊆ and
since all the rewriting rules for R⊆ and R⊇ are also rewriting rules
for R=, then t]a(Y ′) ⊆ t]a(X

′)↓R= and t]a(X ′) ⊆ t]a(Y
′)↓R= .

By the first observation in the proof of Lemma 7, this means that
t]a(X

′) c(R=) t
]
a(Y

′).

D. Proofs of Section 4

Proposition 4. For all sets X,Y , we have [[X]] ⊆ [[Y ]] iff there
exists a simulation T such that for all x ∈ X , x T Y .
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Proof. Let T[[−]] be the relation {(x, Y ) | [[x]] ⊆ [[Y ]]}. We prove
that T[[−]] is a simulation. If x T[[−]] Y , then o(x) = [[x]](ε) ≤
[[Y ]](ε) = o](Y ). Moreover, for all a ∈ A x′ ∈ ta(x) andw ∈ A∗,
[[x′]](w) ⊆ [[x]](a · w) ⊆ [[Y ]](a · w) = [[t]a(Y )]](w) that means
[[x′]] ⊆ [[t]a(Y )]], that is ta(x) T[[−]] t

]
a(Y ).

We now prove the other direction. Let T be a simulation. We
want to prove that x T Y entails [[x]] ⊆ [[Y ]], i.e., for all w ∈ A∗,
[[x]](w) ≤ [[Y ]](w). We proceed by induction on w. For w = ε, we
have [[x]](ε) = o(x) ≤ o](Y ) = [[Y ]](ε). For w = a · w′, since T
is a simulation, we have ta(x) T t]a(Y ) and thus [[ta(x)]](w

′) ≤
[[t]a(Y )]](w′) by induction. This allows us to conclude since [[x]](a ·
w′) = [[ta(x)]](w

′) and [[y]](a · w′) = [[t]a(y)]](w
′).

Definition 10. A function f : P(S×P(S))→ P(S×P(S)) is s-
compatible if is monotone and for all relations T, T ′ ⊆ S×P(S),
T �s T

′ entails f(T )�s f(T
′).

Lemma 16. Any simulation T up to an s-compatible function f
(T �s f(T )) is contained in a simulation, namely fω(T ).

Proof. Same proof as for Proposition 3.

Lemma 17. The upward closure function � is s-compatible.

Proof. We assume that T �s T
′ and we prove that �T �s �T ′.

If x �T Y , then ∃Y ′ ⊆ Y such that x T Y ′. Since Y ′ ⊆ Y ,
o](Y ′) ≤ o](Y ) and t]a(Y

′) ⊆ t]a(Y ) for all a ∈ A. Since
T �s T ′ and x T Y ′, then o(x) ≤ o](Y ′) ≤ o](Y ) and
ta(x) �T ′ t]a(Y ) for all a ∈ A.

Theorem 4. Any simulation up to � is contained in a simulation.

Proof. By Lemmas 16 and 17.

Lemma 18. The relation

R′ = {(x+ y, z)}
+ {(x+ Yi + yi+1, Zi+1) | i < n}
+ {(x+ Yi + xi+1, Zi+1) | i < n}

is a bisimulation up to congruence for the NFA in Fig. 5.

Proof. First notice that

X1 + y c(R′) x+ Y1 c(R′) Z1

We then consider each kind of pair of R′ separately:

• (x, y): we have o](x + y) = 0 = o](z) and t]a(x + y) =
X1 + y R′ Z1 = t]a(z) and, similarly, t]b(x+ y) = x+ Y1 R

′

Z1 = t]b(z).
• (x+Yi+yi+1, Zi+1): both members are accepting iff i+1 =
n; setting j = min(i+ 2, n), we have

t]a(x+ Yi + yi+1) =X1 + y + y2 + · · ·+ yj

c(R′) x+ Y1 + y2 + · · ·+ yj

= x+ Yj R
′ Zj = t]a(Zi+1)

and

t]b(x+ Yi + yi+1) = x+ Yj R
′ Zj = t]b(Zi+1)

• (x+Yi+xi+1, Zi+1): both members are accepting iff i+1 =
n; if i+ 1 < n then we have:

t]a(x+ Yi + xi+1) =X1 + y + y2 + · · ·+ yi+1 + xi+2

c(R′) x+ Y1 + y2 + · · ·+ yi+1 + xi+2

= x+ Yi+1 + xi+2

R′ Zi+2 = t]a(Zi+1)

and

t]b(x+ Yi + xi+1) = x+ Yi+1 + xi+2 R
′ Zi+2 = t]b(Zi+1)

otherwise, i.e., i+ 1 = n, notice that:

x+ Yn + xn c(R
′) Zn + yn

c(R′) x+ Yn + yn = x+ Yn

c(R′) Zn = t]a(Zn) ,

from which we deduce:

t]a(x+ Yi + xn) =X1 + y + y2 + · · ·+ yn + xn

c(R′) x+ Y1 + y2 + · · ·+ yn + xn

= x+ Yn + xn c(R
′) t]a(Zn)

and

t]b(x+ Yi + xn) = x+ Yn + xn c(R
′) t]a(Zn)

E. Proofs of Section 5

Theorem 5. Any simulation up to & is contained in a simulation.

Proof. By Lemma 16, it suffices to show that & is s-compatible.
Suppose that T �s T ′, we have to show that &T �s &T ′.
Assume that x &T Y .

• if x �∀∃ Y then x � y for some y ∈ Y . Therefore, we have
o(x) ≤ o(y) ≤ o](Y ) and for all a ∈ A, x′ ∈ ta(x), we
have some y′ ∈ ta(y) with x′ � y′. Since ta(y) ⊆ t]a(Y ), we
deduce x′ �∀∃ t]a(Y ), and hence x′ &T ′ t]a(Y ), as required.
• otherwise, we have some (x′, Y ′) ∈ T such that (x′, Y ′) v�
(x, Y ), i.e., x � x′ and Y ′ �∀∃ Y . Since T �s T ′, we
have o(x) ≤ o(x′) ≤ o](Y ′) ≤ o](Y ). Now take some
x′′ ∈ ta(x), we have some x′′′ ∈ ta(x′) with x′′ � x′′′, and
since T �s T

′, we know x′′′ T ′ t]a(Y
′). It suffices to show

that t]a(Y ′) �∀∃ t]a(Y ) to conclude; this follows easily from
Y ′ �∀∃ Y and from the definition of similarity.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

Proof. The inclusion c(R ∪ �) ⊆ c′(R) is trivial. For the other
inclusion we take d = r′∪s∪t∪u∪id and we prove by induction
that for all natural numbers n, dn(R) ⊆ c(R ∪ �). For n = 0,
d0(R) = R ⊆ c(R ∪ �). For n + 1, dn+1(R) = d(dn(R)). By
induction hypothesis, dn(R) ⊆ c(R ∪�) and, by monotonicity of
d, d(dn(R)) ⊆ d(c(R ∪�)). By definition of d, the latter is equal
to c(R ∪ �).

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂ ).
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Proof. If (x + Y, Y ) ∈ &̂T , then either (a) x �∀∃ Y or (b)
there exists x � x′ and Y ′ �∀∃ Y such that (x′, Y ′) ∈ T . We
have to show (x+Y, Y ) ∈ c′(T̂ ), i.e., (x+Y, Y ) ∈ c(T̂ + �) by
Lemma 11, that is x ∈ Y ↓T̂+� by Lemma 7. For (b), we have:

Y  ?
T̂+� Y + Y ′ (Y ′ �∀∃ Y )

 T̂+� Y + Y ′ + x′ ((x′+Y ′, Y ′) ∈ T̂ )

 T̂+� Y + Y ′ + x′ + x (x � x′)

x ∈ Y ↓T̂+� follows by confluence (Lemma 4). For (a), we
immediately have that Y  T̂+� Y + x.

Proposition 7. If T is a simulation up to &, then T̂ is a bisimulation
up to c′.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T ). By Lemma 12, T̂ �
uω(c′(T̂ )) = c′(T̂ ).

Lemma 19. The relation

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

is a bisimulation up to c′ for the NFA in Figure 6.

Proof. Let X ′i be the set Xi without x1 and note that Xi
a→ Xi+1

and Xi
b→ X ′i+1. First we observe that for all i,

X ′i + Y1  R′′∪� X
′
i + Y1 + Z1  R′′∪� X

′
i + Y1 + Z1 + x1

where the first reduction is given by (Z1 +X0 + y+ y1, X0 + y+
y1) ∈ R′′ and the second by x1 � z1. Since X ′i + x1 = Xi, then
one can apply the third kind of pairs in R′′, so that

X ′i + Y1  
∗
R′′∪� Xi + Y1 + Zi

that is Zi ⊆ (X ′i + Y1)↓R′′∪�. By Lemmas 7 and 11, this means
that

Zi +X ′i + Y1 c
′(R′′) X ′i + Y1 (2)

If we moreover have yi+1, we can apply the second kind of pair
in R′′ and obtain

X ′i + Y1 + yi+1  
∗
R′′∪� Xi + Y1 + Zi+1 + yi+1

that is

Zi+1 +X ′i + Y1 + yi+1 c
′(R′′) X ′i + Y1 + yi+1 (3)

With (2) and (3), it is easy to prove that R′′ is a bisimulation up
to c′, by simply proceeding by cases:

• (z+x+y, x+y): we have o](x+y+z) = 0 = o](x+y) and
t]a(x+y+z) = Z1+X1+y R′′ X1 + y = t]a(x+y) and,
similarly, t]b(x+y+z) = Z1+x+Y1 R

′′ x+Y1 = t]b(z).
• (Zi+1+Xi+y+yi+1, Xi+y+yi+1) and i < n − 1: both

members are not accepting;

t]a(Zi+1+Xi+y+yi+1) = Zi+2+Xi+1+y+yi+2

R′′ Xi+1+y+yi+2

= t]a(Xi+y+yi+1)

and

t]b(Zi+1+Xi+y+yi+1) = Zi+2+X
′
i+1+Y1+yi+2

c′(R′′)X ′i+1+Y1+yi+2

= t]b(Xi+y+yi+1)

• (Zn+Xn−1+y+yn, Xn−1+y+yn) and i = n − 1: both
members are accepting;

t]a(Zn+Xn−1+y+yn) = Zn+Xn+y

R′′ Xn+y

= t]a(Xn−1+y+yn)

and

t]b(Zn+Xn−1+y+yn) = Zn+X
′
n+Y1

c′(R′′)X ′n+Y1

= t]b(Xn−1+y+yn)

• (Zi+1+Xi+1+y, Xi+1+y) and i < n− 1: both members are
not accepting;

t]a(Zi+1+Xi+1+y) = Zi+2+Xi+2+y

R′′ Xi+2+y

= t]a(Xi+1+y)

and

t]b(Zi+1+Xi+1+y) = Zi+2+X
′
i+2+Y1

c(R′′)X ′i+2+Y1

= t]b(Xi+1+y)

• (Zn+Xn+y, Xn+y): both members are accepting; Moreover,

t]a(Zn+Xn+y) = Zn+Xn+y

R′′ Xn+y = t]a(Xn+y)

and

t]b(Zn+Xn+y) = Zn+X
′
n+Y1

c(R′′)X ′n+Y1

= t]b(Xn+y)

The cases for the letter c are always trivial since Zi
c→ 0.

16 2012/7/11
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Abstract. Concurrent reversibility has been studied in different ar-
eas, such as biological or dependable distributed systems. However, only
“rigid” reversibility has been considered, allowing to go back to a past
state and restart the exact same computation, possibly leading to diver-
gence. In this paper, we present croll-π, a concurrent calculus featuring
flexible reversibility, allowing the specification of alternatives to a com-
putation to be used upon rollback. Alternatives in croll-π are attached to
messages. We show the robustness of this mechanism by encoding more
complex idioms for specifying flexible reversibility, and we illustrate the
benefits of our approach by encoding a calculus of communicating trans-
actions.

1 Introduction

Reversible programs can be executed both in the standard, forward direction as
well as in the backward direction, to go back to past states. Reversible program-
ming is attracting much interest for its potential in several areas. For instance,
chemical and biological reactions are typically bidirectional, and the direction
of execution is fixed by environmental conditions such as temperature. Simi-
larly, quantum computations are reversible as long as they are not observed.
Reversibility is also used for backtracking in the exploration of a program state-
space toward a solution, either as part of the design of the programming language
as in Prolog, or to implement transactions. We are particularly interested in the
use of reversibility for modeling and programming concurrent reliable systems.
In this setting, the main idea is that in case of an error the program backtracks
to a past state where the decisions leading to the error have not been taken yet,
so that a new forward execution may avoid repeating the (same) error.

Reversibility has a non trivial interplay with concurrency. Understanding this
interplay is fundamental in many of the areas above, e.g., for biological or reliable
distributed systems, which are naturally concurrent. In the spirit of concurrency,
independent threads of execution should be rolled-back independently, but causal
dependencies between related threads should be taken into account.

? This work has been partially supported by the French National Research Agency
(ANR), projects REVER ANR 11 INSE 007 and PiCoq ANR 10 BLAN 0305.
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2 Ivan Lanese et al.

This form of reversibility, termed causal consistent, was first introduced by
RCCS [12], a reversible variant of CCS. RCCS paved the way to the definition of
reversible variants of more expressive concurrent calculi [9, 20, 22, 24]. This line
of research considered rigid, uncontrolled, step-by-step reversibility. Step-by-step
means that each single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. Uncontrolled means that there is no hint as
to when to go forward and when to go backward, and up to where. Rigid means
that the execution of a forward step followed by the corresponding backward step
leads back to the starting state, where an identical computation can restart.

While these works have been useful to understand the basics of concurrent
reversibility in different settings, some means to control reversibility are required
in practice. In the literature four different forms of control have been proposed:
relating the direction of execution to some energy parameter [3], introducing
irreversible actions [13], using an explicit rollback primitive [19], and using a
superposition operator to control forward and backward execution [26].

With the exception of [26], these works have causally consistent reversibility
but exhibit rigid reversibility. However, rigid reversibility may not always be the
best choice. In the setting of reliable systems, for instance, rigid reversibility
means that to recover from an error a past state is reached. From this past state
the computation that lead to the error is still possible. If the error was due to a
transient fault, retrying the same computation may be enough to succeed. If the
failure was permanent, the program may redo the same error again and again.

Our goal is to overcome this limitation by providing the programmer with
suitable linguistic constructs to specify what to do after a causally consistent
backward computation. Such constructs can be used to ensure that new forward
computations explore new possibilities. To this end, we build on our previous
work on roll-π [19], a calculus where concurrent reversibility is controlled by the
roll γ operator. Executing it reverses the action referred by γ together with all the
dependent actions. Here, we propose a new calculus called croll-π, for compen-
sating roll-π, as a framework for flexible reversibility. We attempt to keep croll-π
as close as possible to roll-π while enabling many new possible applications. We
thus simply replace roll-π communication messages a〈P 〉 by messages with al-
ternative a〈P 〉÷ c〈Q〉. In forward computation, a message a〈P 〉÷ c〈Q〉 behaves
exactly as a〈P 〉. However, if the interaction consuming it is reversed, the origi-
nal message is not recreated—as would be the case with rigid reversibility—but
the alternative c〈Q〉 is released instead. Our rollback and alternative message
primitives provide a simple form of reversibility control, which always respects
the causal consistency of reverse computation. It contrasts with the fine-grained
control provided by the superposition constructs in [26], where the execution of
a CCS process can be constrained by a controller, possibly reversing identified
past actions in a way that is non-causally consistent.

Our contributions are as follows. We show that the simple addition of alter-
natives to roll-π greatly extends its expressive power. We show that messages
with alternative allow for programming different patterns for flexible reversibil-
ity. We show that croll-π can be used to model the communicating transactions
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Concurrent Flexible Reversibility 3

of [14]. Notably, the tracking of causality of croll-π is more precise than the
one in [14], thus allowing to improve on the original proposal by avoiding some
spurious undo of actions. Additionally, we study some aspects of the behavioral
theory of croll-π, including a context lemma for barbed congruence. This allows
us to reason about croll-π programs, in particular to prove the correctness of the
encodings of primitives for flexible reversibility and of the transactional calculus
of [14]. Finally, we present an interpreter, written in Maude [11], for a small
language based on croll-π.

Outline. Section 2 gives an informal introduction to croll-π. Section 3 defines the
croll-π calculus, its reduction semantics, and it introduces the basics of its be-
havioral theory. Section 4 presents various croll-π idioms for flexible reversibility.
Section 5 outlines the croll-π interpreter in Maude and the concurrent solution
for the Eight Queens problem. Section 6 presents an encoding and an analysis of
the TransCCS constructs from [14]. Section 7 concludes the paper with related
work and a mention of future studies. The paper includes short proof sketches
for the main results. We refer to the online technical report [18] for full proofs
and an additional example, an encoding of the transactional constructs from [2].

2 Informal Presentation

Rigid reversibility in roll-π. The croll-π calculus is a conservative extension of the
roll-π calculus introduced in [19].5 We briefly review the roll-π constructs before
presenting the extension added by croll-π. Processes in roll-π are essentially pro-
cesses of the asynchronous higher-order π-calculus [27], extended with a rollback
primitive. Processes in roll-π cannot directly execute, only configurations can. A
configuration is essentially a parallel composition of tagged processes along with
memories tracking past interactions and connectors tracing causality informa-
tion. In a tagged process of the form k : P , the tag k uniquely identifies the
process P in a given configuration. We often use the term key instead of tag.

The uniqueness of tags in configurations is achieved thanks to the following
reduction rule that defines how parallel processes are split.

k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

In the above reduction, | is the parallel composition operator and ν is the
restriction operator, both standard from the π-calculus. As usual, the scope of
restriction extends as far to the right as possible. Connector k ≺ (k1, k2) is used
to remember that the process tagged by k has been split into two sub-processes
identified by the new keys k1 and k2. Thus complex processes can be split into
threads, where a thread is either a message, of the form a〈P 〉 (where a is a
channel name), a receiver process (also called a trigger), of the form a(X) .γ P ,
or a rollback instruction of the form roll k, where k is a key.

5 The version of roll-π presented here is slightly refined w.r.t. the one in [19].
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4 Ivan Lanese et al.

A forward communication step occurs when a message on a channel can be
received by a trigger on the same channel. It takes the following form (roll-π is
an asynchronous higher-order calculus).

(k1 : a〈P 〉) | (k2 : a(X) .γ Q) −→ νk. k : Q{P,k/X,γ} | [µ; k]

In this forward step, keys k1 and k2 identify threads consisting respectively of
a message a〈P 〉 on channel a and a trigger a(X) .γ Q expecting a message on
channel a. The result of the message input yields, as in higher-order π, the body
of the trigger Q with the formal parameter X instantiated by the received value,
i.e., process P . Message input also has three side effects: (i) the tagging of the
newly created process Q{P,k/X,γ} by a fresh key k; (ii) the creation of a memory
[µ; k], which records the original two threads,6 µ = (k1 : a〈P 〉) | (k2 : a(X).γQ),
together with key k; and (iii) the instantiation of variable γ with the newly
created key k (the trigger construct is a binder both for its process parameter
and its key parameter).

In roll-π, a forward computation, i.e., a series of forward reduction steps
as above, can be perfectly undone by backward reductions triggered by the
occurrence of an instruction of the form roll k, where k refers to a previously
instantiated memory. In roll-π, we have for instance the following forward and
backward steps, where M = (k1 : a〈Q〉) | (k2 : a(X) .γ X | roll γ):

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→M

The communication between threads k1 and k2 in the first step and the split of
process k into k3 and k4 are perfectly undone by the third (backward) step.

More generally, the set of memories and connectors of a configuration M
provides us with an ordering <: between the keys of M that reflects their causal
dependency: k′ <: k means that key k′ has key k as causal descendant. Thus,
the effects of a rollback can be characterized as follows. When a rollback takes
place in a configuration M , triggered by an instruction kr : roll k, it suppresses
all threads and processes whose tag is a causal descendant of k, as well as all
connectors k′ ≺ (k1, k2) and memories m = [k1 : τ1 | k2 : τ2; k′] whose key k′

is a causal descendant of k. When suppressing such a memory m, the rollback
operation may release a thread ki : τi if ki is not a causal descendant of k (at
least one of the threads of m must have k as causal antecedent if k′ has k as
causal antecedent). This is due to the fact that a thread that is not a causal
descendant of k may be involved in a communication (and then captured into
a memory) by a descendant of k. This thread can be seen as a resource that is
taken from the environment through interaction, and it should be restored in
case of rollback. Finally, rolling-back also releases the content µ of the memory
[µ; k] targeted by the roll, reversing the corresponding communication step.

6 Work can be done to store memories in a more efficient way. We will not consider
this issue in the current paper; an approach can be found in [22].
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Concurrent Flexible Reversibility 5

Flexible reversibility in croll-π. In roll-π, a rollback perfectly undoes a computa-
tion originated by a specific message receipt. However, nothing prevents the same
computation from taking place again and again (although not necessarily in the
same context, as independent computations may have proceeded on their own
in parallel). To allow for flexible reversibility, we extend roll-π with a single new
construct, called a message with alternative. In croll-π, a message may now take
the form a〈P 〉÷C, where alternative C may either be a message c〈Q〉÷0 with
null alternative or the null process 0. When the message receipt of k : a〈P 〉÷C
is rolled-back, configuration k : C is released instead of the original k : a〈P 〉, as
would be the case in roll-π. (Only the alternative associated to the message in the
memory [µ; k] targeted by the roll is released: other processes may be restored,
but not modified.) For example, if M = (k1 : a〈Q〉÷0) | (k2 : a(X) .γ X | roll γ)
then we have the following computation, where the communication leading to
the rollback becomes disabled.

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→
k1 : 0 | (k2 : a(X) .γ X | roll γ)

We will show that croll-π is powerful enough to devise various kinds of al-
ternatives (see Section 4), whose implementation is not possible in roll-π (cf.
Theorem 2). Also, thanks to the higher-order aspect of the calculus, the behav-
ior of roll-π can still be programmed: rigid reversibility can be seen as a particular
case of flexible reversibility. Thus, the introduction of messages with alternatives
has limited impact on the definition of the syntax and of the operational seman-
tics, but it has a strong impact on what can actually be modeled in the calculus
and on its theory.

3 The croll-π Calculus: Syntax and Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually-disjoint sets: the set N of names, the set K of keys, the
set VK of key variables, and the set VP of process variables. N denotes the set
of natural numbers. We let (together with their decorated variants): a, b, c range
over N ; h, k, l range over K; u, v, w range over N ∪K; γ range over VK; X,Y, Z
range over VP . We denote by ũ a finite set u1 . . . un.

Syntax. The syntax of the croll-π calculus is given in Figure 1. Processes, given
by the P,Q productions, are the standard processes of the asynchronous higher-
order π-calculus [27], except for the presence of the roll primitive, the extra
bound tag variable in triggers, and messages with alternative that replace roll-π
messages a〈P 〉. The alternative operator ÷ binds more strongly than any other
operator. Configurations in croll-π are given by the M,N productions. A config-
uration is built up from tagged processes k : P , memories [µ; k], and connectors
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6 Ivan Lanese et al.

P,Q ::= 0 | X | νa. P | (P | Q) | a(X) .γ P | a〈P 〉÷C | roll k | roll γ
M,N ::= 0 | νu.M | (M | N) | k : P | [µ; k] | k ≺ (k1, k2) C ::= a〈P 〉÷0 | 0

µ ::= (k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q)

a, b, c ∈ N X,Y, Z ∈ VP γ ∈ VK u, v, w ∈ N ∪ K h, k, l ∈ K

Fig. 1. Syntax of croll-π

k ≺ (k1, k2). In a memory [µ; k], we call µ the configuration part of the memory
and k its key. P denotes the set of croll-π processes and C the set of croll-π con-
figurations. We let (together with their decorated variants) P,Q,R range over P
and L,M,N range over C. We call thread a process that is either a message with
alternative a〈P 〉÷C, a trigger a(X).γP , or a rollback instruction roll k. We let τ
and its decorated variants range over threads. We write

∏
i∈IMi for the parallel

composition of configurations Mi for each i ∈ I (by convention
∏
i∈IMi = 0 if

I = ∅), and we abbreviate a〈0〉 to a.

Free identifiers and free variables. Notions of free identifiers and free variables
in croll-π are standard. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) .γ P binds the process variable X and the key variable γ with scope P .
We denote by fn(P ) and fn(M) the set of free names and keys of process P and
configuration M , respectively. Note in particular that fn(k : P ) = {k} ∪ fn(P ),
fn(roll k) = {k}. We say that a process P or a configuration M is closed if it
has no free (process or key) variable. We denote by Pcl and Ccl the sets of closed
processes and configurations, respectively. We abbreviate a(X) .γ P , where X is
not free in P , to a .γ P ; and a(X) .γ P , where γ is not free in P , to a(X) . P .

Remark 1. We have no construct for replicated processes or internal choice in croll-π:

as in the higher-order π-calculus, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Reduction Semantics

The reduction semantics of croll-π is defined via a reduction relation −→, which
is a binary relation over closed configurations (−→ ⊂ Ccl×Ccl), and a structural
congruence relation ≡, which is a binary relation over configurations (≡ ⊂ C×C).
We define configuration contexts as “configurations with a hole •”, given by
the grammar: C ::= • | (M | C) | νu.C. General contexts G are just
configurations with a hole • in a place where an arbitrary process P can occur.
A congruence on processes or configurations is an equivalence relation R that

ha
l-0

08
11

62
9,

 v
er

si
on

 1
 - 

10
 A

pr
 2

01
3



Concurrent Flexible Reversibility 7

(E.ParC)M | N ≡ N |M (E.ParA)M1 | (M2 |M3) ≡ (M1 |M2) |M3

(E.NilM)M | 0 ≡M (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.M ≡ νv. νu.M (E.NewP) (νu.M) | N ≡ νu. (M | N)

(E.α)M =α N =⇒ M ≡ N (E.TagC) k ≺ (k1, k2) ≡ k ≺ (k2, k1)

(E.TagA) νh. k ≺ (h, k3) | h ≺ (k1, k2) ≡ νh. k ≺ (k1, h) | h ≺ (k2, k3)

Fig. 2. Structural congruence for croll-π.

(S.Com)
µ = (k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q2)

(k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q2) −→ νk. (k : Q2{P,k/X,γ}) | [µ; k]

(S.TagN) k : νa. P −→ νa. k : P

(S.TagP) k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

(S.Roll)
k <: N complete(N | [µ; k] | (kr : roll k)) µ′ = xtr(µ)

N | [µ; k] | (kr : roll k) −→ µ′ | N k

(S.Ctx)
M −→ N

C[M ] −→ C[N ]
(S.Eqv)

M ≡M ′ M ′ −→ N ′ N ′ ≡ N
M −→ N

Fig. 3. Reduction rules for croll-π

is closed for general or configuration contexts: P RQ =⇒ G[P ]RG[Q] and
M RN =⇒ C[M ]RC[N ].

Structural congruence ≡ is defined as the smallest congruence on configu-
rations that satisfies the axioms in Figure 2, where t =α t

′ denotes equality of
t and t′ modulo α-conversion. Axioms E.ParC to E.α are standard from the
π-calculus. Axioms E.TagC and E.TagA model commutativity and associativ-
ity of connectors, in order not to have a rigid tree structure. Thanks to axiom
E.NewC, νũ. A stands for νu1 . . . un. A if ũ = u1 . . . un.

Configurations can be written in normal form using structural congruence.

Lemma 1 (Normal form). Given a configuration M , we have:

M ≡ νñ.
∏
i

(ki : Pi) |
∏
j

[µi; kj ] |
∏
l

kl ≺ (k′l, k
′′
l )

The reduction relation −→ is defined as the smallest binary relation on closed
configurations satisfying the rules of Figure 3. This extends the näıve semantics of
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8 Ivan Lanese et al.

roll-π introduced in [19],7 and outlined here in Section 2, to manage alternatives.
We denote by =⇒ the reflexive and transitive closures of −→.

Reductions are either forward, given by rules S.Com, S.TagN, and S.TagP,
or backward, defined by rule S.Roll. They are closed under configuration con-
texts (rule S.Ctx) and under structural congruence (rule S.Eqv). The rule for
communication S.Com is the standard communication rule of the higher-order
π-calculus with the side effects discussed in Section 2. Rule S.TagN allows re-
strictions in processes to be lifted at the configuration level. Rule S.TagP allows
to split parallel processes. Rule S.Roll enacts rollback, canceling all the effects
of the interaction identified by the unique key k, and releasing the initial con-
figuration that gave rise to the interaction, where the alternative replaces the
original message. This is the only difference between croll-π and roll-π: in the lat-
ter, the memory µ was directly released. However, this small modification yields
significant changes to the expressive power of the calculus, as we will see later.

The rollback impacts only the causal descendants of k, defined as follows.

Definition 1 (Causal dependence). Let M be a configuration and let TM
be the set of keys occurring in M . Causal dependence <:M is the reflexive and
transitive closure of <M , which is defined as the smallest binary relation on TM
satisfying the following clauses:

– k <M k′ if k ≺ (k1, k2) occurs in M with k′ = k1 or k′ = k2;

– k <M k′ if a thread k : P occurs (inside µ) in a memory [µ; k′] of M .

If the configuration M is clear from the context, we write k <: k′ for k <:M k′.

A backward reduction triggered by roll k involves all and only the descen-
dants of key k. We ensure they are all selected by requiring that the configuration
is complete, and that no other term is selected by requiring k-dependence.

Definition 2 (Complete configuration). A configuration M is complete,
denoted as complete(M), if, for each memory [µ; k] and each connector k′ ≺
(k, k1) or k′ ≺ (k1, k) that occurs in M there exists in M either a connector
k ≺ (h1, h2) or a tagged process k : P (possibly inside a memory).

A configuration M is k-dependent if all its components depend on k.

Definition 3 (k-dependence). Let M be a configuration such that:
M ≡ νũ.

∏
i∈I(ki : Pi) |

∏
j∈J [µj ; kj ] |

∏
l∈L kl ≺ (k′l, k

′′
l ) with k /∈ ũ.

Configuration M is k-dependent, written k <: M by overloading the notation for
causal dependence among keys, if for every i in I ∪ J ∪ L, we have k <:M ki.

Rollback should release all the resources consumed by the computation to be
rolled-back which were provided by other threads. They are computed as follows.

7 We extend the näıve semantics instead of the high-level or the low-level semantics
(also defined in [19]) for the sake of simplicity. However, reduction semantics corre-
sponding to the high-level and low-level semantics of roll-π can similarly be specified.
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Concurrent Flexible Reversibility 9

Definition 4 (Projection). Let M be a configuration such that:
M ≡ νũ.

∏
i∈I(ki : Pi) |

∏
j∈J [k′j : Rj | k′′j : Tj ; kj ] |

∏
l∈L kl ≺ (k′l, k

′′
l ) with

k /∈ ũ. Then:

M k = νũ.
( ∏
j′∈J′

k′j′ : Rj′
)
|
( ∏
j′′∈J′′

k′′j′′ : Tj′′
)

where J ′ = {j ∈ J | k 6<: k′j} and J ′′ = {j ∈ J | k 6<: k′′j }.

Intuitively, M k consists of the threads inside memories in M which are not
dependent on k.

Finally, and this is the main novelty of croll-π, function xtr defined below
replaces messages from the memory targeted by the roll by their alternatives.

Definition 5 (Extraction function).

xtr(M | N) = xtr(M) | xtr(N) xtr(k : a〈P 〉÷C) = k : C

xtr(k : a(X) .γ Q) = k : a(X) .γ Q

No other case needs to be taken into account as xtr is only called on the
contents of memories.

Remark 3. Not all syntactically licit configurations make sense. In particular, we ex-

pect configurations to respect the causal information required for executing croll-π

programs. We therefore work only with coherent configurations. A configuration is co-

herent if it is obtained by reduction starting from a configuration of the form νk. k : P

where P is closed and contains no roll h primitive (all the roll primitives should be of

the form roll γ).

3.3 Barbed Congruence

We define notions of strong and weak barbed congruence to reason about croll-π
processes and configurations. Name a is observable in configuration M , denoted
as M ↓a, if M ≡ νũ. (k : a〈P 〉÷C) | N , with a 6∈ ũ. We write MR↓a, where R is
a binary relation on configurations, if there exists N such that MRN and N ↓a.
The following definitions are classical.

Definition 6 (Barbed congruences for configurations). A relation R ⊆
Ccl×Ccl on closed configurations is a strong (respectively weak) barbed simula-
tion if whenever M RN ,

– M ↓a implies N ↓a (respectively N =⇒↓a);
– M −→M ′ implies N −→ N ′ (respectively N =⇒ N ′) with M ′RN ′.

A relation R ⊆ Ccl × Ccl is a strong (weak) barbed bisimulation if R and R−1
are strong (weak) barbed simulations. We call strong (weak) barbed bisimilarity
and denote by ∼ (≈) the largest strong (weak) barbed bisimulation. The largest
congruence for configuration contexts included in ∼ (≈) is called strong (weak)
barbed congruence, denoted by ∼c (≈c).
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10 Ivan Lanese et al.

The notion of strong and weak barbed congruence extends to closed and open
processes, by considering general contexts that form closed configurations.

Definition 7 (Barbed congruences for processes). A relation R ⊆ Pcl ×
Pcl on closed processes is a strong (resp. weak) barbed congruence if whenever
PRQ, for all general contexts G such that G[P ] and G[Q] are closed configura-
tions, we have G[P ] ∼c G[Q] (resp. G[P ] ≈c G[Q]).

Two open processes P and Q are said to be strong (resp. weak) barbed con-
gruent, denoted by P ∼oc Q (resp. P ≈oc Q) if for all substitutions σ such that
Pσ and Qσ are closed, we have Pσ ∼c Qσ (resp. Pσ ≈c Qσ).

Working with arbitrary contexts can quickly become unwieldy. We offer the
following Context Lemma to simplify the proofs of congruence.

Theorem 1 (Context lemma). Two processes P and Q are weak barbed con-
gruent, P ≈oc Q, if and only if for all substitutions σ such that Pσ and Qσ are
closed, all closed configurations M , and all keys k, we have: M | (k : Pσ) ≈M |
(k : Qσ).

The proof of this Context Lemma is much more involved than the corresponding
one in the π-calculus, notably because of the bookkeeping required in dealing
with process and thread tags. It is obtained by composing the lemmas below.

The first lemma shows that the only relevant configuration contexts are par-
allel contexts.

Lemma 2 (Context lemma for closed configurations). For any closed
configurations M,N , M ∼c N if and only if, for all closed configurations L,
M | L ∼ N | L. Likewise, M ≈c N if and only if, for all L, M | L ≈ N | L.

Proof. The left to right implication is immediate, by definition of ∼c. For the
other direction, the proof consists in showing that R = {〈C[M ],C[N ]〉 | ∀L,M |
L ∼ N | L} is included in ∼. The weak case is identical to the strong one. ut

We can then prove the thesis on closed processes.

Lemma 3 (Context lemma for closed processes). Let P and Q be closed
processes. We have P ≈c Q if and only if, for all closed configuration contexts
C and k 6∈ fn(P,Q), we have C[k : P ] ≈ C[k : Q].

Proof. The left to right implication is clear. One can prove the right to left
direction by induction on the form of general contexts for processes, using the
factoring lemma below for message contexts. ut

Lemma 4 (Factoring). For all closed processes P , all closed configurations M
such that M{P /X} is closed, and all c, t, k, k′ 6∈ fn(M,P ), we have

M{P /X} ≈c νc, t, k0, k′0.M{c/X} | k0 : t〈YP 〉 | k′0 : YP

where YP = t(Y ) . (c . P ) | t〈Y 〉 | Y .
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Concurrent Flexible Reversibility 11

We then deal with open processes.

Lemma 5 (Context lemma for open processes). Let P and Q be (possibly
open) processes. We have P ≈oc Q if and only if for all closed configuration
contexts C, all substitutions σ such that Pσ and Qσ are closed, and all k 6∈
fn(P,Q), we have C[k : Pσ] ≈ C[k : Qσ].

Proof. For the only if part, one proceeds by induction on the number of bindings
in σ. The case for zero bindings follows from Lemma 3. For the inductive case,
we write P[•] for a process where an occurrence of 0 has been replaced by •, and
we show that contexts of the form P = a〈R〉 | a(X) . P′[•] where a is fresh and
P = a〈R〉 | a(X).γ P′[•] where a is fresh and X never occurs in the continuation
actually enforce the desired binding.

For the if part, the proof is by induction on the number of triggers. If the
number of triggers is 0 then the thesis follows from Lemma 3. The inductive
case consists in showing that equivalence under substitutions ensures equivalence
under a trigger context. ut

Proof (of Theorem 1). A direct consequence of Lemma 5 and Lemma 2. ut

4 croll-π Expressiveness

4.1 Alternative Idioms

The message with alternative a〈P 〉 ÷ C triggers alternative C upon rollback.
We choose to restrict C to be either a message with 0 alternative or 0 itself in
order to have a minimal extension of roll-π. However, this simple form of alter-
native is enough to encode far more complex alternative policies and constructs,
as shown below. We define the semantics of the alternative idioms below by
only changing function xtr in Definition 5. We then encode them in croll-π and
prove the encoding correct w.r.t. weak barbed congruence. More precisely, for
every extension below the notion of barbs is unchanged. The notion of barbed
bisimulation thus relates processes with slightly different semantics (only xtr

differs) but sharing the same notion of barbs. Since we consider extensions of
croll-π, in weak barbed congruence we consider just closure under croll-π con-
texts. By showing that the extensions have the same expressive power of croll-π,
we ensure that allowing them in contexts would not change the result. Every
encoding maps unmentioned constructs homomorphically to themselves. After
having defined each alternative idiom, we freely use it as an abbreviation.

Arbitrary alternatives. Messages with arbitrary alternative can be defined by
allowing C to be any process Q. No changes are required to the definition of
function xtr. We can encode arbitrary alternatives as follows, where c is not free
in P,Q.

La〈P 〉÷QMaa = νc. a〈LP Maa〉÷ c〈LQMaa〉÷0 | c(X) . X

Proposition 1. P ≈c LP Maa for any closed process with arbitrary alternatives.
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12 Ivan Lanese et al.

R = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪ Id
R1 = {〈k : a〈P 〉÷Q | L , k : (νc. a〈P 〉÷ c〈Q〉÷0 | c(X) . X) | L〉}
R2 = {〈k : a〈P 〉÷Q | L , νc k1 k2. k ≺ (k1, k2) | k1 : a〈P 〉÷ c〈Q〉÷0 | k2 : c(X) . X | L〉}
R3 = {〈νh. [k : a〈P 〉÷Q | k′ : a(X) .γ R;h] | L′′ ,

νc k1 k2 h. k ≺ (k1, k2) | [k1 : a〈P 〉÷ c〈Q〉÷0 | k′ : a(X) .γ R;h] | k2 : c(X) . X | L′′〉}
R4 = {〈k : Q | L′′′ , νc k1 k2. k ≺ (k1, k2) | k1 : c〈Q〉÷0 | k2 : c(X) . X | L′′′〉}
R5 = {〈k : Q | L′′′ , νc k1 k2 h. k ≺ (k1, k2) | [k1 : c〈Q〉÷0 | k2 : c(X) . X;h] | h : Q | L′′′〉}

Fig. 4. Bisimulation relation for arbitrary alternatives.

Proof. We consider just one instance of arbitrary alternative, the thesis will
follow by transitivity.

Thanks to Lemma 5 and Lemma 2, we only need to prove that for all closed
configurations L and k 6∈ fn(P ), we have k : a〈P 〉 ÷Q | L ≈ k : (νc. a〈P 〉 ÷
c〈Q〉÷0 | c(X) . X) | L. We consider the relation R in Figure 4 and prove that
it is a weak barbed bisimulation. In every relation, L is closed and k /∈ fn(P ).

InR1, the right configuration can reduce via rule S.TagN followed by S.TagP.
These lead to R2. Performing these reductions is needed to match the barb
and the relevant reductions of the left configuration, thus we consider directly
R2. In R2 the barbs coincide. Rollbacks lead to the identity. The only possible
communication is on a, and requires L ≡ L′ | k′ : a(X) .γ R. It leads to R3,
where L′′ = L′ | R{P,h/X,γ}. In R3 the barbs coincide too. All the reductions
can be matched by staying in R3 or going to the identity, but for executing a
roll with key h. This leads to R4. From R4 we can always execute the internal
communication at c leading to R5. The thesis follows from the result below,
whose proof requires again to find a suitable bisimulation relation.

Lemma 6. For each configuration M k-dependent and complete such that k′, t,
k1, k2 /∈ fn(M) we have M ≈c νk′ t k1 k2. k ≺ (k1, k2) | [k1 : t〈Q〉 ÷ C | k2 :
t(X) . R; k′] |M{k′/k}. ut

Proofs concerning other idioms follow similar lines, and can be found in the
online technical report [18].

A particular case of arbitrary alternative a〈P 〉 ÷Q is when Q is a message
whose alternative is not 0. By applying this pattern recursively we can write
a1〈P1〉 ÷ . . .÷ an〈Pn〉 ÷Q. In particular, by choosing a1 = · · · = an and P1 =
· · · = Pn we can try n times the alternative P before giving up by executing Q.

Endless retry. We can also retry the same alternative infinitely many times, thus
obtaining the behavior of roll-π messages. These messages can be integrated into
croll-π semantics by defining function xtr as the identity on them.

La〈P 〉Mer = νt. Y | a〈LP Mer〉÷ t〈Y 〉 Y = t(Z) . Z | a〈LP Mer〉÷ t〈Z〉
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Concurrent Flexible Reversibility 13

Proposition 2. P ≈c LP Mer for any closed process with roll-π messages.

As corollary of Proposition 2 we thus have the following.

Corollary 1. croll-π is a conservative extension of roll-π.

Triggers with alternative. Until now we attached alternatives to messages. Sym-
metrically, one may attach alternatives to triggers. Thus, upon rollback, the
message is released and the trigger is replaced by a new process.

The syntax for triggers with alternative is (a(X) .γ Q)÷ b〈Q′〉 ÷ 0. As for
messages, we use a single message as alternative, but one can use general pro-
cesses as described earlier. Triggers with alternative are defined by the extract
clause below.

xtr(k : (a(X) .γ Q)÷ b〈Q′〉÷0) = k : b〈Q′〉÷0

Interestingly, messages with alternative and triggers with alternative may coex-
ist. The encoding of triggers with alternative is as follows.

L(a(X).γQ)÷b〈Q′〉÷0Mat = νc d. c÷d÷0 | (c.γ a(X).LQMat) | (d. b〈LQ′Mat〉÷0)

Proposition 3. P ≈c LP Mat for any closed process with triggers with alterna-
tive.

4.2 Comparing croll-π and roll-π

While Corollary 1 shows that croll-π is at least as expressive as roll-π, a natural
question is whether croll-π is actually strictly more expressive than roll-π or not.
The theorem below gives a positive answer to this question.

Theorem 2. There is no encoding L•M from croll-π to roll-π such that for each
croll-π configuration M :

1. if M has a computation including at least a backward step, then LMM has a
computation including at least a backward step;

2. if M has only finite computations, then LMM has only finite computations.

Proof. Consider configuration M = νk. k : a÷b÷0 | a.γ roll γ. This configuration
has a unique possible computation, composed by one forward step followed by
one backward step. Assume towards a contradiction that an encoding exists and
consider LMM. LMM should have at least a computation including a backward
step. From roll-π loop lemma [19, Theorem 1], if we have a backward step, we
are able to go forward again, and then there is a looping computation. This is
in contrast with the second condition of the encoding. The thesis follows. ut

The main point behind this result is that the Loop Lemma, a cornerstone of
roll-π theory [19] capturing the essence of rigid rollback (and similar results
in [9, 20, 22, 24]), does not hold in croll-π. Naturally, the result above does not
imply that croll-π cannot be encoded in HOπ or in π-calculus. However, these
calculi are too low level for us, as hinted at by the fact that the encoding of
a simple reversible higher order calculus into HOπ is quite complex, as shown
in [20].
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14 Ivan Lanese et al.

Qi , (acti(zi) . pi〈i, 1〉÷ . . .÷ pi〈i, 8〉÷ fi〈0〉÷0 |
(pi(xi) .γi acti+1〈0〉 | fi+1(z) . roll γi | oki(w1) . . . . oki(wi−1).!ci〈xi〉÷0 |∏i−1

j=1 cj(yj) . if err(xi,yj) then roll γi else oki〈0〉÷0))

err((x1, x2), (y1, y2)) , (x1 = y1 ∨ x2 = y2 ∨ |x1 − y1| = |x2 − y2|)

Fig. 5. The i-th queen

5 Programming in croll-π

A main goal of croll-π is to make reversibility techniques exploitable for appli-
cation development. Even if croll-π is not yet a full-fledged language, we have
developed a proof-of-concept interpreter for it. To the best of our knowledge, this
is the first interpreter for a causal-consistent reversible language. We then put the
implementation at work on a few simple, yet interesting, programming problems.
We detail below the algorithm we devised to solve the Eight Queens problem [4,
p. 165]. The interpreter and the code for solving the Eight Queens problem
are available at http://proton.inrialpes.fr/~mlienhar/croll-pi/implem,
together with examples of encodings of primitives for error handling, and an
implementation of the car repair scenario of the EU project Sensoria.

The interpreter for croll-π is written in Maude [11], a language based on both
equational and rewriting logic that allows the programmer to define terms and
reduction rules, e.g., to execute reduction semantics of process calculi. Most
of croll-π’s rules are straightforwardly interpreted, with the exception of rule
S.Roll. This rule is quite complex as it involves checks on an unbounded num-
ber of interacting components. Such an issue is already present in roll-π [19],
where it is addressed by providing an easier to implement, yet equivalent, low-
level semantics. This semantics replaces rule S.Roll with a protocol that sends
notifications to all the involved components to roll-back, then waits for them to
do so. Extending the low-level semantics from roll-π to croll-π simply requires
the application of function xtr to the memory targeted by the rollback. We do
not detail the low-level semantics of croll-π here, and refer the reader to [19] for
a detailed description in the setting of roll-π. Our Maude interpreter is based on
this low-level semantics, extended with values (integers and pairs) and with the
if-then-else construct. It is fairly concise (less than 350 lines of code).

The Eight Queens problem is a well-known constraint-programming probem
which can be formulated as follows: how to place 8 queens on an 8 × 8 chess
board so that no queen can directly capture another? We defined an algorithm
in croll-π where queens are concurrent entities, numbered from 1 to 8, all exe-
cuting the code schema shown in Figure 5. We use x to indicate a pair of integer
variables (x1, x2), and replicated messages !ci〈x〉÷0 to denote the encoding of a
parallel composition of an infinite number of messages ci〈x〉÷0 (cf. Remark 1).

The queens are activated in numeric order. The i-th queen is activated by
messages on channels acti from its predecessor. When a queen is activated it
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Concurrent Flexible Reversibility 15

looks for its position by trying sequentially all the positions in the i-th row
of the chess board. To try a position, it sends it over channel pi and checks
whether the position conflicts with the choices of the other queens. This is done
by computing (in parallel) err(xj,xi) for each j < i. If a check fails, roll γi
rolls-back the choice of the position. The alternatives mechanism allows to try
the next position. If no suitable position is available, the choice of position of
the previous queen is rolled-back (possibly recursively) by the communication
over fi. If instead the check succeeds, it generates a message on channel oki.
When there are exactly i − 1 messages on the channel oki, the queen commits
its position on ci.

6 Asynchronous Interacting Transactions

This section shows how croll-π can model in a precise way interacting transac-
tions with compensations as formalized in TransCCS [14]. Actually, the natural
croll-π encoding improves on the semantics in [14], since croll-π causality tracking
is more precise than the one in TransCCS, which is based on dynamic embedding
of processes into transactions. Thus croll-π avoids some spurious undo of actions,
as described below. Before entering the details of TransCCS, let us describe the
general idea of transaction encoding.

We consider a very general notion of atomic (but not necessarily isolated)
transaction, i.e., a process that executes completely or not at all. Informally, a
transaction [P,Q]γ with name γ executing process P with compensation Q can
be modeled by a process of the form:

[P,Q]γ = νa c. a÷ c÷0 | (a .γ P ) | (c . Q)

Intuitively, when [P,Q]γ is executed, it first starts process P under the rollback
scope γ. Abortion of the transaction can be triggered in P by executing a roll γ.
Whenever P is rolled-back, the rollback does not restart P (since the message
on a is substituted by the alternative on c), but instead starts the compensation
process Q. In this approach commit is implicit: when there is no reachable roll γ,
the transaction is committed. From the explanation above, it should be clear that
in the execution of [P,Q]γ , either P executes completely, i.e., until it reaches
a commit, or not at all, in the sense that it is perfectly rolled-back. If P is
ever rolled-back, its failed execution can be compensated by that of process Q.
Interestingly, and in contrast with irreversible actions used in [13], our rollback
scopes can be nested without compromising this all-or-nothing semantics.

Let us now consider an asynchronous fragment of TransCCS [14], removing
choice and recursion. Dealing with the whole calculus would not add new diffi-
culties related to rollback, but only related to the encoding of such operators in
higher-order π. The syntax of the fragment of TransCCS we consider is:

P ::= 0 | νa. P | (P | Q) | a | a.P | co k | JP .k QK

Essentially, it extends CCS with a transactional construct JP .kQK, executing a
transaction with body P , name k and compensation Q, and a commit operator
co k.
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16 Ivan Lanese et al.

(R-Comm) a | a.P −→ P
(R-Emb)

k /∈ fn(R)

JP .k QK | R −→ JP | R .k Q | RK

(R-Co) JP | co k .k QK −→ P (R-Ab) JP .k QK −→ Q

and is closed under active contexts νa. •, • | Q and J•.kQK, and structural congruence.

Fig. 6. Reduction rules for TransCCS

The rules defining the semantics of TransCCS are given in Figure 6. Struc-
tural congruence contains the usual rules for parallel composition and restriction.
Keep in mind that transaction scope is a binder for its name k, thus k does not
occur outside the transaction, and there is no name capture in rules R-Co and
R-Emb.

A croll-π transaction [P,Q]γ as above has explicit abort, specified by roll γ,
where γ is used as the transaction name, and implicit commit. TransCCS takes
different design choices, using non-deterministic abort and programmable com-
mit. Thus we have to instantiate the encoding above.

Definition 8 (TransCCS encoding). Let P be a TransCCS process. Its en-
coding L•Mt in croll-π is defined as:

Lνa. P Mt = νa. LP Mt LP | QMt = LP Mt | LQMt LaMt = a

La.P Mt = a . LP Mt Lco lMt = l(X) . 0 L0Mt = 0

LJP .l QKMt = [νl. LP Mt | l〈roll γ〉 | l(X) . X, LQMt]γ

Since in croll-π only configurations can execute, the behavior of P should be
compared with νk. k : LP Mt.

In the encoding, abort is always possible since at any time the only occurrence
of the roll in the transaction can be activated by a communication on l. On the
other hand, executing the encoding of a TransCCS commit disables the roll
related to the transaction. This allows to garbage collect the compensation, and
thus corresponds to an actual commit. Note, however, that in croll-π the abort
operation is not atomic as in TransCCS since the roll related to a transaction
first has to be enabled through a communication on l, disabling in this way
any possibility to commit, and then it can be executed. Clearly, until the roll is
executed, the body of the transaction can continue its execution. To make abort
atomic one would need the ability to disable an active roll, as could be done
using a (mixed) choice such as (roll k) + (l . 0). In this setting an output on
l would commit the transaction. Adding choice would not make the reduction
semantics more difficult, but its impact on behavioral equivalence has not been
studied yet.

The relation between the behavior of a TransCCS process P and of its transla-
tion LP Mt is not immediate, not only because of the comment above on atomicity,
but also because of the approximate tracking of causality provided by TransCCS.
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Concurrent Flexible Reversibility 17

TransCCS tracks interacting processes using rule (R-Emb): only processes inside
the same transaction may interact, and when a process enters the transaction it
is saved in the compensation, so that it can be restored in case of abort. How-
ever, no check is performed to ensure that the process actually interacts with
the transaction code. For instance, a process a | a.P may enter a transaction
JQ.kRK and then perform the communication at a. Such a communication would
be undone in case of abort. This is a spurious undo, since the communication
at a is not related to the transaction code. Actually, the same communication
could have been performed outside the transaction, and in this case it would not
have been undone.

In croll-π encoding, a process is “inside” the transaction with key k if and only
if its tag is causally dependent on k. Thus a process enters a transaction only by
interacting with a process inside it. For this reason, there is no reduction in croll-π
corresponding to rule (R-Emb), and since no process inside the transaction is
involved in the reduction at a above, the reduction would not be undone in case
of abort, since it actually happens “outside” the transaction. Thus our encoding
avoids spurious undo, and computations in croll-π correspond to computations in
TransCCS with minimal applications of rule (R-Emb). These computations are
however very difficult to characterize because of syntactic constraints. In fact,
for two processes inside two parallel transactions k1 and k2 to interact, either k1
should move inside k2 or vice versa, but in both the cases not only the interacting
processes move, as minimality would require, but also all the other processes
inside the same transactions have to move. Intuitively, TransCCS approximates
the causality relation, which is a dag, using the tree defined by containment.
The spurious reductions undone in TransCCS can always be redone so to reach
a state corresponding to the croll-π one. In this sense croll-π minimizes the set
of interactions undone.

We define a notion of weak barbed bisimilarity t≈cπ relating a TransCCS
process P and a croll-π configuration M . First, we define barbs in TransCCS by
the predicate P ↓a, which is true in the cases below, false otherwise.

a↓a νb. P ↓a if P ↓a ∧ a 6= b
P | P ′↓a if P ↓a ∨ P ′↓a JP .k QK↓a if P ↓a ∧ a 6= k

Here, differently from [14], we observe barbs inside the transaction body, to have
a natural correspondence with croll-π barbs.

Definition 9. A relation R relating TransCCS processes P and croll-π config-
urations M is a weak barbed bisimulation if and only if for each (P,M) ∈ R:

1. if P ↓a then M =⇒↓a;
2. if M ↓a then P =⇒↓a;
3. if P −→ P1 is derived using rule (R-Ab) then M =⇒ M ′, P1 =⇒ P2 and

P2RM ′;
4. if P −→ P1 is derived without using rule (R-Ab) then M =⇒ M ′ and

P1RM ′;
5. if M −→ M ′ then either: (i) PRM ′ or (ii) P −→ P1 and P1RM ′ or (iii)

M ′ −→M ′′, P −→ P1 and P1RM ′′.
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18 Ivan Lanese et al.

Weak barbed bisimilarity t≈cπ is the largest weak barbed bisimulation.

The main peculiarities of the definition above are in condition 3, which captures
the need of redoing some reductions that are unduly rolled-back in TransCCS,
and in case (iii) of condition 5, which forces atomic abort.

Theorem 3. For each TransCCS process P , P t≈cπ νk. k : LP Mt.

Proof. The proof has to take into account the fact that different croll-π configura-
tions may correspond to the same TransCCS process. In particular, a TransCCS
transaction JP.kQK is matched in different ways if Q is the original compensation
or if part of it is the result of an application of rule (R-Emb).

Thus, in the proof, we give a syntactic characterization of the set of croll-π
configurations LP Mp matching a TransCCS process P . Then we show that νk. k :
LP Mt ∈ LP Mp, and that there is a match between reductions of P and the weak
reductions of each configuration in LP Mp. The proof, in the two directions, is by
induction on the rule applied to derive a single step. ut

7 Related Work and Conclusion

We have presented a concurrent process calculus with explicit rollback and min-
imal facilities for alternatives built on a reversible substrate analogous to a Lévy
labeling [5] for concurrent computations. We have shown by way of examples
how to build more complex alternative idioms and how to use rollback and al-
ternatives in conjunction to encode transactional constructs. In particular, we
have developed an analysis of communicating transactions proposed in Tran-
sCCS [14]. We also developed a proof-of-concept interpreter of our language and
used it to give a concurrent solution of the Eight Queens problem.

Undo or rollback capabilities in sequential languages have a long history (see
[21] for an early survey). In a concurrent setting, interest has developed more
recently. Works such as [10] introduce logging and process group primitives as
a basis for defining fault-tolerant abstractions, including transactions. Ziarek et
al. [28] introduce a checkpoint abstraction for concurrent ML programs. Field
et al. [16] extend the actor model with checkpointing constructs. Most of the
approaches relying instead on a fully reversible concurrent language have already
been discussed in the introduction. Here we just recall that models of reversible
computation have also been studied in the context of computational biology, e.g.,
[9]. Also, the effect of reversibility on Hennessy-Milner logic has been studied
in [25]. Several recent works have proposed a formal analysis of transactions,
including [14] studied in this paper, as well as several other works such as [23, 6, 8]
(see [1] for numerous references to the line of work concentrating on software
transactional memories). Note that although reversible calculi can be used to
implement transactions, they offer more flexibility. For instance, transactional
events [15] only allow an all-or-nothing execution of transactions. Moreover, no
visible side-effect is allowed during the transaction, as there is no way to specify
how to compensate the side-effects of a failed transaction. A reversible calculus
with alternatives allows the encoding of such compensations.
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With the exception of the seminal work by Danos and Krivine [13] on RCCS,
we are not aware of other work exploiting precise causal information as pro-
vided by our reversible machinery to analyze recovery-oriented constructs. Yet
this precision seems important: as we have seen in Section 6, it allows us to
weed out spurious undo of actions that appear in an approach that relies on a
cruder transaction “embedding” mechanism. Although we have not developed
a formal analysis yet, it seems this precision would be equally important, e.g.,
to avoid uncontrolled cascading rollbacks (domino effect) in [28] or to ensure
that, in contrast to [16], rollback is always possible in failure-free computations.
Although [10] introduces primitives able to track down causality information
among groups of processes, called conclaves, it does not provide automatic sup-
port for undoing the effects of aborted conclaves, while our calculus directly
provides a primitive to undo all the effects of a communication.

While encouraging, our results in Section 6 are only preliminary. Our con-
current rollback and minimal facilities for alternatives provide a good basis for
understanding the “all-or-nothing” property of transactions. To this end it would
be interesting to understand whether we are able to support both strong and
weak atomicity of [23]. How to support isolation properties found, e.g., in soft-
ware transactional memory models, in a way that combines well with these facil-
ities remains to be seen. Further, we would like to study the exact relationships
that exist between these facilities and the different notions of compensation that
have appeared in formal models of computation for service-oriented computing,
such as [6, 8]. It is also interesting to compare with zero-safe Petri nets [7],
since tokens in zero places dynamically define transaction scopes as done by
communications in croll-π.

From a practical point of view, we want both to refine the interpreter, and
to test it against a wider range of more complex case studies. Concerning the
interpreter, a main point is to allow for garbage collection of memories which
cannot be restored any more, so to improve space efficiency.
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Abstract—The fusion calculi are a simplification of the pi-
calculus in which input and output are symmetric and restriction
is the only binder. We highlight a major difference between
these calculi and the pi-calculus from the point of view of
types, proving some impossibility results for subtyping in fusion
calculi. We propose a modification of fusion calculi in which
the name equivalences produced by fusions are replaced by
name preorders, and with a distinction between positive and
negative occurrences of names. The resulting calculus allows us
to import subtype systems, and related results, from the pi-
calculus. We examine the consequences of the modification on
behavioural equivalence (e.g., context-free characterisations of
barbed congruence) and expressiveness (e.g., full abstraction of
the embedding of the asynchronous pi-calculus).

Index Terms—process calculus; fusions; types; subtyping;

I. INTRODUCTION

The π-calculus is the paradigmatical name-passing calculus,

that is, a calculus where names (a synonym for “channels”)

may be passed around. Key aspects for the success of the π-

calculus are the minimality of its syntax and its expressiveness.

Expressiveness comes at a price: often, desirable behavioural

properties, or algebraic laws, fail. The reason is that, when

employing π-calculus to describe a system, one normally

follows a discipline that governs how names can be used. The

discipline can be made explicit by means of types. Types bring

in other benefits, notably the possibility of statically detecting

many programming errors. Types are indeed a fundamental

aspect of the π-calculus theory, and one of the most important

differences between name-passing calculi and process calculi

such as CCS in which names may not be passed.

One of the basic elements in type systems for name-passing

calculi is the possibility of separating the capabilities for

actions associated to a name, e.g., the capability of using a

name in input or in output. The control of capabilities has

behavioural consequences because it allows one to express

constraints on the use of names. For a simple example,

consider a process P that implements two distinct services

A and B, accessible using channels a and b that must be

communicated to clients of the services. We assume here only

two clients, that receive the channels via c1 and c2:

P
def
= (νa, b)

(
c1〈a, b〉. c2〈a, b〉. (A | B)

)
(1)

We expect that outputs at a or b from the clients are eventually

received and processed by the appropriate service. But this

is not necessarily the case: a malign client can disrupt the

expected protocol by simply offering an input at a or b and

then throwing away the values received, or forwarding the

values to the wrong service. These misbehaviours are ruled

out by a capability type system imposing that the clients

only obtain the output capability on the names a and b
when receiving them from c1 and c2. The typing rules are

straightforward, and mimic those for the typing of references

in imperative languages with subtyping.

Capabilities [1] are at the basis of more complex type

systems, with a finer control on names. For instance, type

systems imposing constraints on successive usages of the

names like usage-based type systems and deadlock-detection

systems, session types, and so on [2], [3], [4].

Capabilities are closely related to subtyping. In the exam-

ple (1), P creates names a and b, and possesses both the input

and the output capabilities on them; it however transmits to

the clients only a subset of the capabilities (namely the output

capability alone). The subset relation on capabilities gives rise

to a subtype relation on types. All forms of subtyping for π-

calculus or related calculi in the literature require a discipline

on capabilities. Subtyping can also be used to recover well-

known forms of subtyping in other computational paradigms,

e.g., functional languages or object-oriented languages, when

an encoding of terms into processes is enhanced with an

encoding of types [5].

An interesting family of variants of the π-calculus are —

what we call here — the fusion calculi: Fusion [6], Update [7],

Explicit Fusions [8], Chi [9], Solos [10]. Their beauty is the

simplification achieved, with binding removed from the input

construct. Thus input prefixing becomes symmetric to output

prefixing, and restriction remains as the only binder. The effect

of a synchronisation between an output ab.P and an input

ac.Q is to fuse the two object names b and c, which are

now interchangeable. Thus communications produce, step-by-

step, an equivalence relation on names. Different fusion-like

calculi differ in the way the name equivalence is handled. The

operational theories of these calculi have been widely studied,

e.g. [6], [11], [12], [13], [14].

As for the π-calculus (sometimes abbreviated as π in the

sequel), however, the expressiveness of fusion calculi makes

desirable behavioural properties fail. The same examples for

the π-calculus can be used. For instance, the problems of

misbehaving clients of the services of (1) remain. Actually, in

fusion calculi additional problems arise; for example a client
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receiving the two channels a and b along ci could fuse them

using an input ci〈n, n〉.R. Now a and b are indistinguishable,

and an emission on one of them can reach any of the two

services (and if a definition of a service is recursive, a recursive

call could be redirected towards the other service).

In the paper we study the addition of types to fusion calculi;

more generally, to single-binder calculi, where input is not

binding (in fusion calculi, in addition, reductions fuse names).

We begin by highlighting a striking difference between π-

calculus and fusion calculi, proving some impossibility results

for subtyping (and hence for general capability-based type

systems, implicitly or explicitly involving subtyping). In the

statement of the results, we assume a few basic properties of

type systems for name-passing calculi, such as strengthening,

weakening and type soundness, and the validity of the ordinary

typing rules for the base operators of parallel composition

and restriction. These results do not rule out completely the

possibility of having subtyping or capabilities in fusion calculi,

because of the few basic assumptions we make. They do

show, however, that such type systems would have to be more

complex than those for ordinary name-passing calculi such as

the π-calculus, or require modifications or constraints in the

syntax of the calculi.

Intuitively, the impossibility results arise because at the

heart of the operational semantics for fusion calculi is an

equivalence relation on names, generated through name fu-

sions. In contrast, subtyping and capability systems are built

on a preorder relation (be it subtyping, or set inclusion among

subsets of capabilities). The equivalence on names forces one

to have an equivalence also on types, instead of a preorder.

We propose a solution whose crux is the replacement of

the equivalence on names by a preorder, and a distinction on

occurrences of names, between ‘positive’ and ‘negative’. In

the resulting single-binder calculus, πP (‘π with Preorder’),

reductions generate a preorder. The basic reduction rule is

ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name

preorder. Such a process may redirect a prefix at b (which

represents a ‘positive’ occurrence of b) to become a prefix at

a. We show that the I/O (input/output) capability systems of

the π-calculus can be reused in πP, following a generalisation

of the typing rules of the π-calculus that takes into account

the negative and positive occurrences of names. A better

understanding of type systems with subtyping in name-passing

calculi is a by-product of this study. For instance, the study

suggests that it is essential for subtyping that substitutions

produced by communications (in πP, the substitutions pro-

duced by arcs) only affect the positive occurrences of names.

The modification also brings in behavioural differences. For

instance, both in the π-calculus and in πP, a process that

creates a new name a has the guarantee that a will remain

different from all other known names, even if a is communi-

cated to other processes (only the creator of a can break this,

by using a in negative position). This is not true in fusion

calculi, where the emission of a may produce fusions between

a and other names. To demonstrate the proximity with the π-

calculus we show that the embedding of the asynchronous

π-calculus into πP is fully abstract (full abstraction of the

encoding of the π-calculus into fusion calculi fails). We also

exhibit an encoding of Explicit Fusions into πP, where fusions

become bi-directional arcs.

We present two possible semantics for πP that differ on

the moment arcs enable substitutions. In the eager semantics,

arcs may freely act on prefixes; in the by-need semantics,

arcs act on prefixes only when interactions occur. We provide

a characterisation of the reference contextual behavioural

equivalence (barbed congruence) as a context-free labelled

bisimilarity for the by-need semantics. We also compare and

contrast the semantics, both between them and with semantics

based on name fusion.

A property of certain fusion calculi (Fusion, Explicit Fusion)

is a semantic duality induced by the symmetry between input

and output prefixes. In πP, the syntax still allows us to

swap inputs and outputs, but in general the original and final

processes have incomparable behaviours.

We conclude by examining the following syntactic con-

straint in single-binder calculi: each name, say b, may occur

at most once in negative position (this corresponds to input

object, as in ab.P , or to the source of an arc, as in a/b). Under

this constraint, the two semantics for πP, eager and by-need,

coincide. In fusion calculi, the constraint allows us to import

the π-calculus type systems. The constraint is however rather

strong, and, in fusion calculi, breaks the semantic duality

between inputs and outputs.

In summary, πP, while being syntactically similar to fusion

calculi, remains fairly close to the π-calculus (type systems,

management of names).

Further related work: Central to πP is the preorder on

names, that breaks the symmetry of name equivalence in

fusion-like calculi. Another important ingredient for the theory

of πP is the distinction between negative and positive occur-

rences of a name. In Update [7] and (asymmetric versions of)

Chi [9], reductions produce ordinary substitutions on names.

In practice, however, substitutions are not much different from

fusions: a substitution {a/b} fuses a with b and makes a the

representative of the equivalence class. Still, substitutions are

directed, and in this sense Update and Chi look closer to πP
than the other fusion calculi. For instance Update and Chi,

like πP, lack the duality property on computations. Update

was refined to the Fusion calculus [6] because of difficulties

in the extension with polyadicity. Another major difference

for Update and Chi with respect to πP is that in the former

calculi substitutions replace all occurrences of names, whereas

πP takes into account the distinction between positive and

negative occurrences.

The question of controlling the fusion of private names has

been addressed in [15], in the U-calculus. This calculus makes

no distinction between input and output, and relies on two

forms of binding to achieve a better control of scope extrusion,

thus leading to a sensible behavioural theory that encompasses

fusions and π. Thus the calculus is not single-binder. It is
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unclear how capability types could be defined in it, as it does

not have primitive constructs for input and output.

Paper outline: Section II gives some background. In

Section III, we present some impossibility results on type

systems for fusion-like calculi. Section IV introduces πP and

its type system. The behavioural theory of πP is explored

in Section V, and we give some expressiveness results in

Section VI. Section VII studies a syntactical restriction that

can be applied to πP and fusions, and we discuss future work

in Section VIII.

II. BACKGROUND ON NAME-PASSING CALCULI

In this section we group terminology and notation that

are common to all the calculi discussed in the paper. For

simplicity of presentation, all calculi in the paper are finite.

The addition of operators like replication for writing infinite

behaviours goes as expected. The results in the paper would

not be affected.

We informally call name-passing the calculi in the π-

calculus tradition, which have the usual constructs of par-

allel composition and restriction, and in which computation

is interaction between input and output constructs. Names

identify the pairs of matching inputs/outputs, and the values

transmitted may themselves be names. Restriction is a binder

for the names; in some cases the input may be a binder too.

Examples of these calculi are the π-calculus, the asynchronous

π-calculus, the Join calculus, the Distributed π-calculus, the

Fusion calculus, and so on. Binders support the usual alpha-

conversion mechanism, and give rise to the usual definitions

of free and bound names.

Convention 1. To simplify the presentation, throughout the

paper, in all statements (including rules), we assume that the

bound names of the entities in the statements are different

from each other and different from the free names (Barendregt

convention on names). Similarly, we say that a name is fresh

or fresh for a process, if the name does not appear in the

entities of the statements or in the process. �

We use a, b, . . . to range over names. In a free input ab.P ,

bound input a(b).P , output ab.P , we call a the subject of the

prefix, and b the object. We sometimes abbreviate prefixes as

a.P and a.P when the object carried is not important. We

omit trailing 0, for instance writing ab in place of ab.0. We

write P{a/b} for the result of applying the substitution of b
with a in P .

When restriction is the only binder (hence the input con-

struct is not binding), we say that the calculus has a single

binder. If in addition interaction involves fusion between

names, so that we have (=⇒ stands for an arbitrary number

of reduction steps, and in the right-hand side P and Q can be

omitted if they are 0)

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly,

has fusions. (We are not requiring that (2) is among the rules

of the operational semantics of the calculus, just that (2) holds.

The shape of (2) has been chosen so to capture the existing

calculi; the presence of R allows us to capture also the Solos

calculus.) All single-binder calculi in the literature (Update [7],

Chi [9], Fusion [6], Explicit Fusion calculus [11], Solos [10])

have fusions. In Section IV we will introduce a single-binder

calculus without fusions.

In all calculi in the paper, (reduction-closed) barbed con-

gruence will be our reference behavioural equivalence. Its

definition only requires a reduction relation, −→, and a notion

of barb on names, ↓a. Intuitively, a barb at a holds for a process

if that process can accept an offer of interaction at a from

its environment. We omit the definition, which is standard.

We write ≃L for (strong) reduction-closed barbed congruence

in a calculus L. Informally, ≃L is the largest relation that

is context-closed, barb-preserving, and reduction-closed. Its

weak version, written ≅L, replaces the relation −→L with

its reflexive and transitive closure =⇒L, and the barbs ↓La
with the weak barbs ⇓L

a , where ⇓L
a is the composition of the

relations =⇒L and ↓La (i.e., the barb is visible after some

internal actions). See Appendix A for more details.

III. TYPING AND SUBTYPING WITH FUSIONS

We consider typed versions of languages with fusions. We

show that in such languages it is impossible to have a non-

trivial subtyping, assuming a few simple and standard typing

properties of name-passing calculi.

We use T, U to range over types, and Γ to range over type

environments, i.e., partial functions from names to types. We

write dom(Γ) for the set of names on which Γ is defined.

In name-passing calculi, a type system assigns a type to each

name. Typing judgements are of the form Γ ⊢ P (process P
respects the type assignments in Γ), and Γ ⊢ a : T (name a
can be assigned type T in Γ).1 The following are the standard

typing rules for parallel composition and restriction:

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 | P2

Γ, x : T ⊢ P

Γ ⊢ (νx : T ) P
(3)

The first rule says that any two processes typed in the same

type environment can be composed in parallel. The second

rule handles name restriction.2

In name-passing calculi, the basic type construct is the

channel (or connection) type ♯ T . This is the type of a name

that may carry, in an input or an output, values of type T .

Consequently, we also assume that the following rule for

prefixes ab.P and ab.P is admissible.

Γ(a) = ♯ T Γ(b) = T Γ ⊢ P

Γ ⊢ α.P
α ∈ {ab, ab} (4)

(Prefixes may not have a continuation, in which case P would

be missing from the rule.) In the rule, the type of the subject

1We consider in this paper basic type systems and basic properties for them;
more sophisticated type systems exist where processes have a type too, e.g.,
behavioural type systems.

2In resource-sensitive type systems, i.e., those for linearity [16] and
receptiveness [5], where one counts certain occurrences of the names, the
rule for parallel composition has to be modified. As mentioned earlier, in this
paper we stick to basic type systems, ignoring resource consumption.
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and of the object of the prefix are compatible. Again, these

need not be the typing rules for prefixes; we are just assuming

that the rules are valid in the type system. The standard rule

for prefix would have, as hypotheses,

Γ ⊢ a : ♯ T Γ ⊢ b : T .

These imply, but are not equivalent to, the hypotheses in (4),

for instance in presence of subtyping.

Fundamental properties of type systems are:

• Subject Reduction (or Type Soundness): if Γ ⊢ P and

P → P ′, then Γ ⊢ P ′;

• Weakening: if Γ ⊢ P and a is fresh, then Γ, a : T ⊢ P ;

• Strengthening: whenever Γ, a : T ⊢ P and a is fresh for

P , then Γ ⊢ P ;

• Closure under injective substitutions: if Γ, a : T ⊢ P and

b is fresh, then Γ, b : T ⊢ P{b/a}.

Definition 2. A typed calculus with single binder is plain if it

satisfies Subject Reduction, Weakening, Strengthening, Closure

under injective substitutions, and the typing rules (3) and (4)

are admissible.

If the type system admits subtyping, then another funda-

mental property is narrowing, which authorises, in a typing

environment, the specialisation of types:

• (Narrowing): if Γ, a : T ⊢ P and U ≤ T then also

Γ, a : U ⊢ P .

When narrowing holds, we say that the calculus supports

narrowing.

A typed calculus has trivial subtyping if, whenever T ≤
U , we have Γ, a : T ⊢ P iff Γ, a : U ⊢ P . When this is

not the case (i.e., there are T, U with T ≤ U , and T, U are

not interchangeable in all typing judgements) we say that the

calculus has meaningful subtyping.

Under the assumptions of Definition 2, a calculus with

fusions may only have trivial subtyping.

Theorem 3. A typed calculus with fusions that is plain and

supports narrowing has trivial subtyping.

In the proof, given in Appendix B, we assume a meaningful

subtyping and use it to derive a contradiction from type

soundness and the other hypotheses.

One may wonder whether, in Theorem 3, more limited

forms of narrowing, or a narrowing in the opposite direction,

would permit some meaningful subtyping. Narrowing is in-

teresting when it allows us to modify the type of the values

exchanged along a name, that is, the type of the object of a

prefix. (In process calculi, communication is the analogous of

application for functional languages, and changing the type of

an object is similar to changing the type of a function or of its

argument.) In other words, disallowing narrowing on objects

would make subtyping useless. We show that any form of

narrowing, on one prefix object, would force subtyping to be

trivial.

Theorem 4. Suppose a typed calculus with fusions is plain

and there is at least one prefix α with object b, different from

the subject, and there are two types S and T such that S ≤ T
and one of the following forms of narrowing holds for all Γ:

1) whenever Γ, b : T ⊢ α.0, we also have Γ, b : S ⊢ α.0;

2) whenever Γ, b : S ⊢ α.0, we also have Γ, b : T ⊢ α.0.

Then S and T are interchangeable in all typing judgements.

As a consequence, authorising one of the above forms of

narrowing for all S and T such that S ≤ T implies that

the calculus has trivial subtyping. The proof of Theorem 4

is similar to that of Theorem 3. (Appendix B).

Remark 5. Theorems 3 and 4 both apply to all fusion

calculi: Fusion, Explicit Fusions, Update, Chi, Solos (where

the continuation P is 0). �

Another consequence of Theorems 3 and 4 is that it is

impossible, in plain calculi with fusions, to have an I/O type

system; more generally, it is impossible to have any capability-

based type system that supports meaningful subtyping.

Actually, to apply the theorems, it is not even necessary

for the capability type system to have an explicit notion

of subtyping. For Theorem 3, it is sufficient to have sets

of capabilities with a non-trivial ordering under inclusion,

meaning that we can find two capability types T and U such

that whenever Γ, a : U ⊢ P holds then also Γ, a : T ⊢ P
holds, but not the converse (e.g., T provides more capabilities

than U ). We could then impose a subtype relation ≤ on

types, as the least preorder satisfying T ≤ U . Theorem 3

then tells us that type soundness and the other properties of

Definition 2 would require also U ≤ T to hold, i.e., T and U
are interchangeable in all typing judgements. In other words,

the difference between the capabilities in T and U has no

consequence on typing. Similarly, to apply Theorem 4 it is

sufficient to find two capability types T and U and a single

prefix in whose typing U can replace T .

IV. A CALCULUS WITH NAME PREORDERS

A. Preorders, positive and negative occurrences

We now refine the fusion calculi by replacing the equiva-

lence relation on names generated through communication by

a preorder, yielding πP (‘π with Preorder’). As the preorder on

types given by subtyping allows promotions between related

types, so the preorder on names of πP allows promotions

between related names. Precisely, if a is below a name b in the

preorder, then a prefix at a may be promoted to a prefix at b
and then interact with another prefix at b. Thus an input av.P
may interact with an output bw.Q; and, if also c is below b,
then av.P may as well interact with an output cz.R.

The ordering on names is introduced by means of the arc

construct, a/b, that declares the source b to be below the target

a. The remaining operators are as for fusion calculi (i.e., those

of the π-calculus with bound input replaced by free input).

P ::= 0 | P | P | ab.P | ab.P | νaP | a/b .

The semantics of the calculus is given in the reduction style.

Structural congruence, ≡, is defined as the usual congruence

produced by the monoidal rules for parallel composition
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and the rules for commuting and extruding restriction (see

Appendix C for a complete definition). We explain the effect of

reduction by means of contexts, rather than separate rules for

each operator. Contexts allow us a more succinct presentation,

and a simpler comparison with an alternative semantics (Sec-

tion V). An active context is one in which the hole may reduce.

Thus the only difference with respect to ordinary contexts is

that the hole may not occur underneath a prefix. We use C to

range over (ordinary) contexts, and E for active contexts. The

rules for reduction are as follows (the subscript in −→ea, for

“eager”, will distinguish this from the alternative semantics in

Section V-A):

R-SCON :
P ≡ E[Q] Q −→ea Q

′ E[Q′] ≡ P ′

P −→ea P ′

R-INTER : ab.P | ac.Q −→ea P | Q | b/c

R-SUBOUT : a/b | bc.Q −→ea a/b | ac.Q

R-SUBINP : a/b | bc.Q −→ea a/b | ac.Q

Rule R-INTER shows that communication generates an arc.

Rules R-SUBOUT and R-SUBINP show that arcs only act on

the subject of prefixes; moreover, they only act on unguarded

prefixes (i.e., prefixes that are not underneath another prefix).

The rules also show that arcs are persistent processes. Acting

only on prefix subjects, arcs can be thought of as particles

that “redirect prefixes”: an arc a/b redirects a prefix at b
towards a higher name a. (Arcs remind us of special π-calculus

processes, called forwarders or wires [17], which under certain

hypotheses allow one to model substitutions; as for arcs, so

the effect of forwarders is to replace the subject of prefixes.)

We write =⇒ea for the reflexive and transitive closure of

−→ea. Here are some examples of reduction.

ac.ca.e.P | ad.de.a.Q
R-INTER −→ea ca.e.P | de.a.Q | c/d

R-SUBINP −→ea ca.e.P | ce.a.Q | c/d
R-INTER −→ea e.P | a.Q | c/d | a/e

R-SUBINP −→ea a.P | a.Q | c/d | a/e
R-INTER −→ea P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same

name. This may be used to represent certain forms of choice,

as in the following processes:

(νh, k) (bu. cu.u | bh.h.P | ck. k.Q)
=⇒ea (νh, k) (u | h/u | k/u | h.P | k.Q) .

Both arcs may act on u, and are therefore in competition with

each other. The outcome of the competition determines which

process between P and Q is activated. For instance, reduction

may continue as follows:

R-SUBOUT −→ea (νh, k) (k | h/u | k/u | h.P | k.Q)
R-INTER −→ea (νh, k) (h/u | k/u | h.P | Q) .

Definition 6 (Positive and negative occurrences). In an input

ab.P and an arc a/b, the name b has a negative occurrence.

All other occurrences of names in input, output and arcs are

positive occurrences.

An occurrence in a restriction (νa) is neither negative nor

positive, intuitively because restriction acts only as a binder,

and does not stand for an usage of the name (in particular, it

does not take part in a substitution).

Negative occurrences are particularly important, as by prop-

erly tuning them, different usages of names may be obtained.

For instance, a name with zero negative occurrence is a

constant (i.e., it is a channel, and may not be substituted);

and a name that has a single negative occurrence is like a

π-calculus name bound by an input (see Section VI-B).

The number of negative occurrences of a name is invariant

under reduction.

Lemma 7. If P −→ea P ′ then for each b, the number of

negative occurrences of b in P and P ′ is the same.

B. Types

We now show that the I/O capability type system and its

subtyping can be transplanted from π to πP. In all typed calculi

in the paper, binding occurrences of names are annotated with

their type — we are not concerned with type inference.

In the typing rules for I/O-types in the (monadic) π-

calculus [1], two additional types are introduced: o T , the type

of a name that can be used only in output and that carries

values of type T ; and i T , the type of a name that can be

used only in input and that carries values of type T . The

subtyping rules stipulate that i is covariant, o is contravariant,

and ♯ is invariant. Subtyping is brought up into the typing rules

through the subsumption rule. The most important typing rules

are those for input and output prefixes; for input we have:

T-INPBOUND :
Γ ⊢ a : i T Γ, b : T ⊢ P

Γ ⊢ a(b : T ).P

The π-calculus supports narrowing, and this is essential in the

proof of subject reduction.

The type system for πP is presented in Table I. With respect

to the π-calculus, only the rule for input needs an adjustment,

as πP uses free, rather than bound, input. The idea in rule T-

INPFREE of πP is however the same as in rule T-INPBOUND

of π: we look up the type of the object of the prefix, say T ,

and we require i T as the type for the subject of the prefix.

To understand the typing of an arc a/b, recall that such an arc

allows one to replace b with a. Rule T-ARC essentially checks

that a has at least as many capabilities as b, in line with the

intuition for subtyping in capability type systems.

Common to all premises of T-INPBOUND, T-INPFREE

and T-ARC is the look-up of the type of names that occur

negatively (the source of an arc and the object of an input

prefix): the type that appears for b in the hypothesis is precisely

the type found in the conclusion (within the process or in Γ).

In contrast, the types for positive occurrences may be different

(e.g., because of subsumption Γ ⊢ a : i T may hold even if

Γ(a) 6= i T ). We cannot type inputs like outputs: consider

T-INPFREE2-WRONG :
Γ ⊢ a : i T Γ ⊢ b : T

Γ ⊢ ab
Rule T-INPFREE2-WRONG would accept, for instance, an

input ab in an environment Γ where a : i i 1 and b : ♯ 1. By
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Types (1 is the unit type): T ::= i T | o T | ♯ T | 1

Subtyping rules:

♯ T ≤ i T ♯ T ≤ o T

S ≤ T

i S ≤ i T

S ≤ T

o T ≤ o S T ≤ T

S ≤ T T ≤ U

S ≤ U

Typing rules:

TV-NAME

Γ, a : T ⊢ a : T

SUBSUMPTION

Γ ⊢ a : S S ≤ T

Γ ⊢ a : T

T-RES

Γ, a : T ⊢ P

Γ ⊢ νaP

T-PAR

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

T-NIL

Γ ⊢ 0

T-OUT

Γ ⊢ a : o T Γ ⊢ b : T Γ ⊢ P

Γ ⊢ ab.P

T-INPFREE

Γ ⊢ a : i Γ(b) Γ ⊢ P

Γ ⊢ ab.P

T-ARC

Γ ⊢ a : Γ(b)

Γ ⊢ a/b

TABLE I
THE TYPE SYSTEM OF πP

subtyping and subsumption, we could then derive Γ ⊢ b : i 1 .

In contrast, rule T-INPFREE, following the input rule of the π-

calculus, makes sure that the object of the input does not have

too many capabilities with respect to what is expected in the

type of the subject of the input. This constraint is necessary

for subject reduction. As a counterexample, assuming rule T-

INPFREE2-WRONG, we would have a : ♯ i 1, b : ♯ 1, c : i 1 ⊢

P , for P
def
= ab | ac | b. However, P −→ea c/b | b −→ea c/b | c,

and the final derivative is not typable under Γ (as Γ only

authorises inputs at c).
In πP, the direction of the narrowing is determined by the

negative or positive occurrences of a name.

Theorem 8 (Polarised narrowing). Let T1 and T2 be two types

such that T1 ≤ T2.

1) If a occurs only positively in P , then Γ, a : T2 ⊢ P
implies Γ, a : T1 ⊢ P .

2) If a occurs only negatively in P , then Γ, a : T1 ⊢ P
implies Γ, a : T2 ⊢ P .

3) If a occurs both positively and negatively in P , then it

is in general unsound to replace, in a typing Γ ⊢ P , the

type of a in Γ with a subtype or supertype.

Theorem 8 (specialised to prefixes) does not contradict

Theorem 4, because in πP, reduction does not satisfy (2) (from

Section II). Our system enjoys subject reduction:

Theorem 9. If Γ ⊢ P and P −→ea P
′ then also Γ ⊢ P ′.

Remark 10. Theorem 8 may be seen as a refinement of

the standard narrowing result for name-passing calculi. In

the π-calculus, for instance, a free name only has positive

occurrences. Hence the usual narrowing corresponds to The-

orem 8(1). And in an input a(b : T ).P , the binder for b
represents a negative occurrence, so that if b is free in P then

b has both positive and negative occurrences, which means

that the type T may not be modified, as by Theorem 8(3). In

contrast, Theorem 8(2) is vacuous in π, as a name b with only

negative occurrences is found in an input a(b : T ).P where b

is not free in P .

In general, in a name-passing calculus, if a name has only

positive occurrences, then its type (be it declared in the typing

environment, or in the binding occurrence of that name within

the process) may be replaced by a subtype, and conversely for

names with only negative occurrences, whereas the type of

names with both positive and negative occurrences may not

be changed. Defining rules that distinguish between negative

and positive occurrences in name-passing calculi is beyond the

scope of this paper. A rule of thumb however seems that if the

occurrence of a name generates a substitution acting on that

name (i.e., a replacement of the name), then the occurrence

is negative; if it does not, then it is positive. Thus in a fusion

a = b of the Explicit Fusion calculus, the occurrences of a
and b are both positive and negative, as a fusion may produce

a substitution a/b or a substitution b/a (which, incidentally,

gives another explanation of the impossibility of narrowing in

presence of an explicit fusion construct). �

Remark 11. For the Subject Reduction theorem for πP it is

critical that an arc a/b only acts on positive occurrences of

b. Provided this is respected, the theorem remains valid under

different behaviours for arcs (e.g., simultaneously replacing all

positive occurrences of b, not only at top-level). �

V. BEHAVIOURS

A. An alternative semantics

The operational semantics given to πP in Section IV allows

arcs to act locally, at any time. The effect of an arc is irre-

versible: the application of an arc a/b to a prefix at b commits

that prefix to interact along a name that is greater than, or equal

to, a in the preorder among names. A commitment may disable

certain interactions, even block a prefix for ever. Consider, e.g.,

(νa, c) (bv.P | cw.Q | a/b | c/b) (5)
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There is a competition between the two arcs; if the first wins,

the process is deadlocked:

−→ea (νa, c) (av.P | cw.Q | a/b | c/b)

since a and c are unrelated in the preorder.

We consider here an alternative semantics, in which the

action of arcs is not a commitment: arcs come about only

when interaction occurs. For this reason we call the new

semantics by-need (arcs act only when ‘needed’), whereas

we call eager the previous semantics (arcs act regardless of

matching prefixes). In this semantics, as in the π-calculus, an

interaction involves both a synchronisation and a substitution;

however unlike in the π-calculus where the substitution is

propagated to the whole term, here substitution only replaces

the subject of the interacting prefixes.

The formalisation of the new semantics makes use of the

partial order on names induced by arcs. In a process, an arc

is active if it is unguarded, i.e., it is not underneath a prefix.

We write preor(P ) for the preorder on names produced by

the active arcs in P (i.e., the least preorder ≤ that includes

b ≤ a for each active arc a/b in P ). Similarly, preor(C) is

the preorder produced by the active arcs of the context C.

Note that this definition relies on the Barendregt convention

on names (Convention 1), as it is purely syntactic, i.e., if P and

P ′ are alpha convertible then preor(P ) and preor(P ′) may

be different. A definition that does not rely on the convention

is given in Appendix D.

We write P ⊲ a g b if {a, b} has an upper bound in the

preorder preor(P ), that is, there is a name that is above both

a and b; in this case we also say that a and b are joinable.

Similarly we write C ⊲ a g b for contexts. For instance, we

have νu(u/a | u/b | Q) ⊲ a g b, and νv(vt | (νw)(w/v | a/w |
[·]) ⊲ ag v. We have P ⊲ ag b iff P ′ ⊲ ag b if P and P ′ are

alpha convertible and a and b occur free in P .

Example 12. A process Mfg = (νc)(c/f | c/g) acts like a

mediator: it joins names f and g (we have Mfg ⊲ f g g).

Mediators remind us of equators in the π-calculus, or of

fusions in the Explicit Fusion calculus, but lack the transitivity

property (e.g., Mfg |Mgh ⊲ f g h does not hold).

Definition 13 (By-need reduction). The by-need reduction

relation, P −→bn P
′, is defined by the following rules, where

≡ is as in the eager semantics:

BN-SCON :
P ≡ E[Q] Q −→bn Q

′ E[Q′] ≡ P ′

P −→bn P ′

BN-RED :
E ⊲ ag b

E[ac.P | bd.Q] −→bn E[P | d/c | Q]

Relation =⇒bn is the reflexive transitive closure of −→bn.

While the eager semantics has simpler rules, the by-need

semantics avoids ‘too early commitments’ on prefixes. For

instance, the only immediate reduction of the process in (5) is

−→bn (νa, c) (P | w/v | Q | a/b | c/b)

where prefixes bv.P and cw.Q interact because their subjects

are joinable in the preorder generated by the two arcs.

Lemma 14 (Eager and by-need). P −→bn P ′ (by-need

semantics) implies P =⇒ea P
′ (eager semantics).

Corollary 15. Theorem 9 holds for the by-need semantics.

B. Behavioural equivalence

We contrast barbed congruence in πP under the two se-

mantics we have given, eager and by-need. We have already

defined reduction relations, we only need to define barbs.

This requires some care, as the interaction of a process with

its environment may be mediated by arcs. For this, and to

have a uniform definition of barbs under the eager and by-

need semantics, we follow the definition of success in testing

equivalence [18], using a special signal ω that we assume may

not appear in processes: thus for any name a, the barb ↓a
holds for a process P if there is a prefix α with subject a
such that P | α.ω reduces in one step to a process in which ω
is unguarded (i.e., the offer of the environment of an action at

a may be accepted by P ). Weak barbs and barbed congruence

are then defined in the standard way, as outlined in Section II.

We write ≃ea and ≅ea (resp. ≃bn and ≅bn) for the strong and

weak versions of eager (resp. by-need) barbed congruence.

The eager and by-need semantics of πP yield incomparable

equivalences. The two following laws are valid in the by-need

case, and fail in the eager case:

(νa)a/c = 0 a | a = a. a .

To see the failure of the first law in the eager semantics, con-

sider a context C
def
= [·] | (νb)(b/c) | c | c.w; then C[(νa)(a/c)]

can lose the possibility of emitting at w, by reducing in two

steps to (νa)(a/c | a) | (νb)(b/c | b.w), because of a commit-

ment determined by arcs; this cannot happen for C[0]. There

are no early commitments in the by-need semantics, for which

the two processes are hence equal.

Similarly, in the eager semantics, it is possible to put a | a
in a context where two arcs rewrite each a prefix differently,

while one can only rewrite the topmost prefix in a. a. This

scenario cannot be played in the by-need semantics.

On the other hand, the following law is valid for strong (and

weak) eager equivalence, but fails to hold in the by-need case:

(νabu)(a/u | b/u | u | a.w) = (νv)(v | v. τ .w | v.0) .

(τ .w stands for νc(c | c.w)). The intuition is that concurrent

substitutions are used on the left-hand side to implement

internal choice. As a consequence of the law (νa)a/c = 0,

in the by-need case, process b/u can be disregarded on the

left, so that the process on the left must do the output on w.

We have introduced πP with the eager semantics for rea-

sons of simplicity, but we find the by-need semantics more

compelling. Below, unless otherwise stated, we work under

by-need, though we also indicate what we know under eager.
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C. Context-free characterisations of barbed congruence

When it comes to proving behavioural equalities, the def-

inition of barbed congruence is troublesome, as it involves

a heavy quantification on contexts. One therefore looks for

context-free coinductive characterisations, as labelled bisim-

ilarities that take into account not only reductions within a

process, but also the potential interactions between the process

and its environment (e.g., input and output actions). We present

such characterisation for the by-need equivalence; currently we

do not have one for the eager.

As actions for the by-need labelled bisimilarity, we use,

besides τ -actions, only free input and free output:

µ ::= τ | ab | ab .

In by-need, labelled transitions are written P
µ

−→bn P ′.

Internal transitions have already been defined, in the reduction

semantics, thus we can take relation
τ

−→bn to coincide with

the reduction relation −→bn. Input and output transitions are

defined by these rules:

BN-INP :
E ⊲ ag b E does not bind b and d

E[ac.P ]
bd
−→bn E[d/c | P ]

BN-OUT :
E ⊲ ag b E does not bind b and d

E[ac.P ]
bd
−→bn E[c/d | P ]

The purpose of the two rules is to define the input and output

transitions, with labels as simple as possible, with which to

derive a labelled bisimilarity. The two rules are not supposed to

be composed together to derive τ -actions (which are computed

from the rules of reduction). We leave the definition of a pure

SOS semantics, which avoids the structural manipulations of

structural congruence, for future work.

To understand rules BN-INP and BN-OUT, suppose the

environment is offering an action at b. Since a and b are

joinable, there is a name, say e, that is above both a and b in

the preorder; hence the prefix at a in the process and the prefix

at b in the environment can be transformed into prefixes at e,
and can interact. The need for the preorder explains why we

found it convenient to express actions via active contexts. In

the action, the use of a free object d allows us to ignore name

extrusion and thus simplifies the bisimulation checks. As an

example of BN-OUT, we have (similar observations can be

made for BN-INP):

(νu)
(
u/b | (νa, c)(u/a | ac.P )

)

bd
−→bn (νu)

(
u/b | (νa, c)(u/a | c/d | P )

)
.

Here the process can interact with the environment at b (and

hence perform a transition where b is the subject), because a
and b are joinable. Name c is not extruded; instead the arc c/d
redirects interactions on d to c.

The labelled bisimulation requires, besides the invariance

for actions, invariance under the addition of arcs; moreover a

check is made on the visible effects of arcs. In the clause for

actions, no extrusion or binding on names is involved; further,

it is sufficient that the objects of the actions are fresh names.

Definition 16 (Bisimulation). A by-need bisimulation R is a

set of pairs (P,Q) s.t. PRQ implies:

1) P | a/b R Q | a/b, for each name a, b (invariance under

arcs);

2) if a and b appear free in P , then P ⊲ a g b implies

Q ⊲ ag b;
3) if P

µ
−→bn P ′, then Q

µ
−→bn Q′ and P ′RQ′ (where

the object part of µ is fresh);

4) the converse of clauses (2) and (3).

Bisimilarity, written ∼bn, is the largest bisimulation.

We now present some examples and laws that are proved

using the coinductive proof method of labelled bisimilarity.

All equalities and inequalities also hold under the eager

semantics, though for some equalities only in the weak case

(e.g., Lemma 19).

Any input and output of πP can be transformed into a bound

prefix, by introducing a new restricted name:

Lemma 17. We have ax.P ∼bn (νx′)ax′. (x′/x | P ) and

by.Q ∼bn (νy′)by′. (y/y′ | Q), for fresh x′ and y′.

If these laws are applied to all inputs and outputs of a

process P , then the result is a process P ′ that is behaviourally

the same as P , and in which all names exchanged in an

interaction are fresh. Thus P ′ reminds us of a variant of π
that achieves symmetry between input and output constructs,

namely πI , the π-calculus with internal mobility [19].

Lemma 18. We have (νb, c)ac. ab.0 6∼bn (νc)ac. ac.0, and

(νb, c)ac. ab.0 ∼bn (νc)ac. ac.0.

These laws show a difference between input and output in

behavioural equalities. The reason for the inequality is that

the first process can produce two transitions with objects e, f

yielding P
def
= νc (c/f | c/e), and then P ⊲ eg f .

Lemma 19 (Substitution and polarities).

1) If name a has only positive occurrences in P , then

(νa)(P | b/a) ∼bn P{b/a};

2) if name a has only negative occurrences in P , then

(νa)(P | a/b) ∼bn P{b/a};

3) (νa)(P | b/a | a/b) ∼bn P{b/a}.

For the comparison between labelled bisimilarity and barbed

congruence, the most delicate part is the proof of congruence

for bisimilarity. This is due to the shape of visible transitions,

where an arc is introduced and the object part is always a fresh

name, and to the use of ≡ in the definition of transitions. The

proof can be found in Appendices H and I.

Theorem 20. Bisimilarity is a congruence.

Theorem 21 (Characterisation of barbed congruence). In πP,

relations ∼bn and ≃bn coincide.

Hence all the laws stated above for ∼bn hold for ≃bn.

VI. EXPRESSIVENESS OF πP

We compare πP with a few other calculi, both as examples

of the use of the calculus and as a test for its expressiveness.
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When useful, we work in a polyadic version of πP; the addition

of polyadicity goes as for other name-passing calculi in the

literature. All results in this section use the by-need semantics;

we do not know their status under the eager semantics.

A. Explicit Fusions

Bi-directional arcs, e.g., a/b | b/a, work as name fusions (cf,

Lemma 19(3)). We thus can encode calculi based on name

fusion into πP. As an example, we consider the Explicit Fusion

calculus [8]. Its syntax extends the Fusion calculus with a

fusion construct a = b. The encoding is defined as follows

for prefixes and explicit fusions, the other constructs being

encoded homomorphically:

[[a〈v〉.P ]] = (νw)a〈v, w〉.wv. [[P ]]
[[ax.Q]] = (νy)a〈x, y〉. y〈x〉. [[Q]]
[[a = b]] = a/b | b/a

In Explicit Fusions, an interaction introduces a name fusion.

In the πP encoding, this is mimicked in two steps so to be able

to produce bidirectional arcs. The second step is the reverse

of the original interaction, and is realised by means of an

extra private name. We have operational correspondence for

the encoding (we do not know whether it is is fully abstract).

Theorem 22. Let P , Q be processes of the Explicit Fusion

calculus, and −→EF the reduction relation in the calculus.

1) If P ≡ Q then [[P ]] ≃bn [[Q]];
2) if P −→EF P

′ then [[P ]] −→bn ≅bn [[P ′]];
3) conversely, if [[P ]] −→bn Q, then Q ≅bn [[P ′]] for some

P ′ such that P −→EF P
′.

A similar result holds for the Fusion calculus, though for

Explicit Fusions the statement is simpler because in the latter

calculus a restriction is not necessary for fusions to act.

B. π-calculus

The embedding of the π-calculus into a fusion calculus is

defined by translating the bound input construct as follows:

[[a(x).P ]] = (νx) ax. [[P ]]

(the other constructs being translated homomorphically). The

same encoding can be used for πP.

The encoding of π-calculus into Fusions is not fully abstract

for barbed congruence. For instance, in the π-calculus, a

new channel is guaranteed to remain different from all other

existing channels. Thus in a process νa (ba. (a.P | c.Q)), the

two prefixes a.P and c.Q may never interact with each other,

in any context, even if a is exported. This property does not

hold in the Fusion calculus, as a recipient of the newly created

name a could equate it with any other name (e.g., using the

context bc.0 | [·]).
We do not know whether the encoding of the full π-calculus

into πP is fully abstract. However, at least the encoding is fully

abstract on the asynchronous subset (where no continuation is

allowed after the output prefix).

Theorem 23. Suppose P,Q are processes from the asyn-

chronous π-calculus, Aπ. Then P ≃Aπ Q iff [[P ]] ≃bn [[Q]].

In the theorem, ≃Aπ could be replaced by ≃π (barbed

congruence in the full π-calculus). Note that ≃Aπ is the stan-

dard barbed congruence, as opposed to asynchronous barbed

congruence, where output barbs are visible but input barbs are

not. We believe the theorem also holds under asynchronous

barbed congruence.

For the proof of the theorem, we first establish results of

operational correspondence between source and target terms

of the encoding. Then the direction from right to left is easy

because contexts of the π-calculus are also contexts of πP
(under the encoding). The delicate direction is the opposite.

Here we use Theorem 21, and the characterisation of π-

calculus barbed congruence on the subset of asynchronous

processes as ground bisimilarity [5]. We also make use of

some up-to techniques, notably ‘by-need bisimulation up to

∼bn and restriction’ whose soundness is proved along the

lines of soundness proofs of similar techniques for other forms

of bisimilarity. We finally consider the relation defined as

{([[P ]] | σ, [[Q]] | σ) | P ∼g Q}, where σ is a parallel compo-

sition of arcs, and prove that it is a by-need bisimulation up

to ∼bn and up to restriction.

Regarding translations in the opposite direction, both for

fusion calculi and for πP, the encoding into π is not possible

in general. However, for πP some results can be obtained under

constraints such as asynchrony and locality. Something similar

has been done by Merro [20] for the Fusion calculus.

VII. UNIQUE NEGATIVE OCCURRENCES OF NAMES

In this section we consider a constrained version of the

calculi discussed in the paper, where each name may have

at most one negative occurrence in a process. In the fusion

calculus [6] the constraint means that each name appears at

most once as the object of an input. In πP, the constraint

affects also arcs (as their source is a negative occurrence).

The constraint is rather draconian, bringing the calculi closer

to the π-calculus (where the constraint is enforced by having

binding input). Still, the constraint is more generous than tying

the input to a binder as in π. For instance, we have more

complex forms of causality involving input, as in νx(ax.wt |
bx), where the input at a blocks the output at w, and can be

triggered before or after the output at b takes place. We call

πP1 and FU1 the constrained versions of πP and Fusions; in

both languages the constraint is preserved by reduction.

We show that the constraint makes certain differences be-

tween calculi or semantics disappear. In πP1 the eager and the

by-need semantics of πP coincide, at least in a weak semantics.

Theorem 24. In πP1, relations ≅πP1ea and ≅πP1bn coincide.

The following property is useful in the proof (see Ap-

pendix E).

Lemma 25. For P ∈ πP1, suppose P −→ea P
′ where the

reduction is a rewrite step involving an arc. Then P ≅πP1ea P
′.

The calculi πP1 and FU1 resulting from the constraint are

behaviourally similar. For instance, in πP1 the directionality
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of arcs is irrelevant, as shown by the following law (where we

omit the subscripts ‘ea’ and ‘bn’ in the light of Theorem 24).

Lemma 26. a/b ≅πP1 b/a.

Another difference that disappears under the constraint of

unique negative occurrences of names is the one concerning

capabilities and subtyping in fusion calculi with respect to π
and πP, exposed in Sections III and IV. Indeed, to equip FU1
with an I/O type system and subtyping, we can use exactly the

rules of πP in Section IV-B — with the exception of T-ARC

as FU1 does not have arcs. This intuitively because FU1 is,

syntactically, a subset of πP (each process of FU1 is also a

process of πP), and the Subject Reduction theorem for πP in

Section IV-B holds regardless of when and how arcs generate

substitutions (Remark 11); making an arc a/b act immediately

and on all positive occurrences of b is similar to substitution

as in FU1. This may however involve changing the type of a

name c into a smaller type when c is used in input object;

e.g., in ac | (νb : T )ab.P −→FU1 P{c/b} (where −→FU1

is reduction in FU1), name c is used at type T , which is a

smaller type than Γ(c).

Theorem 27. Let P be a FU1 process. If Γ ⊢ P and

P −→FU1 P
′, then Γ′ ⊢ P ′, where for at most one name c,

Γ′(c) ≤ Γ(c); for other names b, Γ′(b) = Γ(b).

Note that FU1 does not satisfy the conditions of Definition 2

because well-typed processes may not be freely put in parallel,

as this could break the constraint on unique input objects.

We leave for future work a thorough comparison between

πP1, FU1, and π-calculus.

VIII. FUTURE WORK

Here we mention some lines for future work, in addition to

those already mentioned in the main text.

The coinductive characterisation of behavioural equivalence

in πP has been presented in the strong case, and should be

extended to the weak case. We have presented and compared

two semantics for πP, eager and by-need. While we tend

to consider the advantages so far uncovered for the by-

need superior, more work is needed to draw more definite

conclusions. For instance, it would also be interesting to

contrast axiomatisations of the semantics, rules for pure SOS

presentations of the operational semantics, the expressiveness

of the subcalculus in which the two semantics agree, and

implementations. We do not expect, in contrast, significant

differences to arise from type systems.

Another possible advantage of by-need is a smoother ex-

tension with dynamic operators like guarded choice, in which

an action may discard a component. (In the eager case it is

unclear what should be the effect of an arc that acts on one

of the summands of a choice.) Choice would be useful for

axiomatisations. In by-need, we would have for instance

(νb, c)ab. ac. (b|c) ∼ (νb, c)ab. ac. (b. c+ c. b).

The law, valid in both πP and π, illustrates the possibility

of generating fresh names that cannot be identified with other

names even if exported. The law fails in fusion calculi as a

recipient might decide to equate b and c (cf. Section VI-B).

Solos calculus is the polyadic Fusion calculus without

continuations. Solos can encode continuations [10]. We believe

the same machinery would work for the ‘Solos version’ of πP.

It could also be interesting to study the representation of

πP into Psi calculi [21]. This may not be immediate because

the latter make use of on an equivalence relation on channels,

while the former uses a preorder. One could then see whether

the move from Fusions and π to πP in this paper, and the

corresponding results on types, can be lifted at the level of Psi

calculi, by comparing them with variants based on preorders.

[24] presents type systems for Psi calculi, and for explicit

fusions, but does not address subtyping.
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APPENDIX

A. Reduction-closed barbed congruence (Section II)

Definition 28 (Reduction-closed barbed congruence). Let L
be a process calculus, in which a reduction relation −→L

and barb predicates ↓La , for each a in a given set of names,

have been defined.

A relation R on the processes of L is context-closed if PRQ
implies C[P ]RC[Q], for each context C of L; the relation is

barb-preserving if for any name a, P ↓La implies Q ↓La ; it

is reduction-closed if whenever P −→L P ′, there is Q′ s.t.

Q −→L Q
′ and P ′RQ′.

Then reduction-closed barbed congruence in L, written ≃L,

is the largest symmetric relation on the processes of L that is

context-closed, reduction-closed, and barb-preserving.

B. Proofs of impossibility results (Section III)

Statement of Theorem 3: A typed calculus with fusions that

is plain and supports narrowing has trivial subtyping.

Proof Sketch: We define the following active context:

E , (νcb)(ub | uc | va | vc | [·]) .

Note that in E we only use b as an output object. The

intention is that, given some process P , and u, v, c some fresh

names, E[P ] should reduce to P{a/b}. Indeed, by applying

hypothesis (2) twice, we have

E[P ] = (νbc)(ub | uc | va | vc | P ) (6)

=⇒ (νb)(va | vb | P{b/c}) (7)

= (νb)(va | vb | P ) (8)

=⇒ P{a/b} . (9)

Suppose U ≤ T , we show Γ, a : T ⊢ P iff Γ, a : U ⊢ P .

The implication from left to right is narrowing. To prove the

right to left implication, suppose Γ, a : U ⊢ P , and prove

Γ, a : T ⊢ P . By injective name substitution we have Γ, b :
U ⊢ P{b/a} for some fresh b.

In the typing environment Γ, b:U, u:♯ T, v:♯ T, c:T, a:T the

process ub is well-typed thanks to narrowing and weakening,

hence so is (ub | uc | va | vc | P{b/a}). By the restriction

rule we get Γ, a:T, u:♯ T, v:♯ T ⊢ E[P{b/a}], the latter

reducing to P{b/a}{a/b} by (9). Since b has been taken

fresh, P{b/a}{a/b} = P . Hence, by Subject Reduction,

Γ, a:T, u:♯ T, v:♯ T ⊢ P . We finally deduce Γ, a : T ⊢ P
by Strengthening.

Statement of Theorem 4: Suppose a typed calculus with

fusions is plain and there is at least one prefix α with object

b, different from the subject, and there are two types S and T
such that S ≤ T and one of the following forms of narrowing

holds for all Γ:

1) whenever Γ, b : T ⊢ α.0, we also have Γ, b : S ⊢ α.0;

2) whenever Γ, b : S ⊢ α.0, we also have Γ, b : T ⊢ α.0.

Then S and T are interchangeable in all typing judgements.

Proof Sketch: For all ∆ we prove that ∆, x : T ⊢ P iff

∆, x : S ⊢ P . Let x1, x2, a1 and a2 be fresh names.

∆i
def
= ∆, xi :T, x3−i :S

We will prove that ∆i ⊢ P{x1/x} implies ∆i ⊢ P{x2/x}
for all i ∈ {1, 2}. From there it is enough to conclude using

weakening, strengthening and injective substitutions. We use

D = a1x1 | a2x2 | a1y | a2y to simulate a substitution:

(νx1y)(D | P{x1/x}) ⇒ P{x2/x}

We have to prove that ∆′ = ∆i, a1 :Ta1
, a2 :Ta2

, y :Ty ⊢ D
for some types Ta1

Ta2
, Ty . We note a the subject of α. Using

the plainness of the subtyping, we can suppose that a is any

of a1 or a2 and that b is any of x1, x2 or y, so to apply the

hypothesis on different cases. There are eight subcases, along

the cases from the hypothesis, i, and the form of α.

• (1), i = 1, α = a2x2: Ta1
= Ta2

= ♯ T , Ty = T ;

• (1), i = 1, α = a1y: Ta1
= ♯ T , Ta2

= ♯ S, Ty = S;

• (2), i = 1, α = a1x1: Ta1
= Ta2

= ♯ S, Ty = S;

• (2), i = 1, α = a2y : Ta1
= ♯ T , Ta2

= ♯ S, Ty = T ;

• (1), i = 2, α = a2x2: Ta1
= Ta2

= ♯ T , Ty = T ;

• (1), i = 2, α = a2y: Ta1
= ♯ S, Ta2

= ♯ T , Ty = S;

• (2), i = 2, α = a1x1: Ta1
= Ta2

= ♯ S, Ty = S;

• (2), i = 2, α = a1y: Ta1
= ♯ S, Ta2

= ♯ T , Ty = T .

In all these cases we prove that ∆′ ⊢ D using plainness and

the hypothesis on α. Plainness also give us ∆′ ⊢ P{x1/x}.

We use rules from (3) and Subject Reduction to get that ∆′ ⊢
P{x2/x} from which strengthening is enough to conclude.

C. Structural congruence in πP (Section IV-A)

Definition 29 (Structural congruence). Structural congruence

on πP, written ≡, is the smallest congruence containing the

associativity and commutativity of | and the following rules:

P | 0 ≡ P νa0 ≡ 0 νaνbP ≡ νbνaP

νa(P | Q) ≡ (νaP ) | Q if a /∈ fn(Q)

D. Alternative definition of g (Section V-A)

Given an active context E, the set of captured names of E,

cn(E), is defined as follows: c ∈ cn(E) iff the hole occurs in

the scope of a restriction on c in E (cn(E) is included in the

set of names that are bound in E, but might be distinct from

it).

Definition 30 (Reachability / Joinability of names). We intro-

duce ϕ ::= a 6 b | agb in which a 6 b is read “b is reachable

from a”, and a g b is read “a and b are joinable”. In both

cases, we have n(ϕ) = {a, b}. We first define a judgement

ϕ1, ϕ2 ⊢ ϕ, as follows:

a 6 b, b 6 c ⊢ a 6 c a 6 c, b 6 c ⊢ ag b

ag b, c 6 a ⊢ cg b ag b, c 6 b ⊢ ag c

ϕ1, ϕ2 ⊢ ϕ

ϕ2, ϕ1 ⊢ ϕ
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We exploit this judgement to define how a 6 b and ag b can

be derived according to a process, or to an active context (we

use A ::= P | E):

REFL

A ⊲ a 6 a

DEDUCT

A ⊲ ϕ1 A ⊲ ϕ2 ϕ1, ϕ2 ⊢ ϕ

A ⊲ ϕ
.

Then we define ⊲ for processes:

b/a ⊲ a 6 b

P ⊲ ϕ

P | R ⊲ ϕ

P ⊲ ϕ

R | P ⊲ ϕ

P ⊲ ϕ a /∈ n(ϕ)

(νa)P ⊲ ϕ

and for contexts (symmetrically for E | P ):

P ⊲ ϕ n(ϕ) ∩ cn(E) = ∅

P | E ⊲ ϕ

E ⊲ ϕ

P | E ⊲ ϕ

E ⊲ ϕ

(νa)E ⊲ ϕ

Lemma 31. If P is a πP process, the relation 6P defined by

{(a, b) | P ⊲ a 6 b} is a preorder.

Proof: Thanks to the rule REFL, 6P is reflexive and

thanks to the rule DEDUCT and the fact that a 6 b, b 6 c ⊢
a 6 c, 6P is transitive, hence it is a preorder.

E. Coincidence of eager and by-need equivalences in πP1
(Section VII)

Statement of Theorem 24: ≅πP1bn = ≅πP1ea.

Proof Sketch: The result follows from reflexivity of

a relation we define below, between processes in the eager

semantics and processes in the by-need semantics.

Lemma 32. For P ∈ πP1, we write Eq(P ) for the relation

between names defined by Eq(P )(a, b) iff P ⊲ ag b.
Then Eq(P ) is an equivalence relation.

Let R be the relation such that P R Q iff

P,Q ∈ πP1 ∧ Eq(P ) = Eq(Q) = ϕ ∧ P =ϕ Q

where P =ϕ Q iff P is obtained from Q by replacing some

subjects in active prefixes with names related by Eq(P ).
We prove that P R Q entails the following:

1) if C[P ], C[Q] ∈ πP1 then C[P ] R C[Q],
2) P ⇓ea

a iff Q ⇓bn
a ,

3) if P =⇒ea P
′ then Q =⇒bn Q

′ with P ′ R Q′,

4) if Q =⇒bn Q
′ then P =⇒ea P

′ with P ′ R Q′.

We call the union of relations satisfying these properties the

eager/by-need weak reduction-closed barbed congruence for

πP1, written ea
1≅

bn
1 .

1) R is clearly context-closed in πP1.

2) P ↓bna implies P ⇓ea
a as each arc involved in the join-

ability condition generates a −→ea reduction, and P ↓eaa
implies P ↓bna , as P −→ea P

′ implies P −→bn P
′.

3) By induction we suppose P −→ea P ′. If this is a

renaming then P =ϕ P ′. If this is a communication

then the corresponding subjects are equated by ϕ in Q,

which means they are joinable i.e. the by need reduction

is possible.

4) Again we suppose Q −→bn Q
′, with a communication

on a and b with a g b. The corresponding names a′, b′

in P are such that a′ g a g b g b′ i.e. a′ g b′ so a′

and b′ can be rewritten into a common name, letting the

communication happen.

Since R ⊆ ea
1≅

bn
1 , for all P ∈ πP1 we have P ea

1≅
bn
1 P which

implies that P ≅πP1bn Q iff P ≅πP1ea Q.

F. The Fusion calculus

Definition 33. The syntax of the polyadic Fusion calculus [6]

without matching and choice is the following. Structural

congruence is defined as usual (Definition 29).

P ::= 0 | P | P | ax̃.P | ax̃.P | νaP .

We follow the reduction semantics of the Fusion calculus,

from [22]. The side conditions for (10) are that x̃ and ỹ are

of the same arity, that dom(σ) = z̃ and that σ(xi) = σ(yi).
Note that (2), from Section II, holds.

P ≡ P1 P1 →F Q1 Q1 ≡ Q

P →F Q

P →F Q

E[P ] →F E[Q]

(ν z̃)(R | ax̃.P | aỹ.Q) →F (R | P | Q)σ (10)

G. Auxiliary results

a) Results involving name preorders:

Lemma 34. If P ⊲ a g b and {a, b} ⊆ fn(P ), then P ≡ P ′

implies P ′ ⊲ ag b.

Proof: The predicate P ⊲ ϕ only depends on the occur-

rences of arcs in P ; those occurrences are trivially preserved

by structural congruence, except that to keep track of alpha-

conversion one must consider that P ’s binders also bind ϕ’s

names. Hence the statement only holds for free names.

Lemma 35. If P ≃bn Q and P ⊲ ag b. Then Q ⊲ ag b.

Proof: We characterise joinability using the context E =
(− | a. f | b. g) where f and g are fresh: we easily prove

that R ⊲ ag b iff E[R] −→bn R1 where R1 ↓bnf and R1 ↓bng .

By definition of ≃bn we know that E[P ] ≃bn E[Q] and we

conclude playing the bisimulation game of ≃bn.

Lemma 36. If P RQ and R preserves g and parallel

composition of arcs (in particular if R is a ∼bn-relation),

then P ⊲ a 6 b iff Q ⊲ a 6 b.

Proof: Let P and Q be processes and f be a fresh name.

Then P ⊲a 6 b iff (P | f/b)⊲agf and similarly for Q. Thanks

to the second hypothesis on R we have (P | f/b)R (Q | f/b)
and we conclude with the second one.

b) Basic tools: Prefixes delimit the action of structural

congruence.

Lemma 37. Suppose π1, π2 are prefixes.

1) If E[π1.P1] ≡ P ′ then there exist E′ and P ′
1 such that

P1 ≡ P ′
1, P ′ = E′[π1.P

′
1] and E ⊲ ag b iff E′ ⊲ ag b.
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Moreover for all Q1 such that all names of fn(Q1) are

either in fn(P1) or not captured by E then the latter are

not captured by E′ and E[Q1] ≡ E′[Q1].
2) If G[π1.P1][π2.P2] ≡ P ′ then there exist G′, P ′

1

and P ′
2 such that P1 ≡ P ′

1, P2 ≡ P ′
2 and P ′ =

G′[π1.P1][π2.P2] or P ′ = G′[π2.P
′
2][π1.P

′
1] and G ⊲

ag b iff G′ ⊲ ag b.

Proof: Structural congruence can act under prefixes only

using the fact that ≡ is a congruence, i.e. using the rule “if

P ≡ P ′ then C[P ] ≡ C[P ′]” for some arbitrary context C
containing a prefix. For this rule we work an induction on

C to get the same cutting as E[π1.P1]; all the other rules

deriving ≡ are handled by the corresponding case analysis on

the context E. Note that the statement also holds when E is

an arbitrary context.

Lemma 38. If P ≡ Q then P ∼bn Q.

Proof: We show that ≡ is a ∼bn-bisimulation. (The proof

is not by induction over the derivation of P ≡ Q because the

fact that ≡ is a congruence is not easy to handle.) The clauses

1), 2), 4) are easy – respectively handled by the fact that ≡ is a

congruence, Lemma 34 and the fact that ≡ is symmetric – as is

the clause 3) when µ = τ – since
τ

−→bn=−→bn is stable by ≡.

For the remaining labels we examine the case where µ = bd,

the other case being similar. We know that P = E[ac.P1]
with E ⊲ a g b and P ′ = E[d/c | P1]. We use Lemma 37 to

get Q = E′[ac.P1] which implies Q
bd
−→ E′[d/c | P1] ≡ P ′.

c) Proof techniques:

Definition 39 (By-need bisimulation up to ∼bn and restric-

tion). A relation R is a by-need bisimulation up to ∼bn and

restriction if PRQ implies:

1) P | a/b R Q | a/b, for all names a, b;
2) if a and b appear free in P , then P ⊲ a g b implies

Q ⊲ ag b;
3) if P

µ
−→bn P ′ (where the object part of µ is fresh,

whenever µ 6= τ ), then Q
µ

−→bn Q′ and there are

P ′′, Q′′, x̃ s.t. P ′ ∼bn νx̃ P ′′, Q′ ∼bn νx̃ Q′′, and

P ′′RQ′′,

4) the converse of clauses (2) and (3).

Lemma 40. If R is a by-need bisimulation up to ∼bn and

restriction then R ⊆ ∼bn.

H. Soundness of ∼bn (Section V-C)

We now move to the proof that ∼bn is a congruence. What

is missing is closure by parallel composition, which is rather

delicate. This is because we defined the semantics of τ -actions

with a reduction semantics. (The standard schema is to define a

pure SOS semantics, show that it coincides with the reduction

semantics, and then work with the SOS.)

For the proof of congruence we introduce communication

contexts. These are, intuitively, the composition of two active

contexts, one used for an input, the other for an output; such

input and output may produce a τ -action. Communication

contexts, ranged over by G, have two holes, each occurring

exactly once.

G ::= P | G | G | P | νa G | E1 | E2 .

By convention the leftmost hole is the first one, the other is the

second one. We write P = G[ac.Q][bd.R] if P is obtained

from G with ac.Q, and the second hole with bd.R.

Communication contexts can be used to decompose a
τ

−→bn

transition:

Lemma 41. Suppose P
τ

−→bn P
′ (that is, P −→bn P

′). Then

one of the following statements holds:

• P = G[ab.Q][cd.R] and P ′∼bnνf (G[b/f | Q][f/d | R]),
• P = G[cd.R][ab.Q] and P ′∼bnνf (G[f/d | R][b/f | Q]),

where P ⊲ ag c and f is fresh.

Proof: The two cases are similar, the main difficulty is to

keep track of the structural congruence operations. If P −→bn

P ′ it means that, P ≡ E[ab.Q1 | ac.R1] and P ′ ≡ E[b/c |
Q1 | R1]. From the first relation we can get G such that

P = G[ab.Q][cd.R] (with G ⊲ ag c, Q ≡ Q1 and R ≡ R1),

ignoring the symmetric case for which the output is the left

argument of G. We extract the potential restrictions ν b̂ and νd̂
(b̂ = ∅ if b is not bound and b̂ = {b} if is captured by G) from

G, yielding the much alike context G′ (and G ≡ (ν b̂d̂)G′).

The interesting part is that we can write the reduction with

the arc at the top, then use Lemma 44 and then structural

congruence to put back b and d inside G.

P ≡ (ν b̂d̂)G′[ab.Q][cd.R]

−→bn (ν b̂d̂)(b/d | G′[Q][R])

∼bn (ν b̂d̂)((νf)(b/f | f/d) | G′[Q][R])

≡ (νf)(ν b̂d̂)(G′[b/f | Q][f/d | R])

≡ (νf)G[b/f | Q][f/d | R] .

To conclude we need to relate this last process to P ′ which

is done by proving that E[b/d | Q1 | R1] ≡ (ν b̂d̂)(b/d |
G′[Q][R]), which is done by keeping tracks of the derivation

of E[ab.Q1 | cd.R1] ≡ P .

Lemma 42. Suppose Q
bf
−→bn Q

′, that b is not captured by

E and f is fresh. Then Q | E[bd.R1]
τ

−→bn∼bn νf (Q′ |
E[d/f | R1]).

Lemma 43 (Congruence for restriction). If P ∼bn Q then for

all c, νcP ∼bn νcQ.

Proof: Given a relation R, we define

(R)Sub = {(P | σ, Q | σ). PRQ and σ is

a parallel composition of arcs} .

We show that ({(νcP, νcQ), P ∼bn Q})Sub is a bisimulation

up to ≡. This is a consequence of the following observations:

• For any u, v, c, P such that {u, v} ⊆ fn(P ) and c /∈
{u, v}, we have P ⊲ ug v iff νcP ⊲ ug v.

• The visible transitions of our labelled transition system do

not involve name extrusion, and we have that P
α

−→bn P
′

iff νcP
α

−→bn νcP ′ for c /∈ n(α).
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• Suppose now νcP
τ

−→bn P
′. This means P

τ
−→bn P0

for some P0 s.t. P ′ ≡ νcP0. But then Q
τ

−→bn Q0,

P0 ∼bn Q0 and νcQ
τ

−→bn νcQ0.

Lemma 44 (Transitivity of arcs). For all active context E we

have: E[a/c] ∼bn E[νb(a/b | b/c)].

Proof: Let R be the corresponding relation. We show

that R is a ∼bn-bisimulation up to ≡. Of course the relation

is stable by parallel composition of arcs, since E can be an

arbitrary active context. Concerning the g condition, the left-

to-right implication is rather clear. From right to left, we must

prove that we cannot get more from νb(a/b | b/c) than from

a/c which is achieved by the restriction νb. Now concerning

the transitions we know from the g condition that the same

names will be joinable through the preorder, independently of

≡ or the context. The resulting processes will still stay in R,

up to ≡.

Lemma 45 (Congruence for parallel composition). If P ∼bn

Q then also P | R ∼bn Q | R.

Proof (Sketch): Special case: we first suppose that all

arcs in R occur under at least one prefix. We show that

{(P | R, Q | R), P ∼bn Q and R does not contain active arcs}

is a bisimulation up to restriction and up to bisimilarity.

Suppose then P | R
τ

−→bn U , in which both P and R
contribute (the other possibilities are easier).

Suppose P makes the input (the case of output is symmet-

ric). In this case we have, using Lemma 41:

P = E[ac.P1] R = F [bd.R1]

where E ⊲ a g b (since R has no arc), f is fresh and with

P ′ = E[f/c | P1] and R′ = F [d/f | R1]:

U ∼bn νf (P ′ | R′) .

Using rule EN-INP, we also have P
bf
−→bn P

′. Hence, since

P ∼bn Q, Q
bf
−→bn Q

′ and P ′ ∼bn Q
′ for some Q′, which

gives Q′ = E′[a′c′.Q1] for some a′ s.t. E′ ⊲ a′ g b, and

Q′ = E′[f/c′ | Q1]. From this, Lemma 42 gives us directly:

Q | R
τ

−→bn∼bn νf (Q′ | R′)

We can now extract the arc from R′:

R′ ≡ νñ
(
R′′ | σ

)
,

where σ is a parallel composition of arcs and R′′ contains no

active arc. We then have

P ′ | R′ ≡ (νñ)
(
P ′ | σ | R′′

)
,

and similarly for Q′ | R′. We can conclude by remarking that

P ′ ∼bn Q′ entails P ′ | σ ∼bn Q′ | σ, and using up to

restriction to remove the topmost restrictions.

General case: Consider now the case where R is an

arbitrary process. We reason by induction on R, to show that

P ∼bn Q implies P | R ∼bn Q | R. The cases where R is a

prefixed process or R = 0 are treated by the result above.

The case where R = u/v holds by definition of ∼bn: P ∼bn

Q implies P | u/v ∼bn Q | u/v.

If R = R1 | R2, then by induction P | R1 ∼bn Q | R1,

which gives, by induction again, (P | R1) | R2 ∼bn (Q |
R1) | R2, hence the result by associativity of |.

Suppose now R = νcR′. We can suppose w.l.o.g. c /∈
fn(P ) ∪ fn(Q). Then by induction P | R′ ∼bn Q | R′,

which gives, by Lemma 43, (νc)(P | R′) ∼bn (νc)(Q | R′).
Lemma 38 gives (νc)(P | R′) ∼bn P | νcR′, and similarly

for Q, hence P | R ∼bn Q | R. This concludes the proof.

Statement of Theorem 20: Bisimilarity is a congruence.

Proof: Follows from Lemmas 43 and 45, closure by

prefixes being immediate.

Theorem 46 (Soundness). If P ∼bn Q then P ≃bn Q.

Proof: Preservation of fresh barbs: when f does not

appear in any arc, P ↓bnf is equivalent to P
α
−→ where α

is an input or output label with subject f .

Preservation of general barbs: P ↓bna is equivalent to (P |
α. f)

τ
−→bn↓

bn
f for some α whose subject is a.

Closure under reduction holds trivially since −→bn coin-

cides with
τ

−→bn and finally, Theorem 20 guarantees closure

by contexts.

I. Completeness of ∼bn (Section V-C)

For a prefix α we write α for the dual prefix, i.e. ab = ab
and ab = ab. Any prefix α can be also seen as a label.

Lemma 47. Let P and P ′ be processes and f a name fresh

w.r.t. P and such that P ′ 6↓bnf . Then P
α

−→bn≡ P ′ if and only

if there exists a process P1 such that P1 ↓bnf and

P | α. (f |f) −→bn P1 −→bn P
′ .

Proof: Let us consider the case where α is an input prefix

bd, the output case being similar.

Left to right: since −→bn is stable by ≡ we directly suppose

that P
α

−→bn P ′. Then P = E[ac.Q] with E ⊲ a g b and

P ′ = E[d/c | Q]. Then

Pα
def
= P | α. (f |f)

≡ E[ac.Q | bd. (f |f)]

−→bn E[d/c | Q | f |f ]
def
= P1

−→bn E[d/c | Q] = P ′ .

Right to left: since P1 and f is fresh in P we know that

α has been triggered, that is, Pα ≡ E[ac.Q | bd. (f | f)] and

P ′ ≡ E[d/c | Q] since P ′ has no f barb. This means that P
is of the form P ≡ E[ac.Q]. Hence P

α
−→bn≡ P ′.

Theorem 48 (Completeness). If P ≃bn Q then P ∼bn Q.

Proof: We show that ≃bn is a ∼bn-bisimulation up to ≡.

The clause for preservation of g is treated with Lemma 35.

The one about parallel composition of arcs is trivial, as well
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as the symmetry and the clause for the τ -transition. We are

left with the case for an input or output transition α.

Suppose P
α

−→bn P
′ and let f be a name fresh wrt to P ,

P ′ and Q. Lemma 47 provides us P1 such that P1 ↓bnf and a

reduction scheme that we can transport to Q:

Q | α. (f |f) −→bn Q1 −→bn Q2 .

We know that P1 ≃bn Q1 and P ′ ≃bn Q2, hence Q1 ↓bnf
and Q2 6↓bnf (since f is fresh for P ′). Another application of

Lemma 47 directly gives us Q
α

−→bn≡ Q2.

Statement of Theorem 21: In πP, relations ∼bn and ≃bn

coincide.

Proof: Consequence of Theorems 48 and 46.

J. Encoding Aπ in πP

1) Operational correspondence results: We say that P ∈
πP is asynchronous if the continuation of all outputs in P is

0. We can remark that the encoding of a process in Aπ is an

asynchronous πP process.

We use the following properties of the encoding, where

−→π is the reduction in the π-calculus. Barbs in the π-calculus

are defined in the standard way: P ↓a iff P ≡ (ν c̃)(α.P | R)
where α is a prefix whose subject is a. (It is equivalent to

P = E[α.P1] for some active context E.)

Lemma 49. Let P be any π-calculus process.

1) If P ≡ Q then [[P ]] ≡ [[Q]];
2) if [[P ]] ≡ [[Q]] then P ≡ Q;

3) if [[P ]] ≡ E1[ab.Q1 | ax.R1] then Q1 ≡ [[Q]], R1 ≡ [[R]]
and P ≡ E[ab.Q | a(x).R] with [[E]][νx[·]] ≡ E1[·].

4) if P −→π P
′ then [[P ]] −→bn≃bn [[P ′]];

5) conversely, if [[P ]] −→bn P1 then there is P ′ such that

P −→π P
′ and P1 ≃bn [[P ′]];

6) P ↓a iff [[P ]] ↓a.

Proof:

1) Straightforward.

2) We prove tediously but straightforwardly the following

refined statement: if [[P ]] ≡ R1 then there exist R such

that P ≡ R and we can obtain R1 from [[R]] such that

R1 ≡ [[R]] but only by moving restrictions of input

objects. In the case where R1 = [[Q]] we prove that R
is necessarily Q (the restrictions of input objects have

only one possible position).

3) We combine techniques used in the previous item to get

back the fact Q1 and R1 are structurally congruent to

encoding of processes, and techniques from the proof of

Lemma 37 to separate the transformations of ≡ in the

subterms Q1, R1 guarded by the prefixes ab, ax from

those in the rest of the term.

4) The reduction −→π is quotiented by structural congru-

ence, so in the induction proof there is a case handling

the rule “if P ≡ P1 −→π P
′
1 ≡ P ′ then P −→π≡ P ′”.

Since [[P ]] ≡ [[P1]] and [[P ′
1]] ≡ [[P ′]] we only need

to know that [[P1]] −→bn≃bn [[P ′
1]] by induction. We

also need to know that (≡−→bn≃bn≡) ⊆ (−→bn≃bn)
which is true by definition of −→bn and ≃bn.

Similarly since the reduction in π is also quotiented

by active contexts we also remark that the encoding is

compositional, and the encoding of an active context is

still active. Also we have to prove that if P −→bn≃bn Q
then P −→bn≃bn Q which is true by definition of

−→bn and because ≃bn is a congruence.

We now focus on the simple case of ab.P |
a(x).Q −→π P | Q{b/x}. The encoding of the left-

hand side reduces into νx([[P ]] | b/x | [[Q]]) and we

know that x has no negative occurrence in [[Q]] so by

Lemma 19 this process is equivalent to [[P ]] | [[Q]]{b/x}
which is of the expected shape.

5) If [[P ]] −→bn Q, since [[P ]] does not have any arc, the

reduction comes from a communication between two

prefixes on the same name a: [[P ]] ≡ E1[ab. [[Q]] |
ax. [[R]]] with E binding x, and then keeping track of

all actions operated by ≡ we know that P1 is of the

form P1 ≡ E1[[[Q]] | b/x | [[R]]]. We can recover

P ≡ E[ab.Q | a(x).R] −→π E[Q | R{b/x}]
def
= P ′.

Then [[P ′]] = [[E]][[[Q]] | [[R]]{b/x}] ≡ E1[[[Q]] |
[[R]]{b/x}] ≃bn P1.

6) The implication from left to right is straightforward by

induction, but one has to remark that to test the input

barb, one needs a synchronous tester ab.ω. (Note that

input barbs are not tested in the asynchronous version of

behavioural equivalences.) The other implication follows

from the fact that there is no arc in [[P ]] so [[P ]] ↓a if and

only if [[P ]] contains a prefix whose subject is a (which

is equivalent to the fact P does, too).

Lemma 50 (Label-syntax correspondence). If P is only con-

tains trivial arcs (of the form e/e) and α is a prefix ac or ac
then P

α
−→bn≡ P ′ iff P ≡ E[α.P1] and P ′ ≡ E[c/c | P1],

with E binding neither a nor c (and P ′ has only trivial arcs).

Moreover P ↓bna iff P
α

−→bn iff P ≡ E[α.P1].

In addition if σ⊲agb then P
ac
−→bn P

′ implies P | σ
bc
−→bn

P ′ | σ (resp. ac, bc).

Lemma 51 (Label correspondences). Let P be any π process

and f a fresh name.

1) If P
ac
−−→π P

′ then [[P ]]
af
−→bn≡ c/f | [[P ′]].

2) If P
a(c)
−−−→π P

′ then [[P ]]
af
−→bn≡ νc(c/f | [[P ′]]).

3) If P
a(x)
−−−→π P

′ then [[P ]]
af
−→bn≡ νx(f/x | [[P ′]]).

4) If [[P ]]
af
−→bn P1 then

a) either P
ac
−−→π P

′ with P1 ≡ c/f | [[P ′]],

b) or P
a(c)
−−−→π P

′ with P1 ≡ νc(c/f | [[P ′]])

5) If [[P ]]
af
−→bn P1 then

P
a(x)
−−−→π P

′ with P1 ≡ νx. (f/x | [[P ′]])

Lemma 52 (Decomposition of transitions, asynchronous πP).

Let P be an asynchronous πP term without visible arc, σ a

parallel composition of arcs, and f , g some fresh names.
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1) If P | σ
τ

−→bn Pt then P
af
−→bn P1

bg
−→bn P2 with

Pt ∼bn (νfg)(P2 | f/g) | σ and σ ⊲ ag b.

2) Suppose P
af
−→bn P1

ag
−→bn P2 and σ ⊲ a g b. Then

P | σ
τ

−→bn∼bn (νfg)(P2 | f/g) | σ.

This result is directly a consequence of the syntax of

asynchronous πP as for similar results in Aπ. We use ∼bn for

renaming and concatenating fresh names using Lemma 44.

2) Full abstraction for the encoding of Aπ: One inclusion

in the full abstraction result actually holds for the whole π-

calculus:

Lemma 53. Let P and Q be π terms. Then [[P ]] ≃bn [[Q]]
implies P ≃π Q.

Proof: The relation {(P,Q) | [[P ]] ≃bn [[Q]]} is reduction-

closed (consequence of Lemma 49), barb-preserving (conse-

quence of Lemma 49), and context-closed: if C is a π context

then there exists a πP context C1 such that [[C[P ]]] = C1[[[P ]]],
similarly for Q; hence [[P ]] ≃bn [[Q]] implies [[C[P ]]] ≃bn

[[C[Q]]].

Lemma 54. Let P and Q be asynchronous π-terms. Then

P ≃π Q implies [[P ]] ≃bn [[Q]].

Proof: Thanks to Theorem 46 and to the characterisation

of barbed congruence by ground bisimilarity in the asyn-

chronous π-calculus [5], we only have to prove that P ∼g Q
implies [[P ]] ∼bn [[Q]]. We do so by showing that the following

relation is a ∼bn-bisimulation up to restriction and ∼bn:

R
def
= (∼g)

Sub def
= {([[P ]] | σ, [[Q]] | σ) | P ∼g Q}

where σ stands for any parallel composition of arcs. In order

to do that, we rely on Lemma 51 ([[P ]] is arc-free) to relate

non-τ transitions in π and πP, as well as on Lemma 52 to

decompose τ -transitions into visible transitions.

We analyse all possible transitions from [[P ]] | σ. We omit

intermediate steps to focus on the relevant details.

1) [[P ]] | σ
af
−→bn∼bn νx(f/x | [[P ′]] | σ) with P

b(x)
−−−→π

P ′ for some b such that σ ⊲ a g b. Drawing the ∼g-

diagram yields eventually [[Q]]
bf
−→bn∼bn νx(f/x |

[[Q′]]). We add σ to derive a transition along the original

label af , and relate in R the resulting processes.

2) [[P ]] | σ
af
−→bn∼bn ν ĉ(c/f | [[P ′]]) with P

νĉbc
−−−→π P ′

with ĉ ∈ {∅, {c}} and σ⊲agb. The reasoning is similar

to the previous case.

3) [[P ]] | σ
τ

−→bn Pt | σ with

[[P ]]
af
−→bn

bg
−→bn ν ĉx(c/f | g/x | [[P ′′]])

def
= P2

P
νĉac
−−−→π

b(x)
−−−→π P

′′

such that σ ⊲ a g b and Pt ∼bn νfg(P2 | f/g). We

can again play the ground bisimilarity game and use

Lemma 52 to get the same relations on the Q side, to

finally get P ∼g Q and thus:

([[P ′′]] | σ′) R ([[Q′′]] | σ′)

with σ′ = σ | c/f | f/g | g/x. We use the up to restriction

technique on f , g, x, and ĉ.

The relation R is symmetric, and clearly satisfies the clause

about joinability and the clause about the addition of arcs.

Thus R is a ∼bn-bisimulation up to restriction and ∼bn.

Theorem 55 (Full abstraction). Suppose P,Q are processes

from the asynchronous π-calculus, Aπ. Then P ≃Aπ Q iff

[[P ]] ≃bn [[Q]].

K. Encoding of Explicit Fusions

Definition 56. Let P ⊲a = b be the judgement conjunction of

P ⊲ a 6 b and P ⊲ b 6 a.

In the following we note ϕP the relation {(a, b) | P ⊲aϕb},

e.g. a gP b for the joinability a 6P b for the reachability or

a =P b for the equality. We will note P =a,b Q iff P{b/a} =
Q{b/a} i.e. if the only difference between P and Q is the

exchange of some a and b. We will also write a = b for [[a = b]]
which is a/b | b/a.

Lemma 57. If P =a,b Q then ϕP |a=b = ϕQ|a=b.

Proof: By symmetry we only consider inclusion. We

use induction on the derivation of (P | a = b) ⊲ ϕ along

Definition 30. Only the base case is interesting, when P and

Q are arcs and ϕ is of the form d 6 e. Then if n(ϕ) ⊆ {a, b}
then (a = b) ⊲ ϕ; if P 6= Q then (P,Q) can only be of the

form (a1/c, a2/c) (or, resp., (c/a1, c/a2)) where ai ∈ {a, b}. In

this last case ϕ must be c 6 ai (resp. ai 6 c) which is easily

achieved by (a2/c | a = b) (resp. (a2/c | a = b)).
We extend the definition of =a,b to predicates: ϕ =a,b ψ iff

ϕ and ψ differ only by a, b swaps. Lemma 57 can be slightly

generalised:

Lemma 58. If P =a,b Q, ϕ =a,b ψ then ϕP |a=b = ψQ|a=b.

Proof: By Lemma 57 we only have to prove that if R =
S | a = b then R ⊲ ϕ implies R ⊲ ψ, which is easy, since for

each case there is a rule of Definition 30 that uses either a/b
or b/a to replace one a with a b or vice versa.

Lemma 59. If P =a,b Q then (P | a = b) ∼bn (Q | a = b).

Proof: Let R be the corresponding relation, quantifying

over every P and Q. We prove that R is a ∼bn-bisimulation:

1) invariance under arcs is trivial;

2) is implied by Lemma 57;

3) we use Lemma 58 to ensure the communication is

possible (when µ = τ ) or that the subject of µ can be

related to the subject of the prefix (when µ 6= τ ). The

resulting processes are still related through =a,b since

this relation commutes with ≡ and contexts.

We conclude by symmetry of =a,b .

Lemma 60. If P and Q are prefix-free, and if their preorders

coincide on free names, then P ∼bn Q.

Proof: The corresponding relation is a ∼bn-bisimulation:

all condition checks are straightforward, even when we add
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arcs since Definition 30 is compositional: preor(P | Q) only

depends on preor(P ) and preor(Q).

Lemma 61. For every fusion process P if [[P ]] ⊲ a 6 b or

[[P ]] ⊲ ag b then [[P ]] ⊲ a = b and P ≡ P | a = b (i.e. a and b
are related through P ’s fusions).

Proof: First we prove that [[P ]]⊲a 6 b implies [[P ]]⊲b 6 a
by induction on the derivation of the first judgement. The only

interesting case is when we use an arc b/a: then we know that

there is the other arc a/b next to b/a, so this is enough. We also

know that this is coming from a = b in the original process.

Now if the hypothesis is about ag b we know that there is a

name u such that a 6 u and b 6 u and we use the first part of

the proof to prove u 6 a and u 6 b which you can compose

to get a 6 b and b 6 a.

Statement of Theorem 22: Suppose P and Q are processes

of the fusion calculus.

1) If P ≡ Q then [[P ]] ≃bn [[Q]];
2) if P −→EF P

′ then [[P ]] −→bn ≅bn [[P ′]];
3) conversely, if [[P ]] −→bn Q, then Q ≅bn [[P ′]] for some

P ′ such that P −→EF P
′.

Proof: 1) Thanks to Theorem 21, it is enough to prove

[[P ]] ∼bn [[Q]], which we do by induction on the derivation

of P ≡ Q. The standard base cases like associativity are

translated directly into structural congruent processes that are

therefore related through ∼bn. The other base cases that those

dedicated to fusions:

• [[a = b | P ]] ∼bn [[a = b | P{a/b}]] by Lemma 59,

• [[a = b | b = c]] ∼bn [[a = c | b = c]] by Lemma 59,

• [[a = b]] ≡ [[b = a]] by commutativity of |,
• [[a = a]] ∼bn [[0]] by Lemma 60,

• [[(νa)a = b]] ∼bn [[0]] by Lemma 60.

We conclude thanks to the fact that ∼bn is a congruence and

an equivalence relation.

2) Thanks to 1) and the fact −→bn is stable by active

contexts we only consider the base case of the reduction

relation: R
def
= ab.P | ac.Q −→EF b = c | P | Q

def
= R′.

Since ≅bn is stable by ≡ and active contexts, we just have to

consider the following: [[R]] −→bn (νwy)(b/c | w/y | wb. [[P ]] |
y〈c〉. [[Q]]) which has only one deterministic reduction to

[[R′]] | (νwy)(w/y) which is strongly bisimilar to [[R′]] by

Lemma 60.

3) In [[R]] the only visible prefixes π.P are the form [[π′.P ′]].
Suppose that [[R]] −→bn S comes from the communication

between π1.P and π2.Q of subjects a and b. We know

that [[R]] ⊲ a g b which means thanks to Lemma 61 that the

communication is possible between π′
1.P

′ and π′
2.Q

′: for

some R′, R −→EF R
′. The process S is then one step away

to create the next step and free arcs (corresponding to the

encoding of the fusion just created) the continuations [[P ′]]
and [[Q′]] which places us into a situation similar to 2).
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Full abstraction for fair testing in CCS

Tom Hirschowitz‹

CNRS and Université de Savoie

Abstract. In previous work with Pous, we defined a semantics for CCS

which may both be viewed as an innocent presheaf semantics and as a

concurrent game semantics. It is here proved that a behavioural equiv-

alence induced by this semantics on CCS processes is fully abstract for

fair testing equivalence.

The proof relies on a new algebraic notion called playground, which rep-

resents the ‘rule of the game’. From any playground, two languages,

equipped with labelled transition systems, are derived, as well as a strong,

functional bisimulation between them.

Keywords: Programming languages; categorical semantics; presheaf se-

mantics; game semantics; concurrency; process algebra.

1 Introduction

Motivation and previous work Innocent game semantics, invented by Hy-
land and Ong [20], led to fully abstract models for a variety of functional lan-
guages, where programs are interpreted as strategies in a game. Presheaf mod-
els [22, 6] were introduced by Joyal et al. as a semantics for process algebras,
in particular Milner’s CCS [28]. Previous work with Pous [19] (HP) proposes a
semantics for CCS, which reconciles these apparently very different approaches.
Briefly, (1) on the one hand, we generalise innocent game semantics to both
take seriously the possibility of games with more than two players and consider
strategies which may accept plays in more than one way; (2) on the other hand,
we refine presheaf models to take parallel composition more seriously. This leads
to a model of CCS which may both be seen as a concurrent game semantics, and
as an innocent presheaf model, as we now briefly recall.

To see that presheaf models are a concurrent, non-innocent variant of game
semantics, recall that the base category, say C, for such a presheaf model typ-
ically has as objects sequences of labels, or configurations in event structures,
morphisms being given by prefix inclusion. Such objects may be understood as
plays in some game. Now, in standard game semantics, a strategy is a prefix-
closed (non-empty) set of plays. Unfolding the definition, this is the same as a
functor Cop Ñ 2, where 2 is the poset category 0 ď 1: the functor maps a play
to 1 when it is accepted by the strategy, and to 0 otherwise. It is known since

‹ Partially funded by the French ANR projet blanc “Formal Verification of Distributed

Components” PiCoq ANR 2010 BLAN 0305 01 and CNRS PEPS CoGIP.
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2 T. Hirschowitz

Harmer and McCusker [15] that this notion of strategy does not easily adapt
to non-determinism or concurrency. Presheaf semantics only slightly generalises
it by allowing strategies to accept a play in several ways. A strategy S now
maps each play p to a set Sppq. The play is accepted when Sppq is non-empty,
and, because there are then no functions Sppq Ñ H, being accepted remains a
prefix-closed property of plays. The passage from 2 to more general sets allows
to express branching-time semantics.

This links presheaf models with game models, but would be of little interest
without the issue of innocence. Game models, indeed, do not always accept any
prefix-closed set of plays S as a strategy: they demand that any choice of move
in S depends only on its view. E.g., consider the CCS process P “ pa|pb ‘ cqq,
where ‘ denotes internal choice, and a candidate strategy accepting the plays
ǫ, paq, pbq, pcq, pabq, but not pacq. This strategy refuses to choose c after a has
been played. Informally, there are two players here, one playing a and the other
playing b‘c; the latter should have no means to know whether a has been played
or not. We want to rule out this strategy on the grounds that it is not innocent.

Our technical solution for doing so is to refine the notion of play, making
the number of involved players more explicit. Plays still form a category, but
they admit a subcategory of views, which represent a single player’s possible
perceptions of the game. This leads us to two equivalent categories of strategies.
In the first, strategies are presheaves on views. In the second category, strate-
gies are certain presheaves on arbitrary plays, satisfying an innocence condition.
Parallel composition, in the game semantical sense, is best understood in the for-
mer category: it merely amounts to copairing. Parallel composition, in the CCS
sense, which in standard presheaf models is a complex operation based on some
labelling of transitions or events, is here just a move in the game. The full cate-
gory of plays is necessary for understanding the global behaviour of strategies. It
is in particular needed to define our semantic variant of fair testing equivalence,
described below. One may think of presheaves on views as a syntax, and of in-
nocent presheaves on plays as a semantics. The combinatorics of passing from
local (views) to global (arbitrary plays) are dealt with by right Kan extension.

Discussion of main results In this paper, we further study the semantics
of HP, to demonstrate how close it is to operational semantics. For this, we
provide two results. The most important, in the author’s view, is full abstraction
w.r.t. fair testing semantics. But the second result might be considered more
convincing by many: it establishes that our semantics is fully abstract w.r.t.
weak bisimilarity. The reason why it is here considered less important is that it
relies on something external to the model itself, namely an lts for strategies,
constructed in an ad hoc way. Considering that a process calculus is defined
by its reduction semantics, rather than by its possibly numerous ltss, testing
equivalences, which rely on the former, are more intrinsic than various forms of
bisimilarity.

Now, why consider fair testing among the many testing equivalences? First of
all, let us mention that we could probably generalise our result to any reasonable
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Full abstraction for fair testing in CCS 3

testing equivalence. Any testing equivalence relies on a ‘testing predicate’ K.
E.g., for fair testing, it is the set of processes from which any unsuccessful,
finite reduction sequence extends to a successful one. We conjecture that for
any other predicate K1, if K1 is stable under weak bisimilarity, i.e, P » Q P K1

implies P P K1, then we may interpret the resulting equivalence in terms of
strategies, and get a fully abstract semantics. However, this paper is already quite
complicated, and pushes generalisation rather far in other respects (see below).
We thus chose to remain concrete about the considered equivalence. It was then
natural to consider fair testing, as it is both one of the most prominent testing
equivalences, and one of the finest. It was introduced independently by Natarajan
and Cleaveland [30], and by Brinksma et al. [3, 33] (under the name of should
testing in the latter paper), with the aim of reconciling the good properties of
observation congruence [29] w.r.t. divergence, and the good properties of previous
testing equivalences [7] w.r.t. choice. Typically, a.b ` a.c and a.pb ‘ cq (where
` denotes guarded choice and ‘ denotes internal choice) are not observation
congruent, which is perceived as excessive discriminating power of observation
congruence. Conversely, p!τq | a and a are not must testing equivalent, which
is perceived as excessive discriminating power of must testing equivalence. Fair
testing rectifies both defects, and has been the subject of further investigation,
as summarised, e.g., in Cacciagrano et al. [5].

Overview We now give a bit more detail on the contents, warning the reader
that this paper is only an extended abstract, and that more technical details may
be found in a (submitted) long version [18]. After recalling the game from HP in
Section 2, as well as strategies and our semantic fair testing equivalence „f in
Section 3, we prove that the translation L´M of HP from CCS to strategies is such
that P „f,s Q iff LP M „f LQM, where „f,s is standard fair testing equivalence
(Theorem 4.6).

Our first attempts at proving this where obscured by easy, yet lengthy case
analyses over moves. This prompted the search for a way of factoring out what
holds ‘for all moves’. The result is the notion of playground, surveyed in Sec-
tion 4.1. It is probably not yet in a mature state, and hopefully the axioms will
simplify in the future. We show how the game recalled above organises into such
a playground DCCS . We then develop the theory in Section 4.2, defining, for any
playground D, two ltss, TD and SD, of process terms and strategies, respectively,
over an alphabet FD. We then define a map J´K : TD Ñ SD between them, which
we prove is a strong bisimulation.

Returning to the case of CCS in Section 4.3, we obtain that SDCCS indeed
has strategies as states, and that „f may be characterised in terms of this lts.
Furthermore, unfolding the definition of TDCCS , we find that its states are terms

in a language containing CCS. So, we have maps obpCCS q
θ

ãÝÑ obpTDCCS q
J´K
ÝÝÑ

obpSDCCS q, where ob takes the set of vertices, and with J´K ˝ θ “ L´M. Now, a
problem is that CCS and the other two are ltss on different alphabets, respec-

tively A and FDCCS . We thus define morphisms A
ξ

ÐÝ L
χ

ÝÑ FDCCS and obtain
by successive change of base (pullback when rewinding an arrow, postcomposi-
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4 T. Hirschowitz

tion when following one) a strong bisimulation J´K : TA

DCCS Ñ S
A

DCCS over A. We
then prove that θ, viewed as a map obpCCS q ãÑ obpTA

DCCS q, is included in weak
bisimilarity, which yields for all P , P »A LP M (Corollary 4.5). Finally, drawing
inspiration from Rensink et al. [33], we prove that CCS and S

A

DCCS both have
enough A-trees, in a suitable sense, and that this, together with Corollary 4.5,
entails the main result.

Related work Trying to reconcile two mainstream approaches to denotational
semantics, we have designed a (first version of a) general framework aiming at
an effective theory of programming languages. Other such frameworks exist [31,
32, 36, 10, 4, 2, 17, 1], but most of them, with the notable exception of Kleene
coalgebra, attempt to organise the traditional techniques of syntax with variable
binding and reduction rules into some algebraic structure. Here, as in Kleene
coalgebra, syntax and its associated lts are derived notions. Our approach may
thus be seen as an extension of Kleene coalgebra to an innocent/multi-player
setting, yet ignoring quantitative aspects.

In another sense of the word ‘framework’, recent work of Winskel and col-
leagues [34] investigates a general notion of concurrent game, based on earlier
work by Melliès [26]. In our approach, the idea is that each programming lan-
guage is interpreted as a playground, and that morphisms of playgrounds denote
translations between languages. Winskel et al., instead, construct a (large) bicat-
egory, into which each programming language should embed. Beyond this crucial
difference, both approaches use presheaves and factorisation systems, and con-
tain a notion of innocent, concurrent strategy. The precise links between the
original notion of innocence, theirs, and ours remain to be better investigated.

Melliès’s work [27], although in a deterministic and linear setting, incorpo-
rates some ‘concurrency’ into plays by presenting them as string diagrams. Our
innocentisation procedure further bears some similarity with Harmer et al.’s [14]
presentation of innocence based on a distributive law. Hildebrandt’s approach to
fair testing equivalence [16] uses closely related techniques, e.g., presheaves and
sheaves — indeed, our innocence condition may be viewed as a sheaf condition.
However, (1) his model falls in the aforementioned category of presheaf models
for which parallel composition is a complex operation; and (2) he uses sheaves
to correctly incorporate infinite behaviour in the model, which is different from
our notion of innocence. Finally, direct inspiration is drawn from Girard [12],
one of whose aims is to bridge the gap between syntax and semantics.

Perspectives We plan to adapt our semantics to more complicated calculi like
π, the Join and Ambients calculi, functional calculi, possibly with extra fea-
tures (e.g., references, data abstraction, encryption), with a view to eventually
generalising it. Preliminary investigations already led to a playground for π,
whose adequacy remains to be established. More speculative directions include
(1) defining a notion of morphisms for playgrounds, which should induce trans-
lations between strategies, and find sufficient conditions for such morphisms to
preserve, resp. reflect testing equivalences; (2) generalising playgrounds to apply
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Full abstraction for fair testing in CCS 5

them beyond programming language semantics; in particular, preliminary work
shows that playgrounds easily account for cellular automata; this raises the ques-
tion of how morphisms of playgrounds would compare with existing notions of
simulations between cellular automata [8]; (3) trying and recast the issue of
deriving transition systems (ltss) from reductions [35] in terms of playgrounds.

Notation Set is the category of sets; set is a skeleton of the category of finite
sets, namely the category of finite ordinals and arbitrary maps between them;
ford is the category of finite ordinals and monotone maps between them. For any
category C, pC “ rCop , Sets denotes the category of presheaves on C, while pCf “
rCop , sets and uC “ rCop , fords respectively denote the categories of presheaves of
finite sets and of finite ordinals. One should distinguish, e.g., ‘presheaf of finite
sets’ Cop Ñ set from ‘finite presheaf of sets’ F : Cop Ñ Set. The latter means
that the disjoint union

ř
cPobpCq F pcq is finite. Throughout the paper, any finite

ordinal n is seen as t1, . . . , nu (rather than t0, . . . , n ´ 1u).
The notion of lts that we’ll use here is a little more general than the usual

one, but this does not change much. We thus refer to the long version for details.
Let us just mention that we work in the category Gph of reflexive graphs, and
that the category of ltss over A is for us the slice category Gph{A. Ltss admit
a standard change of base functor given by pullback, and its left adjoint given
by postcomposition. Given any lts p : G Ñ A, an edge in G is silent when it is
mapped by p to an identity edge. This straightforwardly yields a notion of weak
bisimilarity over A, which is denoted by »A.

Our (infinite) CCS terms are coinductively generated by the typed grammar

Γ $ P Γ $ Q

Γ $ P |Q

Γ, a $ P

Γ $ νa.P

. . . Γ $ Pi . . .

Γ $
ř

iPnαi.Pi

pn P Nq ,

where αi is either a, a, for a P Γ , or ♥. The latter is a ‘tick’ move used in the
definition of fair testing equivalence. As a syntactic facility, we here understand
Γ as ranging over N, i.e., the free names of a process always are 1 . . . n for some
n. E.g., Γ, a denotes just n ` 1, and a P Γ means a P t1, . . . , Γ u.

Definition 1.1. Let A be the reflexive graph with vertices given by finite ordi-
nals, edges Γ Ñ Γ 1 given by H if Γ ‰ Γ 1, and by Γ ` Γ ` tid ,♥u otherwise,
id : Γ Ñ Γ being the identity edge on Γ . Elements of the first summand are
denoted by a P Γ , while elements of the second summand are denoted by a.

We view terms as a graph CCS over A with the usual transition rules. The graph
A only has ‘endo’-edges; some ltss below do use more general graphs.

2 Recalling the game

2.1 Positions, Moves, and Plays

In this section, we define plays in our game. For lack of space, we cannot be
completely formal. A formal definition, with a gentle introduction to the required
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6 T. Hirschowitz

techniques, may be found in HP (Section 3). Here is a condensed account. We
start by defining a category C. Then, positions in our game are defined to be
particular finite presheaves in pCf . Moves in our game are defined as certain

cospans X
s

ÝÑ M
t

ÐÝ Y in pCf , where t indicates that Y is the initial position of
the move, while s indicates that X is the final position. Plays are then defined
as finite composites of moves in the bicategory CospanppCf q of cospans in pCf . By
construction, positions and plays form a subbicategory, called DCCS

v .

In order to motivate the definition of our base category C, recall that (di-
rected, multi) graphs may be seen as presheaves over the category freely gener-
ated by the graph with two objects ‹ and r1s, and two edges s, t : ‹ Ñ r1s. Any
presheaf G represents the graph with vertices in Gp‹q and edges in Gr1s, the
source and target of any e P Gr1s being respectively Gpsqpeq and Gptqpeq. A way
to visualise how such presheaves represent graphs is to compute their categories
of elements [25]. Recall that the category of elements

ş
G for a presheaf G over

C has as objects pairs pc, xq with c P C and x P F pcq, and as morphisms pc, xq Ñ
pd, yq all morphisms f : c Ñ d in C such that F pfqpyq “ x. This category admits

a canonical functor πF to C, and F is the colimit of the composite
ş
F

πFÝÝÑ C
y

ÝÑ pC
with the Yoneda embedding. Hence, e.g., the category of elements for the repre-
sentable presheaf over r1s is the poset p‹, sq Ñ pr1s, id r1sq Ð p‹, tq, which could
be pictured as , thus recovering some graphical intuition.

We now define our base category C. Let us first give the raw definition, and
then explain. C is freely generated from the graph G, defined as follows, plus
some equations. As objects, G has (1) an object ‹, (2) an object rns for all n P N,
(3) objects on,i (output), ιn,i (input), νn (channel creation), πl

n (left fork), πr
n

(right fork), πn (fork), ♥n (tick), τn,i,m,j (synchronisation), for all i P n, j P
m,n,m P N. G has edges, for all n, (1) sn1 , . . . , s

n
n : ‹ Ñ rns, (2) sc, tc : rns Ñ c,

for all c P tπl
n, π

r
n,♥nu Y pYiPnton,i, ιn,iuq, (3) rn ` 1s

sνn
ÝÝÑ νn

tνn
ÐÝÝ rns, (4)

πl
n

ln

ÝÑ πn
rn

ÐÝ πr
n, on,i

ǫn,i,m,j

ÝÝÝÝÝÑ τn,i,m,j
ρn,i,m,j

ÐÝÝÝÝÝ ιm,j , for all i P n, j P m. In
the following, we omit superscripts when clear from context. As equations, we
require, for all n, m, i P n, and j P m, (1) sc˝sni “ tc˝sni , (2) s

νn ˝sn`1
i “ tνn ˝sni ,

(3) l ˝ t “ r ˝ t, (4) ǫ ˝ t ˝ si “ ρ ˝ t ˝ sj .

p‹, s1q p‹, s2q p‹, s3q

pr3s, id r3sq

In order to explain this seemingly arbitrary def-
inition, let us compute a few categories of elements
for representable presheaves. Let us start with an
easy one, that of r3s (we implicitly identify any c P C

with yc). An easy computation shows that it is the
poset pictured above. We will think of it as a posi-
tion with one player pr3s, id r3sq connected to three
channels, and draw it as above, where the bullet represents the player, and cir-
cles represent channels. (The graphical representation is slightly ambiguous, but
nevermind.) In particular, elements over r3s represent ternary players, while el-
ements over ‹ represent channels. Positions are finite presheaves empty except
perhaps on ‹ and rns’s. Let DCCS

h be the subcategory of pCf consisting of positions
and monic arrows between them.
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Full abstraction for fair testing in CCS 7

A more difficult category of elements is that of π2. It is the poset generated
by the graph on the left:

lss1 “ rss1 ls rs lss2 “ rss2

l idπ2
r

lts1 “ rts1 lt “ rt lts2 “ rts2

.

We think of it as a binary player (lt) forking into two players (ls and rs), and
draw it as on the right. The vertical edges on the outside are actually identities:
the reason we draw separate vertices is to identify the top and bottom parts of
the picture as the respective images of both legs of the following cospan. First,
consider the inclusion r2s | r2s ãÑ π2: its domain is any pushout of rs1, s2s : p‹ `
‹q Ñ r2s with itself, i.e., the position consisting of two binary players sharing
their channels; and the inclusion maps it to the top part of the picture. Similarly,
we have a map r2s ãÑ π2 given by the player lt and its channels (the bottom
part). The cospan r2s | r2s Ñ π2 Ð r2s is called the local fork move of arity 2.

For lack of space, we cannot spell out all such cat-
egories of elements and cospans. We give pictorial de-
scriptions for pm, j, n, iq “ p3, 3, 2, 1q of τm,j,n,i on the
right and of πl

n, π
r
n, om,j , ιn,i, ♥n, and νn below:

♥

.

In each case, the representable is the middle object of a cospan determined
by the top and bottom parts of the picture. E.g., for synchronisation we have

rms j|i rns
s

ÝÑ τm,j,n,i
t

ÐÝ rms j|i rns, where rms j|i rns denotes the position X with
one m-ary player x, one n-ary player y, such that Xpsjqpxq “ Xpsiqpyq. Note
that there is a crucial design choice in defining the legs of these cospans, which
amounts to choosing initial and final positions for our moves.

I

X M Y

(1)
These cospans altogether form the set of local

moves, and are the ‘seeds’ for (global) moves, in the
following sense. Calling an interface any presheaf
consisting only of channels, local moves may be equipped with a canonical in-

terface, consisting of the channels of their initial position. If X
s

ÝÑ M
t

ÐÝ Y is a
local move (with final position X), and I is its canonical interface, we obtain a

commuting diagram (1) in pCf (with all arrows monic). For any morphism I Ñ Z

to some position Z, pushing I Ñ X , I Ñ M , and I Ñ Y along I Ñ Z yields,
by universal property of pushout, a new cospan, say X 1 Ñ M 1 Ð Y 1. Letting
(global) moves be all cospans obtained in this way, and plays be all composites

of moves in CospanppCf q, we obtain, as promised a subbicategory D
CCS

v .
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8 T. Hirschowitz

“ “ (2)

Passing from local to global moves
allows moves to occur in larger po-
sitions. Furthermore, we observe that
plays feature some concurrency. For in-
stance, composing two global moves as
on the right, we obtain a play in which the order of appearance of moves is no
longer visible. In passing, this play embeds into a synchronisation, but is not one,
since the input and output moves are not related. This play may be understood
as each player communicating with the outside world. We conclude with a useful
classification of moves.

Definition 2.1. A move is full iff it is neither a left nor a right fork. We call
F the graph of global, full moves.

Intuitively, a move is full when its final position contains all possible avatars of
involved players.

3 Behaviours, strategies, and fair testing

3.1 Behaviours

U U 1

X X 1

Recall from HP the category E whose objects are maps
U Ð X in pC, such that there exists a play Y Ñ U Ð X ,
i.e., objects are plays, where we forget the final position.
Its morphisms pU Ð Xq Ñ pU 1 Ð X 1q are commuting
diagrams as on the right with all arrows monic. Morphisms
U Ñ U 1 in E represent extensions of U , both spatially (i.e., embedding into a
larger position) and dynamically (i.e., adding more moves).

We may relativise this category E to a particular position X , yielding a
category EpXq of plays on X : take the fibre overX of the functor cod: E Ñ DCCS

h

mapping any play U Ð X to its initial position X . The objects of EpXq are just
plays pU Ð Xq on X , and morphisms are morphisms of plays whose lower border
is idX . This leads to a category of ‘naive’ strategies, called behaviours.

Definition 3.1. The category BX of behaviours on X is the category {EpXq
f

of
presheaves of finite sets on EpXq.

Behaviours suffer from the deficiency of allowing unwanted cooperation between
players. HP (Example 12) exhibits a behaviour where players choose with whom
they synchronise, which clearly is not allowed in CCS.

3.2 Strategies

To rectify this, we consider the full subcategory V of E consisting of views,
i.e., compositions of basic local moves. We relativise views to a position X , as
follows. Let, for any n P N, rns denote the single n-ary player, i.e., a single player
connected to n distinct channels. Players of X are in 1-1 correspondence with
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Full abstraction for fair testing in CCS 9

pairs pn, xq, with x : rns Ñ X in DCCS

h . Relativisation of V to X is given by the
category VX with as objects all pairs pV, xq, where x : rns Ñ X , and V is a view
with initial position rns. Morphisms are induced by those of E.

Definition 3.2. The category SX of strategies on X is the category ŊVX of
presheaves of finite ordinals on VX .

V
op
X E

op
X EpXqop

ford set,

S

i

S1

j

S

This rules out undesired behaviours.
Recall from HP how to map strategies
to behaviours: let first EX be the cat-
egory obtained as VX from all plays
instead of just views. Then, starting from a strategy S, let S1 be obtained
by right Kan extension of i ˝ S (by V

op
X ãÑ E

op
X being full and faithful), and

let S “ S1 ˝ j. The assignment S ÞÑ S extends to a full and faithful functor
p´q : SX Ñ BX . Furthermore, p´q admits a left adjoint, which we call inno-
centisation, maping naive strategies (behaviours) to innocent ones. By standard
results [24], we have for any S: SpUq “

ş
vPVX

SpvqEXpv,Uq. Equivalently, SpUq is

a limit of pVX{Uqop
dom

ÝÝÝÑ V
op
X

S
ÝÑ ford ãÑ set.

3.3 Decomposition: a syntax for strategies

Our definition of strategies is rather semantic in flavour. Indeed, presheaves are
akin to domain theory. However, they also lend themselves well to a syntactic
description. First, it is shown in HP that strategies on an arbitrary position X

are in 1-1 correspondence with families of strategies indexed by the players of X .
Recall that rns is the position consisting of one n-ary player, and that players of
X may be defined as elements of PlpXq “

ř
nPN DCCS

h prns, Xq.

Proposition 3.3. We have SX –
ś

pn,xqPPlpXq Srns. For any S P SX , we denote

by Spn,xq the component corresponding to pn, xq P PlpXq under this isomorphism.

This result yields a construction letting two strategies interact along an interface,
i.e., a position consisting only of channels. This will be the basis of our semantic
definition of fair testing equivalence. Consider any pushout Z of X Ð I Ñ Y

where I is an interface. We have

Corollary 3.4. SZ – SX ˆ SY .

Proof. We haveVZ – VX`VY , and conclude by universal property of coproduct.

We denote by rS, T s the image of pS, T q P SX ˆ SY under this isomorphism.
So, strategies over arbitrary positions may be decomposed into strategies over

‘typical’ players rns. Let us now explain that strategies over such players may
be further decomposed. For any strategy S on rns and basic move b : rn1s Ñ rns,
let the residual S ¨ b of S after b be the strategy playing like S after b, i.e., for
all v P Vrn1s, pS ¨ bqpvq “ Spb ‚ vq, where ‚ denotes composition in DCCS

v . S is
almost determined by its residuals. The only information missing from the S ¨b’s
to reconstruct S is the set of initial states and how they relate to the initial
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10 T. Hirschowitz

states of each pS ¨ bq. Thus, for any position X , let idv
X denote the identity play

on X (i.e., nothing happens). For any initial state σ P Spid rnsq, let S|σ be the
restriction of S to states derived from σ, i.e., for all v, those σ1 P Spvq which are
mapped to σ under the restriction Sp!q : Spvq Ñ Spid rnsq. S is determined by its
set Spid rnsq of initial states, plus the function pσ, bq ÞÑ pS|σ ¨ bq. Since Spid rnsq is
a finite ordinal m, we have for all n:

Theorem 3.5. Srns –
ř

mPNp
ś

b : rn1sÑrns Srn1sq
m – p

ś
b : rn1sÑrns Srn1sq

‹.

This result may be understood as saying that strategies form a fixpoint of a cer-
tain (polynomial [23]) endofunctor of Set{I, where I is the set of ‘typical’ players
rns. This may be strengthened to show that they form a terminal coalgebra, i.e,
that they are in bijection with infinite terms in the following typed grammar,
with judgements n $D D and n $ S, where D is called a definite prestrategy
and S is a strategy:

. . . nb $ Sb . . . p@b : rnbs Ñ rns P rBsnq

n $D xpSbqbPrBsny

. . . n $D Di . . . p@i P mq

n $ ‘iPmDi

pm P Nq,

where rBsn denotes the set of all isomorphism classes of basic moves from rns.
We need to use isomorphism classes here, because strategies may not distinguish
between different, yet isomorphic basic moves. This achieves the promised syn-
tactic description of strategies. We may readily define the translation of CCS
processes, coinductively, as follows. For processes with channels in Γ , we define

L
ř

iPn αi.PiM “ xb ÞÑ ‘tiPn|b“LαiMuLPiMy
Lνa.P M “ xνΓ ÞÑ LP M, ÞÑ Hy
LP | QM “ xπl

Γ ÞÑ LP M, πr
Γ ÞÑ LQM, ÞÑ Hy

LaM “ ιΓ,a
LaM “ oΓ,a
L♥M “ ♥Γ .

E.g., a.P ` a.Q ` b̄.R is mapped to xιΓ,a ÞÑ pLP M ‘ LQMq, oΓ,b ÞÑ LRM, ÞÑ Hy.

3.4 Semantic fair testing

We may now recall our semantic analogue of fair testing equivalence.

Definition 3.6. Closed-world moves are (the global variants of) ν,♥,πn, and
τn,i,m,j. A play is closed-world when it is a composite of closed-world moves.

Let a closed-world play be successful when it contains a ♥ move. Let then
KKZ denote the set of behaviours B such that for any unsuccessful, closed-world
play U Ð Z and σ P BpUq, there exists f : U Ñ U 1, with U 1 closed-world and
successful, and σ1 P BpU 1q such that Bpfqpσ1q “ σ. Finally, let us say that a
triple pI, h, Sq, for any h : I Ñ X and strategy S P SX , passes the test consisting
of a morphism k : I Ñ Y of positions and a strategy T P SY iff rS, T s P KKZ ,
where Z is the pushout of h and k. Let SKK denote the set of all such pk, T q.

Definition 3.7. For any h : I Ñ X, h1 : I Ñ X 1, S P SX , and S1 P SX1 ,
pI, h, Sq „f pI, h1, S1q iff pI, h, SqKK “ pI, h1, S1qKK.
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Full abstraction for fair testing in CCS 11

This yields an equivalence relation, analogous to standard fair testing equiva-
lence, which we hence also call fair testing equivalence.

We have defined a translation L´M of CCS processes to strategies, which raises
the question of whether it preserves or reflects fair testing equivalence. The rest
of the paper is devoted to proving that it does both.

4 Playgrounds and main result

4.1 Playgrounds: a theory of individuality and atomicity

X X 1 X2

Y Y 1 Y 2

Z Z 1 Z2,

h

u

h1

u1

k

k1

u2

v

h2

v1

k2

v2

α α1

β β1

We start by trying to give an idea of the
notion of playground. To start with, we or-
ganise the game into a (pseudo) double cat-
egory [13, 11]. This is a weakening of Ehres-
mann’s double categories [9], where one direc-
tion has non strictly associative composition.
Although we consider proper pseudo double
categories, we often may treat them safely as double categories. A pseudo dou-
ble category D consists of a set obpDq of objects, shared by two categories Dh

and Dv. Dh is called the horizontal category of D, and Dv is the vertical cat-
egory. Composition in Dh is denoted by ˝, while we use ‚ for Dv. D is fur-
thermore equipped with a set of double cells α, which have vertical, resp. hor-
izontal, domain and codomain, denoted by domv pαq, codvpαq, domhpαq, and
codhpαq. We picture this as, e.g., α above, where u “ domhpαq, u1 “ codhpαq,
h “ domvpαq, and h1 “ codv pαq. D is furthermore equipped with operations for
composing double cells: ˝ composes them along a common vertical morphism,
‚ composes along horizontal morphisms. Both vertical compositions (of mor-
phisms and double cells) may only be associative up to coherent isomorphism.
The full axiomatisation is given by Garner [11], and we here only mention the
interchange law, which says that the two ways of parsing the above diagram
coincide: pβ1 ˝ βq ‚ pα1 ˝ αq “ pβ1

‚ α1q ˝ pβ ‚ αq.

Example 4.1. Returning to the game, we have seen that positions are the ob-
jects of the category DCCS

h , whose morphisms are embeddings of positions. But
positions are also the objects of the bicategory DCCS

v , whose morphisms are plays.

X X 1

U V

Y Y 1

h

k

l

s s1

t t1

It should seem natural to define a pseudo double category
structure with double cells given by commuting diagrams as on
the right in pC. Here, Y is the initial position and X is the final
one; all arrows are mono. This indeed forms a pseudo double
category DCCS . Furthermore, for any double categoryD, let DH

be the category with objects all morphisms of Dv, and with
morphisms u Ñ u1 all double cells α such that domhpαq “ u and codhpαq “ u1.
A crucial feature of DCCS is that the canonical functor codv : DH Ñ Dh mapping
any such α to codv pαq is a Grothendieck fibration [21]. This means that one
may canonically ‘restrict’ a play, say u1 : X 1 Ñ Y 1, along a horizontal morphism
h1 : Y Ñ Y 1, and obtain a universal cell as α above, in a suitable sense.
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12 T. Hirschowitz

d Y

dy,M X

y

vy,M M

yM

αy,M

Playgrounds are pseudo double categories with ex-
tra data and axioms, the first of which is that codv
should be a fibration. To give a brief idea of further
axioms, a playground D is equipped with a set of ob-
jects I, called individuals, which correspond to our ‘typical’ players above. Let
PlpXq “

ř
dPIDhpd,Xq denote the set of players of X . It also comes with classes

F and B of full, resp. basic moves; and every play (i.e., vertical morphism) is
assumed to admit a decomposition into moves in FYB (hence atomicity). Basic
moves are assumed to have individuals as both domain and codomain, and views
are defined to be composites of basic moves. The crucial axiom for innocence
to behave well assumes that, for any position Y and player y : d Ñ Y , there
exists a cell αy,M as above, with vy,M a view, which is unique up to canonical
isomorphism of such. Intuitively: any player in the final position of a play has
an essentially unique view of the play. A last, sample axiom shows how some se-
quentiality is enforced, which is useful to tame the concurrency observed in (2).
It says that any double cell as in the center below, where b is a basic move and
M is any move, decomposes in exactly one of the forms on the left and right:

A X

B Y

C Z

α1

α2

ø

A X

B Y

C Z

h

w

b

u

M

k

α

ù

A X

B Y

C Z.

α1

α2

The idea is that, C being an individual, if M has a non-trivial restriction to C,
then b must be one of its views. Again, for the formal definition, see [18].

Proposition 4.2. DCCS forms a playground (basic moves being the local ones).

4.2 Syntaxes and labelled transition systems

Notions of residuals and restrictions defined above for CCS are easily generalised
to arbitrary playgrounds. They lead to the exact same syntax as in the concrete
case (below Theorem 3.5). They further yield a first, naive lts over full moves

for strategies. The intuition is that there is a transition S
M

ÝÑ S1, for any full
move M , when S ¨ M “ S1. (Residuals S ¨ M are here defined analogously
to the case of basic moves S ¨ b above.) An issue with this lts is that S ¨ M
may have several possible initial states, and we have seen that it makes more
sense to restrict to a single state before taking residuals. We thus define our lts
SD to have as vertices pairs pX,Sq of a position X and a definite strategy S,
i.e., a strategy with exactly one initial state (formally, Spd,xqpiddq “ 1 for all
pd, xq P PlpXq — recalling that idd is an (initial) object in Vd). We then say

that there is a transition pX,Sq
M

ÝÑ pX 1, S1q for any full move M : X 1 Ñ X ,
when S1 “ pS ¨ Mq|σ1 , for some initial state σ1 of S ¨ M .
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Full abstraction for fair testing in CCS 13

Example 4.3. Consider a strategy of the shape S “ xπr
n ÞÑ S1, π

l
n ÞÑ S2, ÞÑ Hy

on rns, with definite S1 and S2. There is a πn transition to the position with
two n-ary players x1 and x2, equipped with S1 and S2, respectively. If now S1

and S2 are not definite, any πn transition has to pick initial states σ1 P S1pid rnsq

and σ2 P S2pid rnsq, i.e., S
πnÝÝÑ rpS1q|σ1

s | rpS2q|σ2
s. Here, we use a shorthand

notation for pairs pX,Sq, defined as follows. First, for any strategy S over rns
and position X with exactly one n-ary player x and names in Γ , we denote by
Γ $ rx : Sspa1, . . . , anq the pair pX,Sq, where ai “ Xpsiqpxq, for all i P n. If
now X has several players, say x1, . . . , xp, of respective arities n1, . . . , np, and
S1, . . . , Sp are strategies of such arities, we denote by Γ $ rx1 : S1spa11, . . . , a

1
n1

q |
. . . | rxp : Spspap1, . . . , a

p
np

q the pair pX, rS1, . . . , Spsq. When they are irrelevant,

we often omit Γ , the xj ’s, and the a
j
i ’s, as in our example.

. . . dx $ Tx . . .

d $ MxpTxqxPPlpMqy

. . . di $ Ti . . . p@i P nq

d $
ř

iPnMi.Ti

Beyond the one for strategies, there is another syn-
tax one can derive from any playground. Instead of re-
lying on basic moves as before, one now relies on full
moves. Thinking of full moves as inference rules (e.g.,
in natural deduction), the premises of the rule for any
full M : X Ñ Y should be those players pdx, xq of X whose view through M is
non-trivial, i.e., is a basic move. We call this set of players PlpMq. The natural
syntax rule is thus the first one above (glossing over some details), which defines
process terms T . We add a further rule for guarded sum allowing to choose be-
tween several moves. One has to be a little careful here, and only allow moves
M : X Ñ Y such that PlpMq is a singleton. This yields the second rule above,
where n P N, and @i P n, Mi is such a move and di is the arity of the unique
element of PlpMiq. Calling Td the set of infinite terms for this syntax, there is
a natural translation map J´K : Td Ñ Sd to strategies, for all d P I, which looks
a lot like L´M, and an lts TD, whose vertices are pairs pX,T q of a position X ,
with T P

ś
d,xPPlpXq Td. The main result on playgrounds is

Theorem 4.4. The map J´K : TD Ñ SD is a functional, strong bisimulation.

4.3 Change of base and main result

The lts SDCCS obtained for DCCS is much too fine to be relevant for bisimilarity
to make behavioural sense. E.g., the translations of a|b and b|a are not bisimilar.
Indeed, labels, i.e., full moves in FDCCS , bear the information of which player is
involved in the transition. So both strategies have a πΓ translation to a position
with two Γ -ary players, say x1 and x2. But then, a | b has a transition where x1

plays an input on a, which b | a cannot match. Refining the above notation, and

omitting L´M, we may write the former transitions as ra | bs
πΓÝÝÑ ras | rbs

x1,ιΓ,a
ÝÝÝÝÑ

r0s | rbs. There is another problem with this lts, namely that there are undue

transitions. E.g., we have rνa.as
ν0ÝÑ ras

ιpaq,a
ÝÝÝÑ 0. The transition system does not

yet take privacy of channels into account.
Let us first rectify the latter deficiency. To this end, we pull back our lts

SDCCS Ñ FDCCS along a morphism of graphs L Ñ FDCCS defined as follows. Let L
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14 T. Hirschowitz

have interfaced positions as vertices, i.e., morphisms h : I Ñ X from an interface
to a position. I specifies the public channels, and hence we let edges h Ñ h1 be
commuting diagrams of the shape (1), where M may be any full move (X being
the final position), except inputs and outputs on a channel outside the image
of I. We then straightforwardly define χ : L Ñ FDCCS to map h to X and any
diagram above to M . The pullback S

L

DCCS Ñ L of SDCCS along χ is rid of undue
communications on private channels.

To rectify the other deficiency mentioned above, recalling from Definition 1.1
that A is the alphabet for CCS, we define a morphism ξ : L Ñ A by mapping
pI Ñ Xq to its set Ip‹q of channels, and any M to (1) ♥ if M is a tick move, (2)
id if M is a synchronisation, a fork, or a channel creation, (3) a if M is an input
on a P Ip‹q, (4) a if M is an output on a P Ip‹q. (Positions are formally defined
as presheaves to set, hence channels directly form a finite ordinal number.) It is
here crucial to have restricted attention to L beforehand, otherwise we would not
know what to do with communications on private channels. Let SA

DCCS “ ξ!pS
L

DCCS q
be the post-composition of SL

DCCS Ñ L with ξ.
The obtained lts S

A

DCCS Ñ A is now ready for our purposes. Proceeding sim-
ilarly for the lts TDCCS of process terms, we obtain a strong, functional bisimu-
lation J´K : obpTA

DCCS q Ñ obpSA
DCCS q over A. We then prove that θ : obpCCS q ãÑ

obpTA

DCCS q is included in weak bisimilarity over A, and, easily, that L´M “ J´K˝θ.

Corollary 4.5. For all P , P »A LP M.

Furthermore, we prove that „f coincides with the standard, lts-based definition
of fair testing, i.e., P „f,s Q iff for all sensible T , pP | T P Ksq ô pQ | T P Ksq,
where P P Ks iff any ♥-free reduction sequence P ñ P 1 extends to one with
♥. To obtain our main result, we finally generalise an observation of Rensink
and Vogler [33], which essentially says that for fair testing equivalence in CCS,
it is sufficient to consider a certain class of tree-like tests, called failures. We
first slightly generalise the abstract setting of De Nicola and Hennessy [7] for
testing equivalences, e.g., to accomodate the fact that strategies are indexed
over interfaces. This yields a notion of effective graph. We then show that, for
any effective graph G over an alphabet A, the result on failures goes through,
provided G has enough A-trees, in the sense that, up to mild conditions, for
any tree t over A, there exists x P G such that x »A t. Consequently, for any
relation R : G G1 between two such effective graphs with enough A-trees, if R
is included in weak bisimilarity over A, then R preserves and reflects fair testing
equivalence. We thus obtain our main result:

Theorem 4.6. For any Γ P N, let IΓ be the interface consisting of Γ channels,
and hΓ : IΓ Ñ rΓ s be the canonical inclusion. For any CCS processes P and Q

over Γ , we have P „f,s Q iff pIΓ , hΓ , LP Mq „f pIΓ , hΓ , LQMq.

Remark 4.7. Until now, we have considered arbitrary, infinite CCS processes.
Let us now restrict ourselves to recursive processes (e.g., in the sense of HP).
We obviously still have that LP M „f LQM implies P „f,s Q. The converse is
less obvious and may be stated in very simple terms: suppose you have two
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Full abstraction for fair testing in CCS 15

recursive CCS processes P and Q and a test process T , possibly non-recursive,
distinguishing P from Q; is there any recursive T 1 also distinguishing P from Q?
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Coalgebraic up-to techniques
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1 The concrete case of finite automata

A simple algorithm for checking language equivalence of finite automata con-
sists in trying to compute a bisimulation that relates them. This is possible
because language equivalence can be characterised coinductively, as the largest
bisimulation.

More precisely, consider an automaton 〈S, t, o〉, where S is a (finite) set of
states, t : S → P(S)A is a non-deterministic transition function, and o : S → 2
is the characteristic function of the set of accepting states. Such an automation
gives rise to a determinised automaton 〈P(S), t], o]〉, where t] : P(S) → P(S)A

and o] : P(S) → 2 are the natural extensions of t and o to sets. A bisimulation
is a relation R between sets of states such that for all sets of states X,Y , X R Y
entails:

1. o](X) = o](Y ), and
2. for all letter a, t]a(X) R t]a(Y ).

The coinductive characterisation is the following one: two sets of states recognise
the same language if and only if they are related by some bisimulation.

Taking inspiration from concurrency theory [4,5], one can improve this proof
technique by weakening the second item in the definition of bisimulation: given
a function f on binary relations, a bisimulation up to f is a relation R between
states such that for all sets X,Y , X R Y entails:

1. o](X) = o](Y ), and
2. for all letter a, t]a(X) f(R) t]a(Y ).

For well-chosen functions f , bisimulations up to f are contained in a bisimula-
tion, so that the improvement is sound. So is the function mapping each relation
to its equivalence closure. In this particular case, one recover the standard al-
gorithm by Hopcroft and Karp [2]: two sets can be skipped whenever they can
already be related by a sequence of pairwise related states.

One can actually do more, by considering the function c mapping each rela-
tion to its congruence closure: the smallest equivalence relation which contains

? Appeared as an invited talk in Proc. CALCO’13, vol. 8089 of LNCS, pages 34-35,
Springer, 2013. Work partially funded by the PiCoq and PACE projects, ANR-10-
BLAN-0305 and ANR-12IS02001

damien.pous@ens-lyon.fr


the argument, and which is compatible w.r.t. set union:

X c(R) X

Y c(R) X

X c(R) Y

X c(R) Y Y c(R) Z

X c(R) Z

X R Y

X c(R) Y

X1 c(R) Y1 X2 c(R) Y2

X1 ∪X2 c(R) Y1 ∪ Y2
.

This is how we obtained HKC [1], an algorithm that can be exponentially faster
than Hopcroft and Karp’s algorithm or more recent antichain algorithms [7].

2 Generalisation to coalgebra

The above ideas generalise nicely, using the notion of λ-bialgebras [3].
Let T be a monad, F an endofunctor, and λ a distributive law TF ⇒ FT ,

a λ-bialgebra is a triple 〈X,α, β〉, where 〈X,α〉 is a F -coalgebra, 〈X,β〉 a T -
algebra, and α ◦ β = Fβ ◦ λX ◦ Tα. Given such a λ-bialgebra, FT -algebra
generalise non-deterministic automata: take X 7→ 2×XA for F , and X 7→ PfX
for T . Determinisation through the powerset construction can be generalised as
follows [6], when the functor F has a final coalgebra 〈Ω,ω〉:

X

α

��

η
// TX

α]
{{

! // Ω

ω

��

FTX
F ! // FΩ

Bisimulations up-to can be expressed in a natural way in such a framework.
One can in particular consider bisimulations up to congruence, where the con-
gruence is taken w.r.t. the monad T : the fact that λ is a distributive law ensures
that this improvement is always sound.
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CARTESIAN CLOSED 2-CATEGORIES AND PERMUTATION
EQUIVALENCE IN HIGHER-ORDER REWRITING

TOM HIRSCHOWITZ

Abstract. We propose a semantics for permutation equivalence in higher-
order rewriting. This semantics takes place in cartesian closed 2-categories,

and is proved sound and complete.

1. Introduction

It is known since the end of the 80’s that 2-categories with finite products provide
a semantics for term rewriting [3]. Higher-order rewriting [10, 17, 14, 15] is a
framework for specifying rewrite systems on terms with variable binding. Many
results from standard term rewriting have been generalised to higher-order rewriting,
notably normalisation or confluence results. An important tool for confluence results
is the notion of permutation equivalence, which was generalised to the higher-order
case by Bruggink [1]. He defines a calculus of proof terms for specifying reductions
in a higher-order rewrite system.

We here propose a categorical semantics for a variant of this calculus, in terms of
cartesian closed 2-categories. We first define cartesian closed 2-signatures, which
generalise higher-order rewrite systems, and organise them into a category Sig. We
then construct an adjunction

(1.1) Sig ⊥ 2CCCat,

H

W

where 2CCCat is the category of small cartesian closed 2-categories. From a given
higher-order rewrite system S, the functor H constructs a cartesian closed 2-category,
whose 2-cells are Bruggink’s proof terms modulo permutation equivalence, which
we prove is the free cartesian closed 2-category generated by S.

We review a number of examples and non-examples, and sketch an extension to
deal with the latter.

Related work. Our cartesian closed 2-signatures are a 2-dimensional refinement of
cartesian closed sketches [16, 4, 9]. Bruggink’s calculus of permutation equivalence
is close in spirit to Hilken’s 2-categorical semantics of the simply-typed λ-calculus [7],
but technically different and generalised to arbitrary higher-order rewrite systems.
Capriotti [2] proposes a semantics of so-called flat permutation equivalence in
sesquicategories. More related work is discussed in Section 4.2.

1991 Mathematics Subject Classification. D.1.1;D.3.1;F.3.2;F.4.1;
Key words and phrases. Cartesian closed 2-categories, lambda calculus, higher-order rewriting,

combinatory reduction systems, categorical semantics.
This work has been partially funded by the French ANR projet blanc ”Curry Howard pour la

Concurrence” CHOCO BLAN07-1 189926.
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2. Cartesian closed signatures and categories

We start by recalling the well-known, or at least folklore, adjunction between
what we here call (cartesian closed) 1-signatures and cartesian closed categories.

For any set X, define types over X by the grammar:

A,B, . . . ∈ L0(X) ::= x | 1 | A×B | BA,

with x ∈ X.

Proposition 1. L0 defines a monad on Set.

Let the set of sequents over a set X be S0(X) = L0(X)∗ × L0(X), i.e., sequents
are pairs of a list of types and a type. The assignment X 7→ S0(X) extends to an
endofunctor on Set.

Definition 1. A 1-signature consists of a set X0 of sorts, and an
S0(X0)-indexed set X1 of operations, or equivalently a map X1 → S0(X0).

A morphism of 1-signatures (X0, X1)→ (Y0, Y1) is a pair (f0, f1) where fi : Xi →
Yi such that

X1 Y1

S0(X0) S0(Y0)

f1

S0(f0)

commutes. Morphisms compose in the obvious way, and we have:

Proposition 2. Composition of morphisms is associative and unital, and hence
1-signatures and their morphisms form a category Sig1.

There is a well-known adjunction

Sig1 ⊥ CCCat

H1

W1

between 1-signatures and the category CCCat of small cartesian closed categories
(with chosen structure) and (strict) cartesian closed functors.

The functor W1 sends a cartesian closed category C to the signature with sorts C0,
its set of objects, and with operations A1, . . . , An → A the set C(JA1×. . .×AnK, JAK),
where J−K denotes the function L0(C0)→ C0 defined by induction:

(2.1)

JcK = c c ∈ C0

J1K = 1
JA×BK = JAK× JBK

JBAK = JBKJAK.

Conversely, given a 1-signature X, consider the simply-typed λ-calculus with
base types in X0 and constants in X1. Terms modulo βη form a category H1(X)
with objects all types over X0 and morphisms A→ B all terms of type B with one
free variable of type A.

A less often formulated observation, which is useful to us, is that the adjunction
H1 aW1 decomposes into two adjunctions

2
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Sig1 ⊥ L1-Alg ⊥ CCCat,

L1

U1

F1

V1

where L1-Alg is the category of algebras for the monad L1 defined as follows (and
L1 is shorthand for the functor X 7→ (L1(X), µ)).

For any 1-signature X, let L1(X) denote the 1-signature with
• as sorts the set X0, and
• as operations Γ ` A the λ-terms Γ `M : A, modulo βη.

L1 extends to an endofunctor on Sig1, whose action on morphisms of 1-signatures

X
f−→ Y substitutes constants c ∈ X1 with f1(c). We obtain

Proposition 3. L1 is a monad on Sig1.

The functor V1 sends any cartesian closed category C to the L1-algebras (C0,C1)
defined as follows. First, C0 is the set of objects of C. It has a canonical L0-algebra
structure, say h0 : L0(C0)→ C0, obtained by interpreting type constructors in C as
in (2.1). Extending this to contexts G by h0(G) =

∏
i h0(Gi), let the operations in

C1(G,A) be the 1-cells in C(h0(G), h0(A)). Beware: the domain and codomain of
such an operation are really G and A, not h0(G) and h0(A). Similarly, interpreting
the λ-calculus in C, the 1-signature (C0,C1) has a canonical L1-algebra structure,
say h1 : L1(C0,C1)→ (C0,C1):

h1(G ` xi : Gi) = πi
h1(G ` () : 1) = !

h1(G ` c(M1, . . . ,Mn)) = c ◦ (h1(M1), . . . , h1(Mn))
h1(G ` λx : A.M : BA) = ϕ(h1(G, x : A `M : B))

h1(G `MN : B) = ev ◦ (h1(M), h1(N))
h1(G ` (M,N) : A×B) = (h1(M), h1(N))

h1(G ` πM : A) = π ◦M
h1(G ` π′M : A) = π′ ◦M,

where ! is the unique morphism h0(G)→ 1, ϕ is the bijection C(h0(G,A), h0(B)) ∼=
C(h0(G), h0(BA)), and ev is the structure morphism h0(BA ×A)→ h0(B).

L1-algebras are much like cartesian closed categories whose objects are freely
generated by their set of sorts. A perhaps useful analogy here is with multicategories
M, seen as being close to monoidal categories whose objects are freely generated by
those of M by tensor and unit. Here, the functor F1 sends any L1-algebra (X,h) to
the cartesian closed category with

• objects the types over X0, i.e., L0(X0),
• morphisms A→ B the set of operations in X1(A,B).

This canonically forms a cartesian closed category, with structure induced by the
L1-algebra structure. We define it in more detail in dimension 2 in Section 7.2.

3. Cartesian closed 2-signatures

Given a 1-signature X, let X|| denote the set of pairs of parallel operations,
i.e., pairs of operations M,N above the same sequent. Otherwise said, X|| is the
pullback

X|| X1

X1 S0(X0).

3
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Any morphism f : X → Y of 1-signatures yields a function f|| : X|| → Y||, via the
dashed arrow (obtained by universal property of pullback) in

X|| X1

Y|| Y1

X1 S0(X0)

Y1 S0(Y0).

f1

S0(f0)f1

Definition 2. A 2-signature consists of a 1-signature X, plus a set X2 of reduction
rules with a function X2 → L1(X)||.

A morphism of 2-signatures (X,X2)→ (Y, Y2) is a pair (f, f2) where f : X → Y
is a morphism of 1-signatures and f2 : X2 → Y2 makes the diagram

X2 Y2

L1(X)|| L1(Y )||

f2

L1(f1)||

commute. We obtain:

Proposition 4. Composition of morphisms is associative and unital, and hence
2-signatures and their morphisms form a category Sig.

4. Examples

4.1. Higher-order rewrite systems. The prime example of a 2-signature is that
for the pure λ-calculus: it has a sort t and operations

a : t× t→ t ` : tt → t,

with a reduction rule β above the pair

x : tt, y : t ` a(`(x), y), x(y) : t

in L1({t}, {`, a})||. Categorically, this will yield a 2-cell

t× t

tt × t t.

`× t a

ev

β

This is an example of a higher-order rewrite system in the sense of Nipkow [14].
Nipkow’s definition is formally different, but his higher-order rewrite systems are in
bijection with 2-signatures h : X2 → L1(X)|| such that for all rules r ∈ X2, letting
(Γ `M,N : A) = h(r):

• M is not a variable,
• A is a sort,
• each variable occurring in Γ occurs free in M .

4
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These restrictions help formulating and proving decidability problems on higher-order
rewrite systems, whose extension to our setting we leave open.

Let us now anticipate over our main results below and state our soundness and
completeness theorem. Given a higher-order rewrite system X, i.e., a 2-signature
satisfying the above conditions, let R(X) be the following locally-preordered 2-
category. It has:

• objects are types in L0(X0);
• morphisms A→ B are λ-terms in L1(X)(A ` B), modulo βη;
• given two parallel morphisms M and N , there is one 2-cell M → N exactly

when there is a sequence of reductions M →∗ N in the usual sense [14].

Proposition 5. R(X) is 2-cartesian closed.

R(X) and H(X) have the same objects and morphisms. But because our inference
rules for forming reductions are the same as deduction rules for proving the existence
of a reduction in the usual sense, we may send any reduction P : M → N to the
unique reduction M → N in R(X).

Theorem 1 (Soundness and completeness). This defines an identity-on-objects,
identity-on-morphisms, locally full cartesian closed 2-functor R(X) !−→ H(X).

4.2. Theories with binding. Understanding reduction rules as equations, it is
easy to define the free cartesian closed category generated by a 2-signature. This
yields an adjunction

(4.1) Sig ⊥ CCCat.

H′

W′

This adjunction provides a categorical semantics for theories with binding, which
is more general than other approaches by Fiore and Hur [6], Hirschowitz and
Maggesi [8], and Zsidó [18], and which is in line with Lambek’s seminal paper [11].

If I understand correctly, the motivation for Fiore and Hur’s subtle approach is
the will to explain the λ-calculus by strictly less than itself. The present framework
does not obey this specification, and instead tends to view the λ-calculus as a
universal (parameterised) theory with binding.

We end this section by giving a formal construction of the adjunction (4.1).
Cartesian closed categories form a full, reflective subcategory of 2CCCat, via the
functor J : 2CCCat→ CCCat sending a cartesian closed 2-category C to the cartesian
closed category with:

• objects those of C,
• morphisms those of C, modulo the congruence generated by f ∼ g iff there

exists a 2-cell f → g.
Here, J(C) is thought of as the free cartesian closed 2-category with trivial 2-cells
(i.e., 0 or 1). The desired adjunction is obtained by composing the adjunctions

Sig ⊥ 2CCCat ⊥ CCCat.

H

W

J

4.3. Non-examples. Non-examples are given by calculi whose reduction semantics
is defined on terms modulo a so-called structural congruence, e.g., CCS [12], or the
π-calculus [5, 13].

For example, consider the CCS term (a | 0) | a. In CCS, it is structurally
equivalent to (a | a) | 0, which then reduces to 0 | 0.

5

ha
l-0

05
40

20
5,

 v
er

si
on

 2
 - 

29
 J

an
 2

01
1



In order to account for this, we would have to consider a 2-signature with
reduction rules for structural congruence, here (M1 |M2) |M3 →M1 | (M2 |M3)
for associativity, and M | N → N |M for commutativity. But then, these reductions
count as proper reductions, which departs from the desired computational behaviour.
For example, the term a | a has an infinite reduction sequence, using commutativity.

Anticipating the development in the next sections, a potential solution is to
extend 2-signatures to 2-theories. For any 2-signature X, let X|| denote the set of
pairs of reduction rules r, s with a common type G `M → N : A. A 2-theory is a
2-signature X, together with a set of equations between parallel reductions, i.e., a
subset X3 of L(X)||.

The main adjunction announced above (1.1) extends to an adjunction between
2-theories and cartesian closed 2-categories. Using equations, we may specify that
any reduction M → M using only structural rules be the identity on M , and
consider the computational behaviour of a 2-category to consist of its non-invertible
morphisms, as proposed by Hilken [7]. A question is whether for a given calculus
this can be done with finitely many equations.

5. A 2-lambda-calculus

We now begin the construction of Adjunction (1.1). We start in this section by
defining a monad L on Sig, which we will use to factor Adjunction (1.1) as

Sig ⊥ L-Alg ⊥ 2CCCat,

L

U

F

V

where:
• L-Alg is the category of L-algebras,
• L : Sig→ L-Alg is a shortcut for X 7→ (L2X

µ−→ LX),
• U(LX h−→ X) = X,
• 2CCCat is the category of cartesian closed 2-categories, which we define in

Section 6.
The left-hand adjunction holds by L being a monad, thus we concentrate in

Section 7 on establishing the right-hand one.
But for now, let us define the monad L.

5.1. Syntax. Given a 2-signature X = ((X0, X1),
h : X2 → L1(X)||) (actually L1(X) is L1(X0, X1)), we construct a new 2-signature
L(X), whose reduction rules represent reduction sequences in the “higher-order
rewrite system” defined by X, modulo permutation equivalence. The 2-signature
L(X) has the same base 1-signature (X0, X1), and as reduction rules the terms of a
2λ-calculus (in the sense of Hilken [7]) modulo permutation equivalence, which we
now define.

First, terms, called reductions, are defined by induction in Figure 1. The typing
judgement has the shape Γ ` P : M → N : A, where A is a type in L0(X0), Γ is a
list of pairs of a variable and a type, with no variable appearing more than once, M
and N are terms of type Γ ` A modulo βη, and P is a reduction. In the sequel, we
often forget the variables in such pairs (Γ ` A), and identify them with sequents in
S0(X0).

When clear from context, we abbreviate substitutions [M1/x1, . . . ,Mn/xn] by
[M1, . . . ,Mn]. For a context G, Gi denotes its ith type. Also, for (M,N) ∈ L1(X)||,
we let X(M,N) be the set of all reduction rules r ∈ X2 such that h(r) = (M,N).
We write X(Γ ` M,N : A) to indicate the common type of M and N . Similarly,
X(G ` A) denotes the set of operations in X1 above G ` A.

6
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. . . Γ ` Pi : Mi → Ni : Gi . . .

Γ ` r(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A
(r ∈ X(G `M,N : A))

Γ ` P : M1 →M2 : A Γ ` Q : M2 →M3 : A
Γ ` P ;M2 Q : M1 →M3 : A

Γ, x : A,∆ ` x : x→ x : A

Γ ` () : ()→ () : 1

Γ ` P1 : M1 → N1 : G1 . . . Γ ` Pn : Mn → Nn : Gn
Γ ` c(P1, . . . , Pn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A

(c ∈ X1(G ` A))

Γ, x : A ` P : M → N : B

Γ ` λx : A.P : λx : A.M → λx : A.N : BA

Γ ` P : M →M ′ : BA Γ ` Q : N → N ′ : A
Γ ` PQ : MN →M ′N ′ : B

Γ ` P : M →M ′ : A Γ ` Q : N → N ′ : B
Γ ` (P,Q) : (M,N)→ (M ′, N ′) : A×B

Γ ` P : M → N : A×B
Γ ` πA,BP : πA,BM → πA,BN : A

Γ ` P : M → N : A×B
Γ ` π′A,BP : π′A,BM → π′A,BN : B

Figure 1. Reductions

5.2. Substitution. Next, we define substitution, which has “type”

(5.1)
Γ ` Q : N → N ′ : ∆ ∆ ` P : M →M ′ : A

Γ ` P [Q] : M [N ]→M ′[N ′] : A,

i.e., given a reduction P and a tuple of reductions Q, it produces a reduction of the
indicated type, which we denote P [Q]. Here, we denote by Γ ` Q : N → N ′ : ∆ a
tuple of reductions Γ ` Qi : Ni → N ′i : ∆i, for 1 ≤ i ≤ |∆|.

The definition is a bit tricky:
• first we define left whiskering, which has “type”

Γ ` Q : N → N ′ : ∆ ∆ `M : A
Γ `M [Q] : M [N ]→M ′[N ′] : A,

• then we define right whiskering, which has “type”

Γ ` N : ∆ ∆ ` P : M →M ′ : A
Γ ` P [N ] : M [N ]→M ′[N ] : A,

(where N denotes a tuple),
• then we define substitution by

P [Q] = (P [N ] ;M ′[N ] M
′[Q]).

There is of course another legitimate definition, namely

P [Q] = (M [Q] ;M [N ′] P [N ′]).

The two will be equated by permutation equivalence in the next section.
7
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Left whiskering is defined by induction, with ∆ = (x1 : A1, . . . , xn : An) and
Q = (Q1, . . . , Qn), by:

()[Q] = ()
xi[Q] = Qi

c(M1, . . . ,Mp)[Q] = c(M1[Q], . . . ,Mp[Q])
(λx : B.M)[Q] = λx : B.(M [Q, x]) (for x /∈ dom(∆))

(MN)[Q] = (M [Q]N [Q])
(M,N)[Q] = (M [Q], N [Q])

(πA,BM)[Q] = πA,B(M [Q])
(π′A,BM)[Q] = π′A,B(M [Q]).

Right whiskering is defined by induction, with ∆ = (x1 : A1, . . . , xn : An) and
N = (N1, . . . , Nn), by:

(r(P1, . . . , Pp))[N ] = r(P1[N ], . . . , Pp[N ])
(P1 ;M ′′ P2)[N ] = (P1[N ] ;M ′′[N ] P2[N ])

()[N ] = ()
xi[N ] = Ni

c(P1, . . . , Pp)[N ] = c(P1[N ], . . . , Pp[N ])
(λx : B.P ′)[N ] = λx : B.(P ′[N, x]) (for x /∈ dom(∆))

(P1P2)[N ] = (P1[N ]P2[N ])
(P1, P2)[N ] = (P1[N ], P2[N ])

(πA,BP ′)[N ] = πA,B(P ′[N ])
(π′A,BP

′)[N ] = π′A,B(P ′[N ]).

Definition 3. Let P [Q] = (P [N ] ;M ′[N ] M
′[Q]).

Proposition 6. Given reductions P and Q as above, the capture-avoiding substitu-
tion P [Q] is a well-typed reduction Γ ` P [Q] : M [N ]→M ′[N ′] : A.

Similarly, there is a weakening operation with “type”

Γ ` P : M → N : A
Γ, x : B ` P : M → N : A.

(x /∈ Γ)

5.3. Permutation equivalence. We now define permutation equivalence on re-
ductions, by the equations in Figures 3 and 4, in Appendix A. The congruence
rules in Figure 3 are bureaucratic: they just say that permutation equivalence is
a congruence. The category rules make reductions of a given type Γ ` A into a
category. In Figure 4, the beta and eta rules mirror the term-level beta and eta
rules. Finally, the lifting rules lift composition of reductions towards toplevel.

So, L(X) has sorts X0, operations X1, and as reduction rules in L(X)(G `
M,N : A) all reductions G ` P : M → N : A, modulo the equations.

This easily extends to:

Proposition 7. L is a functor Sig→ Sig.

Now, consider LL(X). We define a mapping µX : LL(X)→ L(X), by induction
on reductions. The typing rule for reduction rules specialises to:

(R ∈ L(X)(G `M,N : A))
Γ ` P1 : M1 → N1 : G1 . . . Γ ` Pn : Mn → Nn : Gn
Γ ` R(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A

·

8
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We set µ(R(P1, . . . , Pn)) = R[µ(P1), . . . , µ(Pn)]. The other cases just propagate the
substitution:

P ; Q 7→ µ(P ) ; µ(Q)
x 7→ x
() 7→ ()

c(P1, . . . , Pn) 7→ c(µ(P1), . . . , µ(Pn))
λx : A.P 7→ λx : A.µ(P )

PQ 7→ µ(P )µ(Q)
(P,Q) 7→ (µ(P ), µ(Q))
πP 7→ π(µ(P ))
π′P 7→ π′(µ(P )).

Lemma 1. This defines a natural transformation µ : L2 → L, which makes the
diagram

L3 L2

L2 L

Lµ

µL µ

µ

commute.

Similarly, there is a natural transformation η : id → L, sending each r ∈ X(G `
M,N : A) to the reduction G ` r(x1, . . . , xn) : M → N : A, and we have:

Lemma 2. The diagram

L L2 L

L

ηL Lη

µ

commutes.

Corollary 1. (L, µ, η) is a monad on Sig.

A crucial result is:

Proposition 8. For all Γ ` Q : N → N ′ : ∆ and ∆ ` P : M →M ′ : A, we have:

Γ ` P [Q] ≡ (M [Q] ;M [N ′] P [N ′]) : M [N ]→M ′[N ′] : A.

Proof. We proceed by induction on P . Most cases are bureaucratic. Consider for
instance P = c(P1, . . . , Pp). Then, by definition:

P [Q] = (c(P1[N ], . . . , Pp[N ]) ;c(M ′
1[N ],...,M ′

p[N ]) c(M ′1[Q], . . . ,M ′p[Q]).

By the third lifting rule, this is ≡-related to

c(P1[N ] ;M ′
1[N ] M

′
1[Q], . . . , Pp[N ] ;M ′

p[N ] M
′
p[Q]).

By p applications of the induction hypothesis, we obtain

c(M1[Q] ;M1[N ′] P1[N ′], . . . ,Mp[Q] ;Mp[N ′] Pp[N ′]),

which by lifting again yields the desired result:

c(M1[Q], . . . ,Mp[Q]) ;c(M1[N ′],...,Mp[N ′]) c(P1[N ′], . . . , Pp[N ′]).

The case where something actually happens is P = r(P1, . . . , Pp), with r ∈ X(G `
M0,M

′
0 : A) and each ∆ ` Pi : Mi →M ′i : Gi. Then, the left-hand side is

r(P1[N ], . . . , Pp[N ]) ;M0[M1,...,Mn][N ] M
′
0[M ′1, . . . ,M

′
p][Q].
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By lifting, omitting indices of vertical compositions, we have

r(P1[N ], . . . , Pp[N ]) ≡ r(M1[N ], . . . ,Mp[N ]) ; M ′0[P1[N ], . . . , Pp[N ]].

Observing that M ′0[M ′1, . . . ,M
′
p][Q] = M ′0[M ′1[Q], . . . ,M ′p[Q]], the whole is ≡-related

to
r(M1[N ], . . . ,Mp[N ]);
M ′0[P1[N ], . . . , Pp[N ]];
M ′0[M ′1[Q], . . . ,M ′p[Q]],

i.e., by lifting (inductively):

r(M1[N ], . . . ,Mp[N ]);
M ′0[(P1[N ] ; M ′1[Q]), . . . , (Pp[N ] ; M ′1[Q])].

This is by induction hypothesis ≡-related to

r(M1[N ], . . . ,Mp[N ]);
M ′0[(M1[Q] ; P1[N ′]), . . . , (M1[Q] ; Pp[N ′])],

i.e., by lifting again to
r(M1[N ], . . . ,Mp[N ]);
M ′0[M1[Q], . . . ,M1[Q]];
M ′0[P1[N ′], . . . , Pp[N ′]].

The second lifting rule then yields

r(M1[Q], . . . ,Mp[Q]);
M ′0[P1[N ′], . . . , Pp[N ′]].

And then the first lifting rule yields

M0[M1[Q], . . . ,M1[Q]];
r(M1[N ′], . . . ,Mp[N ′]);
M ′0[P1[N ′], . . . , Pp[N ′]],

so, by the second lifting rule again:

M0[M1[Q], . . . ,M1[Q]];
r(P1[N ′], . . . , Pp[N ′]),

i.e., the right-hand side. �

6. Cartesian closed 2-categories

6.1. Definition. In a 2-category C, a diagram A
p←− C

q−→ B is a product diagram
iff for all object D, the induced functor

C(D,C) ∆−→ C(D,C)× C(D,C)
C(D,p)×C(D,q)−−−−−−−−−−→ C(D,A)× C(D,B)

is an isomorphism. Because this family of functors is 2-natural in D, the inverse
functors will also be 2-natural.

Similarly, an object 1 of C is terminal iff for all D the unique functor

C(D, 1) !−→ 1

is an isomorphism (where the right-hand 1 is the terminal category).

Definition 4. A 2-category with finite products, or fp 2-category, is a 2-category
C, equipped with a terminal object and a 2-functor

C× C
×−→ C,

plus, for all A and B, a product diagram

A
p←− A×B q−→ B.

10
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In such an fp 2-category C, given objects A and B, an exponential for them is a
pair of an object BA and a morphism ev : A × BA → B, such that for all D, the
functor

C(A,A)× C(D,BA) C(A×D,A×BA)

C(D,BA) C(A×D,B)

(idA!, id)

×

C(A×D, ev)

is an isomorphism. As above, because this family of functors is 2-natural in D, the
inverse functors will also be 2-natural.

Definition 5. A cartesian closed 2-category, or cartesian closed 2-category, is an fp
2-category, equipped with a choice of exponentials for all pairs of objects. The category
2CCCat has cartesian closed 2-categories as objects, and stricly structure-preserving
functors between them as morphisms.

7. Main adjunction

7.1. Right adjoint. Given a cartesian closed 2-category C, define V(C) = (C0,C1,
C2) as follows. First, let as in Section 2 (C0,C1) = V1(C), and recall the canon-
ical L0 and L1-algebra structures h0 and h1. Let then the reduction rules in
C2(G `M,N : A) be the 2-cells in C(h0(G), h0(A))(h1(M), h1(N)), abbreviated to
C(G,A)(M,N) in the sequel.

This signature VC has a canonical L-algebra structure h2 : L(VC)→ VC, which
we define by induction over terms in Figure 2. In the case for λ, ϕ denotes the
structure isomorphism C((

∏
Γ)×A,B) ∼= C(

∏
Γ, BA).

In order for the definition to make sense as a morphism L(VC)→ VC, we have to
check its compatibility with the equations. We have first:

Lemma 3. For all ∆ ` Q : N → N ′ : Γ and Γ ` P : M →M ′ : A in L(VC),

∆ A

M [N ]

M ′[N ′]

h2(P [Q]) = ∆ Γ A.

N

N ′

M

M ′

h2(Q) h2(P )

Proof. By induction on P and the axioms for cartesian closed 2-categories. �

Lemma 4. Any two equated reductions are mapped to the same 2-cell in C.

Proof. We proceed by induction on the proof of the considered equation. The rules
of Figure 3 hold because, in C, vertical composition is associative and unital, and
equality is a congruence. The beta rule is less easy, so we spell it out.

The left-hand reduction is interpreted in C as

∏
Γ BA ×A B

(ϕM,N)

(ϕM ′, N ′)

ev
(ϕP,Q)

which is equal to
11
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(G ` xi : xi → xi : Gi) 7→ (idπi
: πi → πi :

∏
G→ Gi)

(G ` () : ()→ () : 1) 7→ (id ! : !→! :
∏
G→ 1)

(Γ ` c(P1, . . . , Pn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A) 7→

∏
Γ

∏
G A

(M1, . . . ,Mn)

(N1, . . . , Nn)

c
P (c ∈ C1(G,A), P = (P1, . . . , Pn))

(Γ ` r(P1, . . . , Pn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A) 7→

∏
Γ

∏
G A

(M1, . . . ,Mn)

(N1, . . . , Nn)

M

N

rP (P = (P1, . . . , Pn))

(G ` P ;M2 Q : M1 →M3 : A) 7→ ∏
G A

M1

M3

P

Q

(Γ ` λx : A.P : λx : A.M → λx : A.N : BA) 7→ ϕ(P : M → N : (
∏

Γ)×A→ B)

(Γ ` PQ : MN →M ′N ′ : B) 7→ ∏
Γ BA ×A B

(M,N)

(M ′, N ′)

ev
(P,Q)

(Γ ` (P,Q) : (M,N)→ (M ′, N ′) : A×B) 7→ ∏
Γ A×B

(M,N)

(M ′, N ′)

(P,Q)

(Γ ` πA,BP : πA,BM → πA,BN : A) 7→ ∏
Γ A×B A

M

N

π
P

(Γ ` π′A,BP : π′A,BM → π′A,BN : B) 7→ ∏
Γ A×B B

M

N

π′
P

Figure 2. The L-algebra structure on V(C)
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∏
Γ

∏
Γ×A BA ×A B

(id , N)

(id , N ′)

(id,Q)

ϕM ×A

ϕM ′ ×A

ev
ϕP×A

which is in turn equal (by cartesian closedness of C) to:

∏
Γ

∏
Γ×A B

(id , N)

(id , N ′)

(id,Q)

M

M ′

P

and hence to the right-hand side of the equation by Lemma 3. The other beta and
eta rules similarly hold by the properties of products, internal homs, and terminal
object in C.

The lifting rules hold by (particular cases of) the interchange law in C and
functoriality of the structural isomorphisms

C(A×B,C) ∼= C(B,CA) and C(C,A×B) ∼= C(C,A)× C(C,B),

which concludes the proof. �

This assignment extends to cartesian closed functors and we have:

Proposition 9. V is a functor 2CCCat→ Sig.

7.2. Left adjoint. Given an L-algebra h : L(X)→ X, we now construct a cartesian
closed 2-category F(X,h). It has:

• objects the types in L0(X0);
• 1-cells A→ B the terms in L1(X0, X1)(A,B);
• 2-cells M → N : A→ B the reduction rules in X2(M,N).

We then must define the cartesian closed 2-category structure, and we start with
the 2-category structure. Composition of 1-cells A M−→ B

N−→ C is defined to be

A
N [M ]−−−→ C. Vertical composition of 2-cells

A B

M1

M2

M3

α

β

is given by h(η(α) ;M2 η(β)).
Horizontal composition of 2-cells

(7.1) A B C

M

M ′

N

N ′

α β

is obtained as h(β(η(α))).
To show that this yields a 2-category structure, the only non obvious point is the

interchange law. We deal with it using the following series of results. First, consider
the left whiskering

13
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A B C

M

M ′

N
α

of a 2-cell α by a 1-cell N , i.e., the composition idN ◦ α = h((h(N))(η(α))).

Lemma 5. We have: h((h(N))(η(α))) = h(N [η(α)]).

Proof. Indeed, consider the term N(η(η(α))) in L(L(X)). Its images by h◦L(h) and
h◦µ coincide, and are respectively h((h(N))(η(α))), i.e., idN ◦α, and h(N [η(α)]). �

Similarly, consider the right whiskering

A B C

N

N ′

M γ

of a 2-cell γ by a 1-cell M , i.e., the composition γ ◦ idN = h(γ(η(h(M)))).

Lemma 6. We have: h(γ(η(h(M)))) = h(γ(M)).

Proof. Consider (ηγ)(ηM) in L(L(X)). Its images by h ◦ L(h) and h ◦ µ coincide,
and are respectively h(γ(η(h(M)))) and h(γ(M)). �

Now, we prove that the two sensible ways of mimicking horizontal composition
using whiskering coincide with actual horizontal composition:

Lemma 7. For any cells as in (7.1),

(β ◦ idM ) ; (idN ′ ◦ α) = β ◦ α = (idN ◦ α) ; (β ◦ idM ′).

Proof. Consider first the reduction η(β(M)) ; η(N ′[η(α)]) in L(L(X)). Taking
h ◦ L(h) and h ◦ µ as above respectively yields

• h(η(h(β(M))) ; η(h(N ′[α]))), and
• h(β(M) ; N ′[η(α)]) = h(β(η(α))),

hence the left-hand equality. Then consider η(N [η(α)]) ; η(γ(M ′)). Evaluating as
before yields the right-hand equality. �

Finally, consider any configuration like:

A B C.

M

M ′

M ′′

Nα

β

Lemma 8. We have (idN ◦ α) ; (idN ◦ β) = idN ◦ (α ; β).

Proof. Consider η(N [η(α)]) ; η(N [η(β)]). Evaluating yields equality of
• h(η(h(N [η(α)])) ; η(h(N [η(β)]))), i.e., the left-hand side, and
• h(N [η(α)] ; N [η(β)]), i.e., h(N [η(α) ; η(β)]) by lifting.

But now consider N [η(η(α) ; η(β))]. Evaluating yields equality of
• h(N [η(α) ; η(β)]), as above, and
• h(N [η(h(η(α) ; η(β)))]), i.e., h(N [η(α ; β)]) (where α ; β denotes vertical

composition in our candidate 2-category), i.e., the right-hand side. �

Lemma 9. The interchange law holds, i.e., for all reduction rules as in
14
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A B C,

M1

M2

M3

N1

N2

N3

α

β

γ

θ

we have
(γ ; θ) ◦ (α ; β) = (γ ◦ α) ; (θ ◦ β).

Proof. By the previous results, we have

(γ ; θ) ◦ (α ; β)
= ((γ ; θ) ◦M1) ; (N3 ◦ (α ; β))
= (γ ◦M1) ; (θ ◦M1) ; (N3 ◦ α) ; (N3 ◦ β)
= (γ ◦M1) ; (N2 ◦ α) ; (θ ◦M2) ; (N3 ◦ β)
= (γ ◦ α) ; (θ ◦ β).

�

Now, let us show cartesian closedness. We have a bijection of hom-sets L1(X)(C `
A×B) ∼= L1(X)(C ` A)× L1(X)(C ` B), given by

L1(X)(C ` A×B) → L1(X)(C ` A)× L1(X)(C ` B)
M 7→ πM, π′M

and
L1(X)(C ` A)× L1(X)(C ` B) → L1(X)(C ` A×B)

M,N 7→ (M,N).
These are mutually inverse thanks to the beta and eta rules for products in the
simply-typed λ-calculus.

On 2-hom-sets, we have

L(X)(C `M,N : A×B) → L(X)(C ` πM, πN : A)× L(X)(C ` π′M,π′N : B)
P 7→ πP, π′P

and (omitting C)

L(X)(M1, N1 : A)× L(X)(M2, N2 : B) → L(X)((M1,M2), (N1, N2) : A×B)
P1, P2 7→ (P1, P2),

which are mutually inverse thanks to the beta and eta rules for products in Figure 4.
We use these to define the desired isomorphism (u, v)

X2(C `M,N : A×B) ∼= X2(C ` πM, πN : A)×X2(C ` π′M,π′N : B),

as in the diagrams

X2(M,N) X2(πM, πN)×X2(π′M,π′N)

L(X)(M,N) L(X)(πM, πN)× L(X)(π′M,π′N)

u

η

∼=

h× h

and

X2(πM, πN)×X2(π′M,π′N) X2(M,N)

L(X)(πM, πN)× L(X)(π′M,π′N) L(X)(M,N).

v

η × η

∼=

h

15
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Starting from r ∈ X2(M,N), we obtain

v(u(r)) = h(η(h(π(η(r)))), η(h(π′(η(r))))).

But consider (η(πη(r)), η(π′η(r))) in L(LX); its images by h ◦ Lh and h ◦ µ are
respectively:

• h(η(h(π(ηr))), η(h(π′(ηr)))), and
• h(πη(r), π′η(r)), i.e., h(η(r)), i.e., r,

which must be equal because h is an L-algebra, hence v ◦ u = id .
Conversely, starting from (r, s) ∈ X2(M1,M2)×X2(N1, N2), we obtain the pair

with components

h(π(η(h(η(r), η(s))))) and h(π′(η(h(η(r), η(s))))).

Considering π(η(η(r), η(s))) ∈ L(L(X)), its images by h ◦ L(h) and h ◦ µ are
respectively:

• h(π(η(h(η(r), η(s))))), and
• h(π(η(r), η(s))) = h(η(r)) = r.

As above, they must be equal, and by symmetry the second component is s, and we
have proved u ◦ v = id . Similar reasoning for the terminal object and internal homs
leads to:

Proposition 10. This yields a cartesian closed 2-category structure on C.

This extends to morphisms of L-algebras, so we have constructed a functor
F : L-Alg→ 2CCCat.

7.3. Adjunction. Consider any L-algebra (X,h). What does (Y, k) = V(F(X,h))
look like? Sorts in Y0 are types in L0(X0). Operations Y1(G ` A) are terms in
L1(X0, X1)(

∏
G ` A). Reduction rules in Y2(G ` M,N : B) are reductions in

L(X)(
∏
G ` M ′, N ′ : B), where M ′ = M [π1x/x1, . . . , πnx/xn] (and similarly for

N ′).
Let ηX send:

• each sort ι ∈ X0 to the type ι ∈ L0(X0),
• each operation c ∈ X(G ` A) to the term c(π1x, . . . , πnx), and
• each reduction rule r ∈ X2(G ` M,N : A) to the reduction x :

∏
G `

r(π1x, . . . , πnx) : M ′ → N ′ : A.

Theorem 2. This η is a natural transformation which is the unit of an adjunction

L-Alg ⊥ 2CCCat.

F

V

Proof. Consider any morphism f : (X,h)→ V(C), and let (Y, k) = V(F(X,h)) and
V(C) = (C0,C1, h2 : C2 → C1). We now define a uniquely determined cartesian closed
functor f ′ : F(X,h)→ C making the triangle

X V(F(X))

V(C)

ηX

f
V(f ′)
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commute.
On objects, it is determined by induction: on sorts by f0, and on type constructors

by the requirement that f ′ be cartesian closed. On morphisms, it is similarly
determined by f1 and f ′ being cartesian closed. On 2-cells, define f ′ to be f2 : X2(A `
M,N : B)→ C(f ′(A), f ′(B))(f ′(M), f ′(N)), which is also the only possible choice
from f .

We thus only have to show that f ′ is cartesian closed, which follows by f being a
morphism of L-algebras. For example, to show that binary products of reductions
are preserved, consider r ∈ X2(C `M1,M2 : A) and s ∈ X2(C ` N1, N2 : B). Their
product in F(X) is obtained by considering the atomic reductions x : C ` r(x) :
M1 → M2 : A and x : C ` s(x) : N1 → N2 : B and taking h(r(x), s(x)), which is
sent by f2 to f2(h(r(x), s(x))). But, because f is a morphism of L-algebras, this
is the same as h2((f2(r))(x), (f2(s))(y)), which is by definition (i.e., Figure 2) the
product (f2(r), f2(s)) in C. �
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Congruence

Γ ` P : M → N : A
Γ ` P ≡ P : M → N : A

Γ ` P ≡ Q : M → N : A
Γ ` Q ≡ P : M → N : A

Γ ` P1 ≡ P2 : M → N : A Γ ` P2 ≡ P3 : M → N : A
Γ ` P1 ≡ P3 : M → N : A

Γ ` P ≡ P ′ : M1 →M2 : A Γ ` Q ≡ Q′ : M2 →M3 : A
Γ ` (P ;M2 Q) ≡ (P ′ ;M2 Q

′) : M1 →M3 : A

(r ∈ X(G `M,N : A))
Γ ` P1 ≡ Q1 : M1 → N1 : G1 . . . Γ ` Pn ≡ Qn : Mn → Nn : Gn

Γ ` r(P1, . . . , Pn) ≡ r(Q1, . . . , Qn) : M [M1, . . . ,Mn]→ N [N1, . . . , Nn] : A

(c ∈ X(G ` A))
Γ ` P1 ≡ Q1 : M1 → N1 : G1 . . . Γ ` Pn ≡ Qn : Mn → Nn : Gn
Γ ` c(P1, . . . , Pn) ≡ c(Q1, . . . , Qn) : c(M1, . . . ,Mn)→ c(N1, . . . , Nn) : A

Γ, x : A ` P ≡ Q : M → N : B

Γ ` (λx : A.P ) ≡ (λx : A.Q) : λx : A.M → λx : A.N : BA

Γ ` P ≡ P ′ : M →M ′ : BA Γ ` Q ≡ Q′ : N → N ′ : A
Γ ` (PQ) ≡ (P ′Q′) : MN →M ′N ′ : B

Γ ` P ≡ P ′ : M →M ′ : A Γ ` Q ≡ Q′ : N → N ′ : B
Γ ` (P,Q) ≡ (P ′, Q′) : (M,N)→ (M ′, N ′) : A×B

Γ ` P ≡ Q : M → N : A×B
Γ ` (πA,BP ) ≡ (πA,BQ) : πA,BM → πA,BN : A

Γ ` P ≡ Q : M → N : A×B
Γ ` (π′A,BP ) ≡ (π′A,BQ) : π′A,BM → π′A,BN : A

Category

Γ ` P1 : M1 →M2 : A Γ ` P2 : M2 →M3 : A Γ ` P3 : M3 →M4 : A
Γ ` (P1 ;M2 (P2 ;M3 P3)) ≡ ((P1 ;M2 P2) ;M3 P3) : M1 →M4 : A

Γ ` P : M → N : A
Γ ` (P ;N N) ≡ P : M → N : A

Γ ` P : M → N : A
Γ ` (M ;M P ) ≡ P : M → N : A

Figure 3. Equations on reductions (Congruence and category)
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Beta and eta

Γ, x : A ` P : M →M ′ : B Γ ` Q : N → N ′ : A
Γ ` ((λx : A.P )Q) ≡ P [Q/x] : (λx : A.M)N →M ′[N ′/x] : B

Γ ` P ≡M → N : BA

Γ ` P ≡ λx : A.(Px) : M → N : BA
(x /∈ Γ)

Γ ` P : M1 →M2 : A Γ ` Q : N1 → N2 : B
Γ ` π(P,Q) ≡ P : π(M1, N1)→M2 : A

Γ ` P : M1 →M2 : A Γ ` Q : N1 → N2 : B
Γ ` π′(P,Q) ≡ P : π′(M1, N1)→ N2 : A

Γ ` P : (M1, N1)→ (M2, N2) : A×B
Γ ` P ≡ (πP, π′P ) : (M1, N1)→ (M2, N2) : A×B

Γ ` P : M → N : 1
Γ ` P ≡ () : M → N : 1

Lifting

(r ∈ X(Γ ` 〈M1,M2〉 : A)) ∆ ` P : N1 → N2 : Γ ∆ ` Q : N2 → N3 : Γ
Γ ` r(P ;N2 Q) ≡M1[P ] ;M1[N2] r(Q) : M1[N1]→M2[N3] : A

(r ∈ X(Γ ` 〈M1,M2〉 : A)) ∆ ` P : N1 → N2 : Γ ∆ ` Q : N2 → N3 : Γ
Γ ` r(P ;N2 Q) ≡ r(P ) ;M2[N2] M2[Q] : M1[N1]→M2[N3] : A

Γ ` P : M1 →M2 : G Γ ` Q : M2 →M3 : G
Γ ` (c(P ;M2 Q)) ≡ (c(P ) ;c(M2) c(Q)) : M1 →M3 : A

(c ∈ X(G ` A))

Γ, x : A ` P : M1 →M2 : B Γ, x : A ` Q : M2 →M3 : B
Γ ` (λx : A.(P ;M2 Q)) ≡ ((λx : A.P ) ;λx : A.M2 (λx : A.Q))

: λx : A.M1 → λx : A.M3 : BA

Γ ` P : M1 →M2 : BA

Γ ` P ′ : M2 →M3 : BA Γ ` Q : N1 → N2 : A Γ ` Q′ : N2 → N3 : A
Γ ` ((P ;M2 P

′)(Q ;N2 Q
′)) ≡ ((PQ) ;M2N2 (P ′Q′)) : M1N1 →M3N3 : B

Γ ` P : M1 →M2 : A
Γ ` P ′ : M2 →M3 : A Γ ` Q : N1 → N2 : B Γ ` Q′ : N2 → N3 : B

Γ ` ((P ;M2 P
′), (Q ;N2 Q

′)) ≡ ((P,Q) ;(M2,N2) (P ′, Q′))
: (M1, N1)→ (M3, N3) : A×B

Γ ` P : M1 →M2 : A×B Γ ` Q : M2 →M3 : A×B
Γ ` (πA,B(P ;M2 Q)) ≡ (πA,BP ;πA,BM2 πA,BQ) : M1 →M3 : A

Γ ` P : M1 →M2 : A×B Γ ` Q : M2 →M3 : A×B
Γ ` (π′A,B(P ;M2 Q)) ≡ (π′A,BP ;π′

A,BM2 π
′
A,BQ) : M1 →M3 : B

Figure 4. Equations on reductions (beta-eta and lifting)
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Kleene Algebra with Tests
and Coq Tools for While Programs

Damien Pous

CNRS – LIP, ENS Lyon, UMR 5668

Abstract. We present a Coq library about Kleene algebra with tests,
including a proof of their completeness over the appropriate notion of
languages, a decision procedure for their equational theory, and tools for
exploiting hypotheses of a certain kind in such a theory.

Kleene algebra with tests make it possible to represent if-then-else state-
ments and while loops in most imperative programming languages. They
were actually introduced by Kozen as an alternative to propositional
Hoare logic.

We show how to exploit the corresponding Coq tools in the context of
program verification by proving equivalences of while programs, correct-
ness of some standard compiler optimisations, Hoare rules for partial cor-
rectness, and a particularly challenging equivalence of flowchart schemes.

Introduction

Kleene algebra with tests (KAT) have been introduced by Kozen [19], as an
equational system for program verification. A Kleene algebra with tests is a
Kleene algebra (KA) with an embedded Boolean algebra of tests. The Kleene
algebra component deals with the control-flow graph of the programs—sequential
composition, iteration, and branching—while the Boolean algebra component
deals with the conditions appearing in if-then-else statements, while loops, or
pre- and post-assertions.

This formalism is both concise and expressive, which allowed Kozen and oth-
ers to give detailed paper proofs about various problems in program verification
(see, e.g., [3, 19, 21, 23]). More importantly, the equational theory of KAT is de-
cidable and complete over relational models [24], and hypotheses of a certain
kind can moreover be eliminated [11,15]. This suggests that a proof using KAT
should not be done manually, but with the help of a computer. The goal of the
present work is to give this possibility, inside the Coq proof assistant.

The underlying decision procedure cannot be formulated, a priori, as a simple
rewriting system: it involves automata algorithms, it cannot be defined in Ltac,
at the meta-level, and it does not produce a certificate which could easily be
checked in Coq, a posteriori. This leaves us with only one possibility: defining a
reflexive tactic [1,8,14]. Doing so is quite challenging: we basically have to prove
completeness of KAT axioms w.r.t. the model of guarded string languages (the
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natural generalisation of languages for KA, to KAT), and to provide a provably
correct algorithm for language equivalence of KAT expressions.

The completeness theorem is far from trivial; we actually have to formalise
a lot of preliminary material: finite sums, finite sets, unique decomposition of
Boolean expressions into sums of atoms, regular expression derivatives, expan-
sion theorem for regular expressions, matrices, automata. . . As a consequence,
we only give here a high-level overview of the involved mathematics, leaving
aside standard definitions, technical details, or secondary formalisation tricks.
The interested reader can consult the library, which is documented [30].

Outline. We first present KAT and its models (§1). We then sketch the complete-
ness proof (§2), the decision procedure (§3), and the method used to eliminate
hypotheses (§4). We finally illustrate the benefits of our tactics on several case-
studies (§5), before discussing related works (§6), and concluding (§7).

1 Kleene Algebra with Tests

A Kleene algebra with tests consists of:

– a Kleene algebra 〈X, ·,+, ·?, 1, 0〉 [18], i.e., an idempotent semiring with a
unary operation, called “Kleene star”, satisfying an axiom: 1 + x · x? ≤ x?

and two inference rules: y · x ≤ x entails y? · x ≤ x and the symmetric one.
(The preorder (≤) being defined by x ≤ y , x+ y = y.)

– a Boolean algebra 〈B,∧,∨,¬,>,⊥〉;
– a homomorphism from 〈B,∧,∨,>,⊥〉 to 〈X, ·,+, 1, 0〉, that is, a function

[·] : B → X such that [a∧ b] = [a] · [b], [a∨ b] = [a]+ [b], [>] = 1, and [⊥] = 0.

The elements of the set B are called “tests”; we denote them by a, b. The elements
of X, called “Kleene elements”, are denoted by x, y, z. We usually omit the
operator “·” from expressions, writing xy for x · y. The following (in)equations
illustrate the kind of laws that hold in all Kleene algebra with tests:

[a ∨ ¬a] = 1 [a ∧ (¬a ∨ b)] = [a][b] = [¬(¬a ∨ ¬b)]

x?x? = x? (x+ y)? = x?(yx?)? (x+ xxy)? ≤ (x+ xy)?

[a]([¬a]x)? = [a] [a]([a]x[¬a] + [¬a]y[a])?[a] ≤ (xy)?

The laws from the first line come from the Boolean algebra structure, while
the ones from the second line come from the Kleene algebra structure. The two
laws from the last line are more interesting: their proof must mix both Boolean
algebra and Kleene algebra reasoning. They are left to the reader as a non-trivial
exercice; the tools we present in this paper allow one to prove them automatically.

1.1 The model of binary relations

Binary relations form a Kleene algebra with tests; this is the main model we are
interested in, in practice. The Kleene elements are the binary relations over a
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given set S, the tests are the predicates over this set, and the star of a relation
is its reflexive transitive closure:

X = P (S × S)

x · y = {(p, q) | ∃r, (p, r) ∈ x ∧ (r, q) ∈ y}
x+ y = x ∪ y
x? = {(p0, pn) | ∃p1 . . . pn−1,∀i < n, (pi, pi+1) ∈ x}
1 = {(p, p) | p ∈ S}
0 = ∅ [a] = {(p, p) | p ∈ a}

B = P (S)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = S \ a
> = S

⊥ = ∅

The laws of a Kleene algebra are easily proved for these operations; note however
that one needs either to restrict to decidable predicates (i.e., to take S → bool

or {p: S → Prop | forall p, S p ∨¬S p} for B), or to assume the law of excluded
middle: B must be a Boolean algebra, so that negation has to be an involution.
This choice for B is left to the user of the library.

This relational model is typically used to interpret imperative programs:
such programs are state transformers, i.e., binary relations between states, and
the conditions appearing in these programs are just predicates on states. These
conditions are usually decidable, so that the above constraint is actually natural.

The equational theory of Kleene algebra with tests is complete over the rela-
tional model [24]: any equation x = y that holds universally in this model can be
proved from the axioms of KAT. We do not need to formalise this theorem, but
it is quite informative in practice: by contrapositive, if an equation cannot be
proved from KAT, then it cannot be universally true on binary relations, meaning
that proving its validity for a particular instantiation of the variables necessarily
requires one to exploit additional properties of this particular instance.

1.2 Other models

We describe two other models in the sequel: the syntactic model (§1.3) and the
model of guarded string languages (§1.4); these models have to be formalised to
build the reflexive tactic we aim at.

There are other important models of KAT. First of all, any Kleene algebra
can be extended into a Kleene algebra with tests by embedding the two-element
Boolean lattice. We also have traces models (where one keeps track of the whole
execution traces of the programs rather than just their starting and ending
points), matrices over a Kleene algebra with tests, but also models inherited
from semirings like min-plus and max-plus algebra. The latter models have a de-
generate Kleene star operation; they become useful when one constructs matrices
over them, for instance to study shortest path algorithms.

Also note that like for Kleene algebra [9, 20, 29], KAT admits a natural
“typed” generalisation, allowing for instance to encompass heterogeneous bi-
nary relations and rectangular matrices. Our Coq library is actually based on
this generalisation, and this deeply impacts the whole infrastructure; we however
omit the corresponding details and technicalities here, for the sake of clarity.
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1.3 KAT expressions

Let p, q range over a set Σ of letters (or actions), and let a1, . . . , an be the
elements of a finite set Θ of primitive tests. Boolean expressions and KAT ex-
pressions are defined by the following syntax:

a, b ::= ai ∈ Θ | a ∧ a | a ∨ a | ¬a | > | ⊥ (Boolean expressions)

x, y ::= p ∈ Σ | [a] | x · y | x+ y | x? | 1 | 0 . (KAT expressions)

Given a Kleene algebra with tests K = 〈X,B, [·]〉, any pair of maps θ : Θ →
B and σ : Σ → X gives rise to a KAT homomorphism allowing to interpret
expressions in K. Given two such expressions x and y, the equation x = y
is a KAT theorem, written KAT ` x = y, when the equation holds in any
Kleene algebra with tests, under any interpretation. One checks easily that KAT
expressions quotiented by the latter relation form a Kleene algebra with tests;
this is the free Kleene algebra with tests over Σ and Θ. (We actually use this
impredicative encoding of KAT derivability in the Coq library.)

1.4 Guarded strings languages

Guarded string languages are the natural generalisation of string languages for
Kleene algebra with tests. We briefly define them.

An atom is a function from elementary tests (Θ) to Booleans; it indicates
which of these tests are satisfied. We let α, β range over atoms, the set of which is
denoted by At. (Technically, we represent elementary tests as finite ordinals of a
given size n (Θ = ord n), and we encode atoms as ordinals (At = ord 2n). This
allows us to avoid functional extensionality problems.) We let u, v range over
guarded strings: alternating sequences of atoms and letters, which both start
and end with an atom:

α1, p1, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial operation: it
is defined only if the last atom of u is equal to the first atom of v; it consists in
concatenating the two sequences and removing the shared atom in the middle.

The Kleene algebra with tests of guarded string languages is obtained by
considering sets of guarded strings for X and sets of atoms for B:

X = P ((At×Σ)? ×At)
x · y = {u ∗ v | u ∈ x ∧ v ∈ y}
x+ y = x ∪ y
x? = {u1 ∗ · · · ∗ un | ∃u1 . . . un,∀i ≤ n, ui ∈ x}
1 = {α | α ∈ At}
0 = ∅ [a] = {α | α ∈ a}

B = P (At)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = At \ a
> = At

⊥ = ∅

Note that we slightly abuse notation by letting α denote either an atom, or a
guarded string reduced to an atom. Also note that the set B = P (At) has to be
represented by the Coq type At→ bool, to get a Boolean algebra on it.
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2 Completeness

Let G be the unique homomorphism from KAT expressions to guarded string
languages such that

G(ai) = {α | α(ai) is true} G(p) = {αpβ | α, β ∈ At}

Completeness of KAT over guarded string languages can be stated as follows.

Theorem 1. For all KAT expressions x, y, G(x) = G(y) entails KAT ` x = y.

This theorem is central to our development: it allows us to prove (in)equations in
arbitrary models of KAT, by resorting to an algorithm deciding guarded string
language equivalence (to be described in §3).

We closely follow Kozen and Smith’ proof [24]. This proof relies on the com-
pleteness of Kleene algebra over languages, which we thus need to prove first.

2.1 Completeness of Kleene algebra axioms

Let R be the Kleene algebra homomorphism from regular expressions to (plain)
string languages mapping a letter p to the language consisting of the single-letter
word p. KA completeness over languages can be stated as follows [18]:

Theorem 2. For all regular expressions x, y, R(x) = R(y) entails KA ` x = y.

(Like for KAT, the judgement KA ` x = y means that x = y holds in any Kleene
algebra, under any interpretation.) We already presented a Coq formalisation of
this theorem [9], but our development was over-complicated. We re-proved it
from scratch here, following a simpler path which we now describe.

The main idea of Kozen’s proof consists in replaying automata algorithms
algebraically, using matrices to encode automata. The key insight that allowed
us to considerably simplify the corresponding formalisation is that the algorithm
used for this proof need not be the same as the one to be executed by the reflexive
tactic we eventually define. Indeed, we can take the simplest possible algorithm
to prove KA completeness, ignoring all complexity aspects, thus allowing us to
focus on conciseness and mathematical simplicity. In contrast, the algorithm to
be executed by the final reflexive tactic should be relatively efficient, but we do
not need to prove it complete, nor to replay its correctness algebraically: we only
need to prove its correctness w.r.t. languages, which is much easier.

A preliminary step for the proof consists in proving that matrices over a
Kleene algebra form a Kleene algebra. The Kleene star for matrices is non-trivial
to define and to prove correct, but this can be done with a reasonable amount of
efforts once appropriate lemmas and tools for block matrices have been set up.

A finite automaton can then be represented using three matrices (u,M, v)
over regular expressions, where u is a (1, n)-matrix, M is a (n, n)-matrix, and
v is a (n, 1)-matrix, n being the number of states of the automaton. Such a
“matricial automaton” can be evaluated into a regular expression by taking the
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product u ·M? · v, which is a scalar. The various classes of automata can be
recovered by imposing conditions on the coefficients of the three matrices. For
instance, a non-deterministic finite automaton (NFA) is such that u and v are
01-vectors and the coefficients of M are sums of letters.

Given a regular expression x, we construct a deterministic finite automaton
(DFA) (u,M, v) such that KA ` x = uM?v, as follows.

1. First construct a NFA with epsilon transitions (u′′,M ′′, v′′), such that KA `
x = u′′M ′′?v′′. This is easily done by induction on x, using Thompson con-
struction [31] (which is compositional, unlike the construction we used in [9]).

2. Remove epsilon transitions to obtain a NFA (u′,M ′, v′) such that KA `
u′′M ′′?v′′ = u′M ′?v′. We do it purely algebraically, in one line. In particular
the transitive closure of epsilon transitions is computed using Kleene star on
matrices. (Unlike in [9] we do not need a dedicated algorithm for this.)

3. Use the powerset construction to convert this NFA into a DFA (u,M, v) such
that KA ` u′M ′?v′ = uM?v. Again, this is done algebraically, and we do
not need to perform the standard ‘accessible subsets’ optimisation.

We can prove that for any DFA (u,M, v), R(uM?v) is the language recognised
by the DFA. Therefore, to obtain Theorem 2, it suffices to prove that if two DFA
(u,M, v) and (s,N, t) recognise the same language, then KA ` uM?v = sN?t.
For this last step, it suffices to exhibit a Boolean matrix that relates exactly
those states of the two DFA that recognise the same language. We need for
that an algorithm to check language equivalence of DFA states; we reduce the
problem to DFA emptiness, and we perform a simple reachability analysis.

All in all, the KA completeness proof itself only requires us 124 lines of
specifications, and 119 lines of proofs (according to coqwc).

2.2 Completeness of KAT axioms

To obtain KAT completeness (Theorem 1), Kozen and Smith [24] define a func-
tion ·̂ on KAT expressions that expands the expressions in such a way that we
have KAT ` x = y iff KA ` x̂ = ŷ. While this function can be thought as
a reduction of KAT to KA, it cannot be used in practice: it produces expres-
sions that are almost systematically exponentially larger than the given ones.
It is however sufficient to establish completeness; as explained earlier, we defer
actual computations to a completely different algorithm (§3).

More precisely, the function ·̂ is defined in such a way that we have:

KAT ` x̂ = x (i)

G(x̂) = R(x̂) (ii)

6
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We deduce KAT completeness as follows:

G(x) = G(y)

⇔ G(x̂) = G(ŷ) (G is a KAT morphism, and (i))

⇔ R(x̂) = R(ŷ) (by (ii))

⇒ KA ` x̂ = ŷ (KA completeness)

⇒ KAT ` x̂ = ŷ (any KAT is a KA)

⇔ KAT ` x = y (by (i))

(Note that the last equation entails the first one, so that all these statements
are in fact equivalent.)

The function ·̂ is defined recursively over KAT expressions, using an inter-
mediate datastructure: formal sums of externally guarded terms (i.e., either an
atom, or a product of the form αxβ). The case of a starred expression x? is
quite involved: x̂? is defined by an internal recursion on the length of the formal
sum corresponding to x̂. The proof of the first equation (i) is not too difficult to
formalise, using appropriate tools for finite sums (i.e., a simplified form of big
operators [7], which we actually use a lot in the whole development). The second
one (ii) is more cumbersome, notably because we must deal with the two implicit
coercions appearing in its statement: formally, it has to be stated as follows:

i(G(x̂)) = R(j(x̂)) ,

where i takes a guarded string language and returns a finite word language on
the alphabet Σ ] Θ ] Θ, and j takes a KAT expression and returns a regular
expression over this extended alphabet, by pushing all negations to the leaves.

Apart from the properties of these coercion functions, the proof of (ii) mainly
consists in rather technical arguments about regular and guarded string lan-
guages concatenation. All in all, once KA completeness has been proved, KAT
completeness requires us 278 lines of specifications, and 360 lines of proofs.

3 Decision procedure

To check whether two expressions denote the same language of guarded strings,
we use an algorithm based on a notion of partial derivatives for KAT expressions.
Derivatives were introduced by Brzozowski [10] for regular expressions; they
make it possible to define a deterministic automaton where the states of the
automaton are the regular expressions themselves.

Derivatives can be extended to KAT expressions in a very natural way [22]: we
first define a Boolean function εα, that indicates whether an expression accepts
the single atom α; this function is then used to define the derivation function
δα,p, that intuitively returns what remains of the given expression after reading
the atom α and the letter p. These two functions make it possible to give a
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δ′α,p(x+ y) = δ′α,p(x) ∪ δ′α,p(y)

δ′α,p(xy) =

{
δ′α,p(x)y ∪ δ′α,p(y) if εα(x)

δ′α,p(x)y otherwise

δ′α,p(x
?) = δ′α,p(x)x?

δ′α,p(q) =

{
{1} if p = q

∅ otherwise

δ′α,p([a]) = ∅

Fig. 1. Partial derivatives for KAT expressions

coalgebraic characterisation of the function G, which underpins the correctness
of the algorithm we sketch below:

G(x)(α) = εα(x) G(x)(αpu) = G(δα,p(x))(u) .

Like with standard regular expressions, the set of derivatives of a given KAT
expression (i.e., the set of expressions that can be obtained by repeatedly deriv-
ing w.r.t. arbitrary atoms and letters) can be infinite. To recover finiteness, we
switch to partial derivatives [4]. Their generalisation to KAT should be folklore;
we define them in Fig. 1. We use the notation Xy to denote the set {xy | x ∈ X}
when X is a set of expressions and y is an expression. The partial derivation
function δ′α,p returns a (finite) set of expressions rather than a single one; this
corresponds to the fact that we build a non-deterministic automaton. Still abus-
ing notations, by letting a set of expressions denote the sum of its elements, we
prove that KAT ` δα,p(x) = δ′α,p(x).

Now call bisimulation any relation R between sets of expressions such that
whenever X R Y , we have

– ε(X) = ε(Y ) and
– ∀α ∈ At, ∀p ∈ Σ, δ′α,p(X) R δ′α,p(Y ).

We show that if there is a bisimulation R such that X R Y , then G(X) = G(Y )
(the converse also holds). This gives us an algorithm to decide language equiva-
lence of two KAT expressions x, y: it suffices to try to construct a bisimulation
that relates the singletons {x} and {y}. This algorithm terminates because the
set of partial derivatives reachable from a pair of expressions is finite (we do not
need to formalise this fact since we just need the correctness of this algorithm).

There is a lot of room for optimisation in our implementation—for instance,
we use unordered lists to represent binary relations. An important point in our
design is that such optimisations can be introduced and proved correct indepen-
dently from the completeness proof for KAT, which gives us much more flexibility
than in our previous work on Kleene algebra [9].

3.1 Building a reflexive tactic

Using standard methodology [1, 8, 14], we finally pack the previous ingredients
into a Coq reflexive tactic called kat, allowing us to close automatically any goal
which belongs to the equational theory of KAT.
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The tactic works on any model of KAT: those already declared in the library
(relations, languages, matrices, traces), but also the ones declared by the user.
The reification code is written in OCaml; it is quite complicated for at least two
reasons: KAT is a two-sorted structure, and we actually deal with “typed” KAT,
as explained in §1.2, which requires us to work with a dependently typed syntax.

For the sake of simplicity, the Coq algorithm we implemented for KAT does
not produce a counter-example in case of failure. To be able to give such a
counter-example to the user, we actually run an OCaml copy of the algorithm
first (extracted from Coq, and modified by hand to produce counter-examples).
This has two advantages: the tactic is faster in case of failure, and the counter-
example—a guarded string—can be pretty-printed in a nicer way.

4 Eliminating hypotheses

The above kat tactic works for the equational theory of KAT, i.e., the (in)equations
that hold in any model of KAT, under any interpretation. In particular, this tac-
tic does not make use of any hypothesis which is specific to the model or to the
interpretation. Some hypotheses can however be exploited [11,15]: those having
one of the following shapes.

(i) x = 0;
(ii) [a]x = x[b], [a]x ≤ x[b], or x[b] ≤ [a]x;

(iii) x ≤ [a]x or x ≤ x[a]
(iv) a = b or a ≤ b;
(v) [a]p = [a] or p[a] = [a], for atomic p (p ∈ Σ);

Equations of the first kind (i) are called “Hoare” equations, for reasons to
become apparent in §5.2. They can be eliminated using the following implication:{

x+ uzu = y + uzu

z = 0
entails x = y . (†)

This implication is valid for any term u, and the method is complete [15] when
u is taken to be the universal KAT expression, Σ?. Intuitively, for this choice
of u, uzu recognizes all guarded strings that contain a guarded string of z as
a substring. Therefore, when checking that x + uzu = y + uzu are language
equivalent rather than x = y, we rule out all counter-examples to x = y that
contain a substring belonging to z: such counter-examples are irrelevant since z
is known to be empty.

Equations of the shape (iii) and (iv) are actually special cases of those of
the shape (ii), which are in turn equivalent to Hoare equations. For instance,
we have [a]x ≤ x[b] iff [a]x[¬b] = 0. Moreover, two hypotheses of shape (i) can
be merged into a single one using the fact that x = 0 ∧ y = 0 iff x + y = 0.
Therefore, we can aggregate all hypotheses of shape (i-iv) into a single one (of
shape (i)), and use the above technique just once.

9

ha
l-0

07
85

96
9,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

13



Hypotheses of shape (v) are handled differently, using the following equivalence:

[a]p = [a] iff p = [¬a]p+ [a] , (‡)

This equivalence allows us to substitute [¬a]p+[a] for p in the considered goal—
whence the need for p to be atomic. Again, the method is complete [15], i.e.,

KAT ` ([a]p = [a]⇒ x = y) iff KAT ` xθ = yθ (θ = {p 7→ [¬a]p+ [a]})

4.1 Automating elimination of hypotheses in Coq

The previous techniques to eliminate some hypotheses in KAT can be easily
automated in Coq. We first prove once and for all the appropriate equivalences
and implications (the tactic kat is useful for that). We then define some tactics
in Ltac that collect hypotheses of shape (i-iv), put them into shape (i), and ag-
gregate them into a single one which is finally used to update the goal according
to (†). Separately, we define a tactic that rewrites in the goal using all hypothe-
ses of shape (v), through (‡). Finally, we obtain a tactic called hkat, that just
preprocesses the conclusion of the goal using all hypotheses of shape (i-v) and
then calls the kat tactic. Note that the completeness of this method [15] is a
meta-theorem; we do not need to formalise it.

5 Case studies

We now present some examples of Coq formalisations where one can take ad-
vantage of our library.

5.1 Bigstep semantics of ‘while’ programs

The bigstep semantics of ‘while’ programs is teached in almost any course on
semantics and programming languages. Such programs can be embedded into
KAT in a straightforward way [21], thus providing us with proper tools to reason
about them. Let us formalise such a language in Coq.

Assume a type state of states, a type loc of memory locations, and an update

function allowing to update the value of a memory location. Call arithmetic
expression any function from states to natural numbers, and Boolean expression
any function from states to Booleans (we use a partially shallow embedding).
The ‘while’ programming language is defined by the inductive type below:

Variable loc, state: Set.
Variable update: loc → nat → state → state.

Definition expr := state → nat.
Definition test := state → bool.

Inductive prog :=
| skp

| aff (l: loc) (e: expr)
| seq (p q: prog)
| ite (b: test) (p q: prog)
| whl (b: test) (p: prog).

The bigstep semantics of such programs is given as a “state transformer”, i.e.,
a binary relation between states. Following standard textbooks, one can define
this semantics in Coq using an inductive predicate:
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Inductive bstep: prog → rel state state :=
| s_skp: ∀ s, bstep skp s s

| s_aff: ∀ l e s, bstep (aff l e) s (update l (e s) s)
| s_seq: ∀ p q s s’ s’’, bstep p s s’ → bstep q s’ s’’ → bstep (seq p q) s s’’
| s_ite_ff: ∀ b p q s s’, ¬ b s → bstep q s s’ → bstep (ite b p q) s s’
| s_ite_tt: ∀ b p q s s’, b s → bstep p s s’ → bstep (ite b p q) s s’
| s_whl_ff: ∀ b p s, ¬ b s → bstep (whl b p) s s

| s_whl_tt: ∀ b p s s’, b s → bstep (seq p (whl b p)) s s’ → bstep (whl b p) s s’.

Alternatively, one can define this semantic through the relational model of KAT,
by induction over the program structure:

Fixpoint bstep (p: prog): rel state state :=
match p with

| skp ⇒ 1
| seq p q ⇒ bstep p·bstep q

| aff l e ⇒ upd l e

| ite b p q ⇒ [b]·bstep p+ [¬b]·bstep q

| whl b p ⇒ ([b]·bstep p)?·[¬b]
end.

(Notations come for free since binary relations are already declared as a model of
KAT in our library.) The ‘skip’ instruction is interpreted as the identity relation;
sequential composition is interpreted by relational composition. Assignments are
interpreted using an auxiliary function, defined as follows:

Definition upd l e: rel state state := fun s s’ ⇒ s’ = update l (e s) s.

For the ‘if-then-else’ statement, the Boolean expression b is a predicate on states,
i.e., a test in our relational model of KAT; this test is used to guard both branches
of the possible execution paths. Accordingly for the ‘while’ loop, we iterate the
body of the loop guarded by the test, using Kleene star. We make sure one cannot
exit the loop before the condition gets false by post-guarding the iteration with
the negation of this test.

This alternative definition is easily proved equivalent to the previous one.
Its relative conciseness makes it easier to read; more importantly, this definition
allows us to exploit all theorems and tactics about KAT, for free. For instance,
suppose that one wants to prove some program equivalences. First define pro-
gram equivalence, through the bigstep semantics:

Notation "p ∼ q" := (bstep p == bstep q).

(The “==” symbol denotes equality in the considered KAT model; in this case,
relational equality.) The following lemmas about unfolding loops and dead code
elimination, can be proved automatically.

Lemma two_loops b p: whl b (whl b p) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(([b]·bstep p)?·[¬b]))?·[¬b] == ([b]·bstep p)?·[¬b] *)

Lemma fold_loop b p: whl b (p ; ite b p skp) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(bstep p·([b]·bstep p+ [¬b]·1)))?·[¬b] == ([b]·bstep p)?·[¬b] *)
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Lemma dead_code a b p q r: whl (a∨ b) p ; ite b q r ∼ whl (a∨ b) p ; r.
Proof. simpl. kat. Qed.
(* ([a∨ b]·bstep p)?·[¬(a∨ b)]·([b]·bstep q+ [¬b]·bstep r)

== ([a∨ b]·bstep p)?·[¬(a∨ b)]·bstep r *)

(The semicolon in program expressions is a notation for sequential composition;
the comments below each proof show the intermediate goal where the bstep

fixpoint has been simplified, thus revealing the underlying KAT equality.)
Of course, the kat tactic cannot prove arbitrary program equivalences: the

theory of KAT only deals with the control-flow graph of the programs and with
the Boolean expressions, not with the concrete meaning of assignments or arith-
metic expressions. We can however mix automatic steps with manual ones. Con-
sider for instance the following example, where we prove that an assignment can
be delayed. Our tactics cannot solve it automatically since some reasoning about
assignments is required; however, by asserting manually a simple fact (in this
case, an equation of shape (ii)), the goal becomes provable by the hkat tactic.

Definition subst l e (b: test): test := fun s ⇒ b (update l (e s) s).
Lemma aff_ite l e b p q: (l←e; ite b p q) ∼ (ite (subst l e b) (l←e; p) (l←e; q)).
Proof.
simpl. (* upd l e·([b]·bstep p+ [¬b]·bstep q) ==

[subst l e b]·(upd l e·bstep p)·[¬subst l e b]·(upd l e·bstep q) *)

assert (upd l e·[b] == [subst l e b]·upd l e) by (cbv; firstorder; subst; eauto).
hkat.

Qed.

5.2 Hoare logic for partial correctness

Hoare logic for partial correctness [16] is subsumed by KAT [21]. The key in-
gredient in Hoare logic is the notion of a “Hoare triple” {A} p {B}, where p is
a program, and A,B are two formulas about the memory manipulated by the
program, respectively called pre- and post-conditions. A Hoare triple {A} p {B}
is valid if whenever the program p starts in some state s satisfying A and termi-
nates in a state s′, then s′ satisfies B. Such a statement can be translated into
KAT as a simple equation:

[A]p[¬B] = 0

Indeed, [A]p[¬B] = 0 precisely means that there is no execution path along
p that starts in A and ends in ¬B. Such equations are Hoare equations (they
have the shape (i) from §4), so that they can be eliminated automatically. As
a consequence, inference rules of Hoare logic can be proved automatically using
the hkat tactic. For instance, for the ‘while’ rule, we get the following script:

Lemma rule_whl A b p: {A∧ b} p {A} → {A} whl b p {A∧¬b}.
Proof. simpl. hkat. Qed.
(* [A∧ b]·bstep p·[¬A] == 0 → [A]·(([b]·bstep p)?·[¬b])·[¬(A∧¬b)] == 0 *)
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5.3 Compiler optimisations

Kozen and Patron [23] use KAT to verify a rather large range of standard
compiler optimisations, by equational reasoning. Citing their abstract, they
cover “dead code elimination, common subexpression elimination, copy propaga-
tion, loop hoisting, induction variable elimination, instruction scheduling, alge-
braic simplification, loop unrolling, elimination of redundant instructions, array
bounds check elimination, and introduction of sentinels”. They cannot use au-
tomation, so that the size of their proofs ranges from a few lines to half a page
of KAT computations.

We formalised all those equational proofs using our library. Most of them
can actually be solved instantaneously, by a simple call to the hkat tactic. For
the few remaining ones, we gave three to four lines proofs, consisting of first
rewriting using hypotheses that cannot be eliminated, and then a call to hkat.

The reason why hkat performs so well is that most assumptions allowing to
optimise the code in these examples are of the shape (i-v). For instance, to state
that an instruction p has no effect when [a] is satisfied, we use an assumption
[a]p = [a]. Similarly, to state that the execution of a program x systematically
enforces [a], we use an assumption x = x[a]. The assumptions that cannot be
eliminated are typically those of the shape pq = qp: “the instructions p and q
commute”; such assumptions have to be used manually.

5.4 Flowchart schemes

The last example we discuss here is due to Paterson, it consists in proving the
equivalence of two flowchart schemes (i.e., goto programs—see Manna’s book [26]
for a complete description of this model). The two schemes are given in Ap-
pendix A; Manna proves their equivalence using several successive graph transor-
mations. His proof is really high-level and informal; it is one page long, plus three
additional pages to draw intermediate flowcharts schemes. Angus and Kozen [3]
give a rather detailed equational proof in KAT, which is about six pages long.
Using the hkat tactic together with some ad-hoc rewriting tools, we managed to
formalise Angus and Kozen’s proof in three rather sparse screens.

Like in Angus and Kozen’s proof, we progressively modify the KAT expres-
sion corresponding to the first schema, to make it evolve towards the expression
corresponding to the second schema. Our mechanised proof thus roughly con-
sists in a sequence of transitivity steps closed by hkat, allowing us to perform
some rewriting steps manually and to move to the next step. This is illustrated
schematically by the code presented in Fig. 2.

Most of our transitivity steps (the yi’s) already appear in Angus and Kozen’s
proof; we can actually skip a lot of their steps, thanks to hkat. Some of these
simplifications can be spectacular: for instance, they need one page to justify
the passage between their expressions (24) and (27), while a simple call to hkat

does the job; similarly for the page they need between their steps (38) and (43).
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Lemma Paterson: x_1 == z.
Proof.
transitivity y_1. hkat. (* x_1 == y_1 *)

a few rewriting steps transforming y_1 into x_2.
transitivity y_2. hkat. (* x_2 == y_2 *)

a few rewriting steps transforming y_2 into x_3.
(* ... *)

transitivity y_19. hkat. (* x_19 == y_19 *)

a few rewriting steps transforming y_19 into x_20.
hkat. (* x_20 == z *)

Qed.

Fig. 2. Squeleton for the proof of equivalence of Paterson’s flowchart schems

6 Related works

Several formalisations of algorithms and results related to regular expressions
and languages have been proposed since we released our Coq reflexive decision
procedure for Kleene algebra [9]: partial derivatives for regular expressions [2],
regular expression equivalence [6, 12, 25, 27], regular expression matching [17].
None of these works contains a formalised proof of completeness for Kleene
algebra, so that they cannot be used to obtain a general tactic for KA (note
however that Krauss and Nipkow [25] obtain an Isabelle/HOL tactic for binary
relations using a nice trick to sidestep the completeness proof—but they cannot
deal with other models of KA).

On the more algebraic side, Struth et al. [5, 13] showed how to formalise
and use relation algebra and Kleene algebra in Isabelle/HOL; they exploit the
automation tools provided by this assistant, but they do not try to define decision
procedures specific to Kleene algebra, and they do not prove completeness.

To the best our knowledge, the only formalisation of KAT prior to the present
work is due to Pereira and Moreira [28], in Coq. They state all axioms of KAT,
derive some simple consequences of these axioms (e.g., Boolean disjunction dis-
tribute over conjunction, Kleene star is monotone), and use them to manually
prove the inference rules of Hoare logic, as we did automatically in §5.2. They
do not provide models, automation tools, or completeness proof.

7 Conclusion

We presented a rather exhaustive Coq formalisation of Kleene algebra with tests:
axiomatisation, models, completeness proof, decision procedure, elimination of
hypotheses. We then showed several use-cases for the corresponding library:
proofs about while programs and Hoare logic, certification of standard compiler
optimisations, and equivalence of flowchart schemes.

Most of the theoretical material is due to Kozen et al. [3, 15, 18–24], so that
our contribution mostly lies in the Coq mechanisation of these ideas. The com-
pleteness proof was particularly challenging to formalise, and lots of aspects of
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this work could not be explained in this extended abstract: how to encode the
algebraic hierarchy, how to work efficiently with finite sets and finite sums, how
to exploit symmetry arguments, reflexive normalisation tactics, tactics about
lattices, finite ordinals and encodings of set-theoretic constructs in ordinals. . .

The Coq library is available online [30]; it is documented and axiom-free; its
overall structure is given in Appendix B. This library actually has a larger scope
than what we presented here: our long-term goal is to formalise and automate
other fragments of relation algebra (residuated structures, Kleene algebra with
converse, allegories. . . ), so that the library is designed to allow for such exten-
sions. For instance normalisation tactics and an ad-hoc semi-decision procedures
are already defined for algebraic structures beyond Kleene algebra and KAT.

According to coqwc, the library consists of 4377 lines of specifications and
3020 lines of proofs, that distribute as follows. Overall, this is slightly less than
our previous library for KA [9] (5105+4315 lines), and we do much more: not
only we handle KAT, but we also lay the ground for the mechanisation of other
fragments of relation algebra, as explained above.

specifications proofs comments
ordinals, comparisons, finite sets. . . 674 323 225
algebraic hierarchy 490 374 216
models (languages, relations, expressions. . . ) 1279 461 404
linear algebra, matrices 534 418 163
completeness, decisions procedure, tactics 1400 1444 740

The resulting theorems and tactics allowed us to shorten significantly a
number of paper proofs—those about Hoare logic, compiler optimisations, and
flowchart schemes. Getting a way to guarantee that such proofs are correct is
important: although mathematically simple, they tend to be hard to proofread
(we invite the skeptical reader to check Angus and Kozen’s paper proof of Pater-
son example [3]). Moreover, automation greatly helps when searching for such
proofs: being able to get either a proof or a counter-example for any proposed
equation is a big plus: it makes it much easier to progress in the overall proof.
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A Paterson’s flowchart schemes

Here are the two flowchart schemes we proved equivalent (§5.4), they appear
in [26, pages 254 and 258].

Schema S6A Schema S6E

Following Angus and Kozen’s notations [3], these two schemes can be converted
into the following KAT expressions:

S6A = x1p41p11q214q311 ([¬a1]p11q214q311)
?

[a1]p13(
([¬a4] + [a4]([¬a2]p22)?[a2 ∧ ¬a3]p41p11) q214q311 ([¬a1]p11q214q311)

?
[a1]p13

)?
[a4] ([¬a2]p22)

?
[a2 ∧ a3]z2

S6E = s1[a1]q1 ([¬a1]r1[a1]q1)
?

[a1]z1 ,

where the tests and actions are interpreted as follows:

xi , yi ← x zi , z ← yi ai , P (yi)

pij , yi ← f(yj) qijk , yi ← g(yj , yk)

(Note that we actually renamed the local variable y from schema S6E into y1,
for the sake of uniformity.)

17

ha
l-0

07
85

96
9,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

13



B Overall structure of the library

Here is a succinct description of each module from the library:

Utilities
common: basic tactics and definitions used throughout the library
comparisons: types with decidable equality and ternary comparison function
positives: simple facts about binary positive numbers
ordinal: finite ordinals, finite sets of finite ordinals
pair: encoding pairs of ordinals as ordinals
powerfix: simple pseudo-fixpoint iterator
lset: sup-semilattice of finite sets represented as lists

Algebraic hierarchy
level: bitmasks allowing us to refer to an arbitrary point in the hierarchy
lattice: “flat” structures, from preorders to Boolean lattices
monoid: typed structures, from po-monoids to residuated Kleene lattices
kat: Kleene algebra with tests
kleene: Basic facts about Kleene algebra
normalisation: normalisation and semi-decision tactics for relation algebra

Models
prop: distributive lattice of propositions
boolean: Boolean trivial lattice, extended to a monoid.
rel: heterogeneous binary relations
lang: word languages
traces: trace languages
atoms: atoms of the free Boolean lattice over a finite set
glang: guarded string languages
lsyntax: free lattice (Boolean expressions)
syntax: free relation algebra
regex: regular expressions
gregex: KAT expressions (typed—for KAT completeness)
ugregex: untyped KAT expressions (untyped—for KAT decision procedure)

Untyping theorems
untyping: untyping theorem for structures below KA with converse
kat_untyping: untyping theorem for guarded string languages

Linear algebra
sups: finite suprema/infima (a la bigop, from ssreflect)
sums: finite sums
matrix: matrices over all structures supporting this construction
matrix_ext: additional operations and properties about matrices
rmx: matrices of regular expressions
bmx: matrices of Booleans

Automata, completeness
dfa: deterministic finite state automata, decidability of language inclusion
nfa: matricial non-deterministic finite state automata
ugregex_dec: decision of language equivalence for KAT expressions
ka_completeness: (untyped) completeness of Kleene algebra
kat_completeness: (typed) completeness of Kleene algebra with tests
kat_reification: tools and definitions for KAT reification
kat_tac: decision tactics for KA and KAT, elimination of hypotheses
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Here are the dependencies between these modules:

atoms

booleanlsyntax

monoid prop

sups

positives

bmx

matrix

normalisationsums

lattice

ordinal lset

common

comparisons

denum

dfa

pair

glang

kat

traces kleene

gregex

ka_completeness

nfa

rmx

kat_completeness

untyping

syntax

kat_reification

kat_tac

kat_untyping ugregex_dec

ugregex

powerfixlang

level

matrix_ext

regexrel

19

ha
l-0

07
85

96
9,

 v
er

si
on

 1
 - 

7 
Fe

b 
20

13
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Abstract. Checking language equivalence (or inclusion) of finite au-
tomata is a classical problem in Computer Science, which has recently
received a renewed interest and found novel and more effective solu-
tions, such as approaches based on antichains or bisimulations up-to.
Several notions of equivalence (or preorder) have been proposed for the
analysis of concurrent systems. Usually, the problem of checking these
equivalences is reduced to checking bisimilarity. In this paper, we take a
different approach and propose to adapt algorithms for language equiva-
lence to check one prime equivalence in concurrency theory, must testing
semantics. To achieve this transfer of technology from language to must
semantics, we take a coalgebraic outlook at the problem.

1 Introduction

Determining whether two systems exhibit the same behavior under a given no-
tion of equivalence is a recurring problem in different areas from Computer
Science, from compiler analysis, to program verification, to concurrency theory.
A widely accepted notion of equivalence is that two systems are equivalent if
they behave the same when placed in the same context.

We will focus on the equivalence problem in the context of concurrency theory
and process calculi. Systems are processes and contexts will be given by sets
of tests a process should obey. This leads us to consider standard behavioural
equivalences and preorders for process calculi, in particular must testing [14]: two
systems are equivalent if they pass exactly the same tests, in all their executions.

The problem of automatically checking such testing equivalences is usually
reduced to the problem of checking bisimilarity, as proposed in [12] and imple-
mented in several tools [13, 10]. In a nutshell, equivalence is checked as follows.
Two processes are considered, given by their labeled transition systems (LTS’s).
Then, the given LTS’s are first transformed into “acceptance graphs”, using a
construction which is reminiscent of the determinization of non-deterministic
automata (NDA). Finally, bisimilarity is checked via the partition refinement
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?? Also affiliated to Centrum Wiskunde & Informatica (Amsterdam, The Netherlands)
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algorithm [17, 22]. And one can answer the question of testing equivalence be-
cause gladly bisimilarity in acceptance graphs coincides with testing equivalence
in the original LTS’s.

The partition refinement algorithm, which is the best-known for minimizing
LTS’s w.r.t. bisimilarity, is analogous to Hopcroft’s algorithm [16] for minimiz-
ing deterministic automatata (DA) w.r.t. language equivalence. In both cases,
a partition of the state space is iteratively refined until a fixpoint is reached.
Thus, the above procedure for checking testing semantics [12] is in essence the
same as the classical procedure for checking language equivalence of NDA: first
determinize and then compute a (largest) fixpoint.

In this work, we propose to transfer other algorithms for language equiva-
lence, which are not available for bisimilarity, to the world of testing semantics.
In order to achieve this, we take a coalgebraic perspective at the problem in
hand, which allows us to study the constructions and the semantics in a uniform
fashion. The abstract framework of coalgebras makes it possible to study differ-
ent kinds of state based systems in a uniform way [26]. In particular, both the
determinization of NDA’s and the construction of acceptance graphs in [12] are
instances of the generalized powerset construction [28, 20, 11]. This is the key
observation of this work, which enables us to devise the presented algorithms.

First, we consider Brzozowski’s algorithm [9] which transforms an NDA into
the minimal deterministic automaton accepting the same language in a rather
magical way: the input automaton is reversed (by swapping final and initial
states and reversing its transitions), determinized, reversed and determinized
once more. This somewhat intriguing algorithm can be explained in terms of
duality and coalgebras [4, 2]. The coalgebraic outlook in [4] has several general-
ization of Brzozowski’s algorithm to other types of transition systems, including
Moore machines. This paves the way to adapt Brzozowski’s algorithm for check-
ing must semantics, which we will do in this paper.

Next, we consider several more efficient algorithms that have been recently
introduced in a series of papers [32, 1, 7]. These algorithms rely on different
kinds of (bi)simulations up-to, which are proof techniques originally proposed
for process calculi [21, 27]. From these algorithms, we choose the one in [7] (HKC)
which has been introduced by a subset of the authors and which, as we will
show, can be adapted to must testing using a coalgebraic characterization of
must equivalence, which we will also introduce.

Comparing these three families of algorithms (partition refinement [12], Brzo-
zowski and bisimulations up-to) is not a simple task: both the problems of check-
ing language and must equivalence are PSPACE-complete [17] but, in both cases,
the theoretical complexity appears not to be problematic in practice, so that
an empirical evaluation is more desirable. In [31, 29], experiments have shown
that Brzozowski’s algorithm performs better than Hopcroft for “high-density”
NDA’s, while Hopcroft is more efficient for generic NDA’s. Both algorithms ap-
pear to be rather inefficient compared to those of the new generation [32, 1, 7].
It is out of the scope of this paper to present an experimental comparison of
these algorithms and we confine our work to showing concrete examples where



HKC and Brzozowski’s algorithm are exponentially more efficient than the other
approaches.

Contributions. The main contributions of this work are:

– The coalgebraic treatment of must semantics (preorder and equivalence).
– The adaptation of HKC and Brzozowski’s algorithm for must semantics. For

the latter, this includes an optimization which avoids an expensive deter-
minization step.

– The evidence that the coalgebraic analysis of systems yields not only a good
mathematical theory of their semantics but also a rich playground to devise
algorithms.

– An interactive applet allowing one to experiment with these algorithms [6].

The full version of this paper [5] contains further optimizations for the algo-
rithms, their proofs of correctness, the formal connections with the work in [12]
and the results of experiments checking the equivalence of an ideal and a dis-
tributed multiway synchronisation protocol [23].

Related Work. Another coalgebraic outlook on must is presented in [8] which
introduces a fully abstract semantics for CSP. The main difference with our work
consists in the fact that [8] builds a coalgebra from the syntactic terms of CSP,
while here we build a coalgebra starting from LTS’s via the generalized power-
set construction [28]. Our approach puts in evidence the underlying semilattice
structure which is needed for defining bisimulations up-to and HKC. As a further
coalgebraic approach to testing, it is worth mentioning test-suites [18], which
however do not tackle must testing. A coalgebraic characterization of other se-
mantics of the linear time/branching time spectrum is given in [3].

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X × Y is the Cartesian product of X
and Y , X + Y is the disjoint union and XY is the set of functions f : Y → X.
The collection of finite subsets of X is denoted by P(X) (or just PX). These
operations, defined on sets, can analogously be defined on functions [26], yielding
(bi-)functors on Set, the category of sets and functions. For a set of symbols A,
A∗ denotes the set of all finite words over A; ε the empty word; and w1 · w2

(or w1w2) the concatenation of words w1, w2 ∈ A∗. We use 2 to denote the set
{0, 1} and 2A

∗
to denote the set of all formal languages over A. A semilattice with

bottom (X,t, 0) consists of a set X and a binary operation t : X ×X → X that
is associative, commutative, idempotent (ACI) and has 0 ∈ X (the bottom) as
identity. A homomorphism (of semilattices with bottom) is a function preserving
t and 0. Every semilattice induces a partial order defined as x v y iff xt y = y.
The set 2 is a semilattice when taking t to be the ordinary Boolean disjunction.
Also the set of all languages 2A

∗
carries a semilattice structure where t is the

union of languages and 0 is the empty language. More generally, for any set S,
P(S) is a semilattice where t is the union of sets and 0 is the empty set. In the
rest of the paper we will indiscriminately use 0 to denote the element 0 ∈ 2, the



empty language in 2A
∗

and the empty set in P(S). Analogously, t will denote
the “Boolean or” in 2, the union of languages in 2A

∗
and the union of sets in

P(S).
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2 Background

The core of this paper is about the problem of checking whether two states in a
transition system are testing equivalent by reducing it to the classical problem
of checking language equivalence. We will consider different types of transition
systems, deterministic and non-deterministic, which we will formally describe
next, together with their language semantics.

A deterministic automaton (DA) over the alphabet A is a pair (S, 〈o, t〉),
where S is a set of states and 〈o, t〉 : S → 2× SA is a function with two compo-
nents: o, the output function, determines whether a state x is final (o(x) = 1)
or not (o(x) = 0); and t, the transition function, returns for each state and each
input letter, the next state. From any DA, there exists a function [[−]] : S → 2A

∗

mapping states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) [[x]](a · w) = [[t(x)(a)]](w) (1)

The language [[x]] is called the language accepted by x. Given an automaton
(S, 〈o, t〉), the states x, y ∈ S are said to be language equivalent iff they accept
they same language.

A non-deterministic automaton (NDA) is similar to a DA but the transition
function returns a set of next-states instead of a single state. Thus, an NDA
over the input alphabet A is a pair (S, 〈o, t〉), where S is a set of states and
〈o, t〉 : S → 2×(P(S))A. An example is depicted below (final states are overlined,
labeled edges represent transitions).

x

a

<<zaoo
a ''

y
a
hh u

a ((

a

;;w
a
hh vaoo (2)

Classically, in order to recover language semantics of NDA, one uses the
subset (or powerset) construction, transforming every NDA (S, 〈o, t〉) into the



DA (P(S), 〈o], t]〉) where o] : P(S) → 2 and t] : P(S) → P(S)A are defined for
all X ∈ P(S) as

o](X) =
⊔
x∈X

o(x) t](X)(a) =
⊔
x∈X

t(x)(a) .

For instance with the NDA from (2), o]({x, y}) = 0t1 = 1 (i.e., the state {x, y}
is final) and t]({x, y})(a) = {y} t {z} = {y, z} (i.e., {x, y} a→ {y, z}).

Since (P(S), 〈o], t]〉) is a deterministic automaton, we can now apply (1),
yielding a function [[−]] : P(S)→ 2A

∗
mapping sets of states to languages. Given

two states x and y, we say that they are language equivalent iff [[{x}]] = [[{y}]].
More generally, for two sets of states X,Y ⊆ S, we say that X and Y are
language equivalent iff [[X]] = [[Y ]].

In order to introduce the algorithms in full generality, it is important to
remark here that the sets 2, P(S), P(S)A, 2×P(S)A and 2A

∗
carry semilattices

with bottom and that the functions 〈o], t]〉 : P(S)→ 2×P(S)A and [[−]] : P(S)→
2A
∗

are homomorphisms.

2.1 Checking language equivalence via bisimulation up-to

We recall the algorithm HKC from [7]. We first define a notion of bisimulation on
sets of states. We make explicit the underlying notion of progression.

Definition 1 (Progression, Bisimulation). Let (S, 〈o, t〉) be an NDA. Given
two relations R,R′ ⊆ P(S) × P(S), R progresses to R′, denoted R � R′, if
whenever X R Y then

1. o](X) = o](Y ) and 2. for all a ∈ A, t](X)(a) R′ t](Y )(a).

A bisimulation is a relation R such that R� R.

This definition considers the states, the transitions and the outputs of the de-
terminized NDA. For this reason, the bisimulation proof technique is sound and
complete for language equivalence rather than for the standard notion of bisim-
ilarity by Milner and Park [21].

Proposition 1 (Coinduction [7]). For all X,Y ∈ P(S), [[X]] = [[Y ]] iff there
exists a bisimulation that relates X and Y .

For an example, we want to check the equivalence of {x} and {u} of the NDA
in (2). The part of the determinized NDA that is reachable from {x} and {u} is
depicted below. The relation consisting of dashed and dotted lines is a bisimu-
lation which proves that [[{x}]] = [[{u}]].

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a // {y, z} a // {x, y, z}

a

GG

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

(3)



The dashed lines (numbered by 1, 2, 3) form a smaller relation which is not a
bisimulation, but a bisimulation up-to congruence: the equivalence of {x, y} and
{u, v, w} can be immediately deduced from the fact that {x} is related to {u} and
{y} to {v, w}. In order to formally introduce bisimulations up-to congruence, we
need to define first the congruence closure c(R) of a relation R ⊆ P(S)×P(S).
This is done inductively, by the following rules:

X R Y

X c(R) Y X c(R) X

X c(R) Y

Y c(R) X (4)

X c(R) Y Y c(R) Z

X c(R) Z

X1 c(R) Y1 X2 c(R) Y2

X1 tX2 c(R) Y1 t Y2

Note that the term “congruence” here is intended w.r.t. the semilattice structure
carried by the state space P(S) of the determinized automaton. Intuitively, c(R)
is the smallest equivalence relation containing R and which is closed w.r.t t.

Definition 2 (Bisimulation up-to congruence). A relation R ⊆ P(S) ×
P(S) is a bisimulation up-to c if R� c(R), i.e., whenever X R Y then

1. o](X) = o](Y ) and 2. for all a ∈ A, t](X)(a) c(R) t](Y )(a).

Theorem 1 ([7]). Any bisimulation up-to c is contained in a bisimulation.

The corresponding algorithm (HKC) is given in Figure 1 (left). Starting from an
NDA (S, 〈o, t〉) and considering the determinized automaton (P(S), 〈o], t]〉), it
can be used to check language equivalence of two sets of states X and Y . Starting
from the pair (X,Y ), the algorithm builds a relation R that, in case of success,
is a bisimulation up-to congruence. In order to do that, it employs the set todo
which, intuitively, at any step of the execution, contains the pairs (X ′, Y ′) that
must be checked: if (X ′, Y ′) already belongs to c(R ∪ todo), then it does not
need to be checked. Otherwise, the algorithm checks if X ′ and Y ′ have the same
outputs. If o](X ′) 6= o](Y ′) then X and Y are different, otherwise the algorithm
inserts (X ′, Y ′) in R and, for all a ∈ A, the pairs (t](X ′)(a), t](Y ′)(a)) in todo.
The check (X ′, Y ′) ∈ c(R∪todo) at step 2.2 is done with the rewriting algorithm
of [7, Section 3.4].

Proposition 2. For all X,Y ∈ P(S), [[X]] = [[Y ]] iff HKC(X,Y ).

The iterations corresponding to the execution of HKC({x}, {u}) on the NDA
in (2) are concisely described by the numbered dashed lines in (3). Observe that
only a small portion of the determinized automaton is explored; this fact usually
makes HKC more efficient than the algorithms based on minimization, that need
to build the whole reachable part of the determinized automaton.

2.2 Checking language equivalence via Brzozowski’s algorithm

The problem of checking language equivalence of two sets of states X and Y
of a non-deterministic finite automaton can be reduced to that of building the



minimal DA for [[X]] and [[Y ]] and checking whether they are the same (up to
isomorphism). The most well-known procedure consists in first determinizing
the NDA and then minimizing it with the Hopcroft algorithm [16]. Another
interesting solution is Brzozowski’s algorithm [9].

To explain the latter, it is convenient to consider a set of initial states I.
Given an NDA (S, 〈o, t〉) and a set of states I, Brzozowski’s algorithm computes
the minimal automaton for the language [[I]] by performing the 4 steps in Figure 1
(right).

The operation reverse and determinize takes as input an NDA (S, 〈o, t〉)
and returns a DA (P(S), 〈oR, tR〉) where the functions oR : P(S) → 2 and
tR : P(S) → P(S)A are defined for all X ∈ P(S) as oR(X) = 1 iff X ∩ I 6= 0
and tR(X)(a) = {x ∈ S | t(x)(a) ∩ X 6= 0}. The new initial state is the set of
accepting states of the original NDA: IR = {x | o(x) = 1}. The second step
consists in taking the part of (P(S), 〈oR, tR〉) which is reachable from IR. The
third and the fourth steps perform this procedure once more.

As an example, consider the NDA in (2) with the set of initial states I = {x}.
Brzozowski’s algorithm builds the minimal DA accepting [[{x}]] as follows. After
the first two steps, it returns the following DA where the initial state is {y}.

{y} a // {x, z} a // {z, y} a // {x, y, z} a~~

After steps 3 and 4, it returns the DA below with initial state {{x, z}{x, y, z}}.

{{x, z}{x, y, z}} a // {{y}{z, y}{x, y, z}} a // {{x, z}{z, y}{x, y, z}}

a
��

{{y}{x, z}{z, y}{x, y, z}} a
~~

Computing the minimal NDA in (2) with the set of initial states I = {u} results
in an isomorphic automaton, showing the equivalence of x and u.

2.3 Generalized Powerset Construction

The notions introduced above can be easily described using coalgebras. Given
a functor F : Set → Set, an F -coalgebra is a pair (S, f) where S is a set of
states and f : S → F (S) is its transition structure. F intuitively determines the
“type” of the transitions. An F -homomorphism from an F -coalgebra (S, f) to an
F -coalgebra (T, g) is a function h : S → T preserving the transition structure,
i.e., g ◦ h = F (h) ◦ f . An F -coalgebra (Ω,ω) is said to be final if for any F -
coalgebra (S, f) there exists a unique F -homomorphism [[−]] : S → Ω. Intuitively,
Ω represents the universe of “F -behaviours” and [[−]] represents the semantic
map associating states to their behaviours. Two states x, y ∈ X are said F -
behaviourally equivalent iff [[x]] = [[y]]. Such equivalence can be proved using
F -bisimulations [26]. For lack of space, we refer the reader to [25] for their
categorical definitions. Given a behaviour b ∈ Ω, the minimal coalgebra realizing
b is the part of (Ω,ω) that is reachable from b.



Let us exemplify for DA’s how these abstract notions yield the expected
concrete notions. DA’s are coalgebras for the functor F (S) = 2× SA. The final
coalgebra of this functor is the set 2A

∗
of formal languages over A, or more

precisely, the pair (2A
∗
, 〈ε, (−)a〉) where 〈ε, (−)a〉, given a language L, determines

whether or not the empty word is in the language (ε(L) = 1 or ε(L) = 0, resp.)
and, for each input letter a, returns the a-derivative of L: La = {w ∈ A∗ | aw ∈
L}. The unique map [[−]] into the final coalgebra 2A

∗
is precisely the map which

assigns to each state the language that it recognizes. For any language L ∈ 2A
∗
,

the minimal automaton for L is the part of (2A
∗
, 〈ε, (−)a〉) that is reachable

from L.

In Section 3, we will use Moore machines which are coalgebras for the functor
F (S) = B × SA. These are like DA’s, but with outputs in a fixed set B. The
unique F -homomorphism to the final coalgebra [[−]] : S → BA

∗
is defined exactly

as for DA’s by the equations in (1). Note that the behaviours of Moore machines
are functions ϕ : A∗ → B, rather than subsets of A∗. For each behaviour ϕ ∈
BA

∗
, there exists a minimal Moore machine realizing it.

Recall that an NDA is a pair (S, 〈o, t〉), where 〈o, t〉 : S → 2 × (P(S))A.
As explained above, to recover language semantics one needs to use the subset
construction, which transforms an NDA into a DA. More abstractly, this can
be captured by observing that the type functor of NDA’s – 2 × P(−)A – is
a composition of the functor F (S) = 2 × SA (that is the functor for DA’s)
and the monad T (S) = P(S). P-algebras are exactly semilattices with bottom
and P-algebra morphisms are the ones of semilattices with bottom. Now note
that (a) the F -coalgebra (P(S), 〈o], t]〉) resulting of the powerset construction
is a morphism of semilattices, (b) 2A

∗
carries a semilattice structure and (c)

[[−]] : P(S) → 2A
∗

is a morphism of semilattices. This is summarized by the
following commuting diagram:

S

〈o,t〉
��

{−}
// P(S)

〈o],t]〉vv

[[−]]
// 2A

∗

〈ε,(−)a〉
��

2× P(S)A id2×[[−]]A // 2× (2A
∗
)A

In the diagram above, one can replace 2 × −A and P by arbitrary F and T
as long as FT (S) carries a T -algebra structure. In fact, given an FT -coalgebra,
that is (S, f : S → FT (S)), if FT (S) carries a T -algebra structure h, then (a)
one can define an F -coalgebra (T (S), f ] = h ◦ Tf) where f ] : T (S)→ FT (S) is
a T -algebra morphism (b) the final F -coalgebra (Ω,ω) carries a T -algebra and
(c) the F -homomorphism [[−]] : T (S)→ Ω is a T -algebra morphism.

The F -coalgebra (T (S), f ]) is (together with the multiplication µ : TT (S)→
T (S)) a bialgebra for some distributive law λ : FT ⇒ TF (we refer the reader
to [19] for a nice introduction on this topic). The behavioural equivalence of
bialgebras can be proved either via bisimulation, or, like in Section 2.1, via
bisimulation up-to congruence [20, 25]: the result that justifies HKC (Theorem 1)



HKC(X,Y ):

(1) R is empty; todo is {(X ′, Y ′)};
(2) while todo is not empty , do

(2.1) extract (X ′, Y ′) from todo;
(2.2) if (X ′, Y ′) ∈ c(R ∪ todo) then continue;

(2.3) if o](X ′) 6= o](Y ′) then return false;
(2.4) for all a ∈ A,

insert (t](X ′)(a), t](Y ′)(a)) in todo;
(2.5) insert (X ′, Y ′) in R;

(3) return true;

Brzozowski :

(1) reverse and determinize;

(2) take the reachable part;

(3) reverse and determinize;

(4) take the reachable part.

Fig. 1: Left: Generic HKC algorithm, parametric on o], t] and c; Right: Generic Brzo-
zowski’s algorithm, parametric on reverse and determinize. Instantiations to lan-
guage and must equivalence in Sections 2 and 3.

generalises to this setting – the congruence being taken w.r.t. the algebraic struc-
ture µ. This is what allows us to move to must semantics.

3 Must semantics

The operational semantics of concurrent systems is usually given by labelled tran-
sition systems (LTS’s), labelled by actions that are either visible to an external
observer or internal actions (usually denoted by a special symbol τ). Different
kinds of semantics can be defined on these structures (e.g., linear or branching
time, strong or weak semantics). In this paper we consider must semantics [14]
which, intuitively, equates those systems that pass exactly the same tests, in all
their executions.

Before formally introducing must semantics as in [12], we fix some notations:
ε
=⇒ denotes

τ−→
∗

the reflexive and transitive closure of
τ−→ and, for a ∈ A,

a
=⇒ de-

notes
τ−→
∗ a−→ τ−→

∗
. For w ∈ A∗, w

=⇒ is defined inductively, in the obvious way. The
acceptance set of x after w is A(x,w) = {{a ∈ A | x′ a−→} | x w

=⇒ x′ ∧ x′ 6 τ−→}.
Intuitively, it represents the set of actions that can be fired after “maximal”
executions of w from x, those that cannot be extended by some τ -labelled tran-
sitions. The possibility of executing τ -actions forever is referred to as divergence.
We write x 6↓ whenever x diverges. Dually, the convergence relation x ↓ w for a
state x and a word w ∈ A∗ is inductively defined as follows: x ↓ ε iff x does not
diverge and x ↓ aw′ iff (a) x ↓ ε and (b) if x

a
=⇒ x′, then x′ ↓ w′. Given two sets

B,C ∈ PP(A), we write B ⊂⊂ C iff for all Bi ∈ B, there exists Ci ∈ C such
that Ci ⊆ Bi. With these ingredients, it is possible to introduce must preorder
and equivalence.

Definition 3 (Must semantics [12]). Let x and y be two states of an LTS.
We write x vmst y iff for all words w ∈ A∗, if x ↓ w then y ↓ w and A(y, w) ⊂⊂
A(x,w). We say that x and y are must-equivalent (x ∼mst y) iff x vmst y and
y vmst x.



As an example, consider the LTS depicted below. States x4, x5 and y1 are diver-
gent. All the other states diverge for words containing the letter b and converge
for words on a∗. For these words and states x, x1, x2, x3 and y, the corresponding
acceptance sets are {{a, b}}. In particular, note that A(x2, ε) is {{a, b}} and not
{{b}, {a, b}}. It is therefore easy to conclude that x, x1, x2, x3 and y are all must
equivalent.

x
b

''a //

a
��

x2
τ
��

b // x4 τ
zz

x1

a
GG

b

66x3
aoo b // x5

τ
OO

ya
$$ b // y1 τ

zz
(5)

3.1 A coalgebraic characterization of Must semantics

In what follows we show how vmst can be captured in terms of coalgebras. This
will further allow adapting the algorithms introduced in Section 2 for checking
∼mst and vmst.

First, we model LTS’s in terms of coalgebras (S, t : S → (1 +P(S))A), where
1 = {>} is the singleton set, and for x ∈ S,

t(x)(a) = >, if x 6↓ a t(x)(a) = {y | x a
=⇒ y}, otherwise.

Intuitively, a state x ∈ S that displays divergent behaviour with respect to an
action a ∈ A is mapped to >. Otherwise t computes the set of states that
can be reached from x through a (by possibly performing a finite number of
τ -transitions). At this point we need some additional definitions: for a function
ϕ : A→ P(S), I(ϕ) denotes the set of all labels “enabled” by ϕ, given by I(ϕ) =
{a ∈ A | ϕ(a) 6= 0}, while Fail(ϕ) denotes the set {Z ⊆ A | Z ∩ I(ϕ) = 0}.
With these definitions, we decorate the states of an LTS by means of an output
function o : S → 1 + P(P(A)) defined as follows:

o(x) = >, if x 6↓ o(x) =
⋃

x
τ−→x′

o(x′) if x
τ−→, o(x) = Fail(t(x)), otherwise.

Note that (S, 〈o, t〉) is an FT -coalgebra for the functor F (S) = (1 +PPA)×SA
and the monad T (S) = 1 + P(S). Algebras for such monad T are semilattices
with bottom and an extra element > acting as top (i.e., such that xt> = > for
all x). For any set U , 1+P(U) carries a semilattice with bottom and top: bottom
is the empty set; top is the element > ∈ 1; X t Y is defined as the union for
arbitrary subsets X,Y ∈ P(U) and as > otherwise. Consequently, 1 + P(PA),
1 + P(S), (1 + P(S))A and FT (S) carry a T -algebra structure as well. This
enables the application of the generalized powerset construction (Section 2.3)
associating to each FT -coalgebra (S, 〈o, t〉) the F -coalgebra (1 + P(S), 〈o], t]〉)
defined for all X ∈ 1 + P(S) as expected:

o](X) =

{
> if X = >⊔
x∈X o(x) if X ∈ P(S)

t](X)(a) =

{
> if X = >⊔
x∈X t(x)(a) if X ∈ P(S)



Note that in the above definitions, t is not simply the union of subsets, but it
is the join operation in 1 + PPA and 1 + P(S). Moreover, (1 + PS, 〈o], t])〉 is
a Moore machine with output in 1 + PPA and, therefore, the equations in (1)
induce a function [[−]] : (1 +P(S))→ (1 +PPA)A

∗
. The semilattice structure of

1 + PPA can be easily lifted to (1 + PPA)A
∗
: bottom, top and t are defined

pointwise on A∗. If vM represents the preorder on (1+PPA)A
∗

induced by this
semilattice, then the following theorem holds.

Theorem 2. x vmst y iff [[{y}]] vM [[{x}]] and x ∼mst y iff [[{x}]] = [[{y}]].

Note that according to the definition of vM, [[{y}]] vM [[{x}]] iff [[{y}]]t [[{x}]] =
[[{x}]], and since [[−]] is a T -homomorphism (namely it preserves bottom, top
and t), the latter equality holds iff [[{y, x}]] = [[{x}]]. Summarizing,

x vmst y iff [[{x, y}]] = [[{x}]].

Consider, once more, the LTS in (5). The part of the Moore machine (1 +
P(S), 〈o], t]〉) which is reachable from {x} and {y} is depicted below (the output
function o] maps > to > and the other states to {0}). The relation consisting of
dashed and dotted lines is a bisimulation proving that [[{x}]] = [[{y}]], i.e., that
x ∼mst y.

>

a,b

��

{x}boo a // {x1, x2, x3}
b

uu a // {x, x1}

b

uu a // {x, x1, x2, x3}

b

uu

a

��

>

a,b

ZZ {y}

a

WWb
oo

(6)

Our construction is closely related to the one in [12], that transforms LTS’s into
(deterministic) acceptance graphs. We refer the interested reader to a detailed
comparison provided in the full version of this paper [5]. There we also show an
optimization for representing outputs by means of I(t(x)) rather Fail(t(x)).

3.2 HKC for must semantics

The coalgebraic characterization discussed in the previous section guarantees
soundness and completeness of bisimulation up-to congruence for must equiv-
alence. Bisimulations are now relations R ⊆ (1 + P(S)) × (1 + P(S)) on the
state space 1 + P(S) where o] and t] are defined as in Section 3.1. Now, the
congruence closure c(R) of a relation R ⊆ (1 + P(S)) × (1 + P(S)) is defined
by the rules in (4) where t is the join in (1 + P(S)) (rather than the union in
P(S)). By simply redefining o], t] and c(R), the algorithm in Figure 1 can be
used to check must equivalence and preorder (the detailed proof can be found in
the full version of the paper [5]). In particular, note that the check at step 2.1

can be done with the same algorithm as in [7, Section 3.4].
Suppose, for example, that we want to check whether the states x and y of the

LTS in (5) are must equivalent. The relation R = {({x}, {y}), ({x1, x2, x3}, {y})}



depicted by the dashed lines in (6) is not a bisimulation, but a bisimulation up-to
congruence, since both (>,>) ∈ c(R) and ({x, x1}, {y}) ∈ c(R). For the latter,
observe that

{x, x1} c(R) {y, x1} c(R) {x1, x2, x3} c(R) {y}.

It is important to remark here that HKC computes this relation without the need
of exploring all the reachable part of the Moore machine (1 +P(S), 〈o], t]〉). So,
amongst all the states in (6), HKC only explores {x}, {y} and {x1, x2, x3}.

3.3 Brzozowski’s algorithm for must semantics

A variation of the Brzozowski algorithm for Moore machines is given in [4]. We
could apply such algorithm to the Moore machine (1 + P(S), 〈o], t]〉) which is
induced by the coalgebra (S, 〈o, t〉) introduced in Section 3.1. Here, we propose
a more efficient variation that skips the first determinization from (S, 〈o, t〉) to
(1 + P(S), 〈o], t]〉).

The novel algorithm consists of the four steps described in Section 2.2, where
the procedure reverse and determinize is modified as follows: (S, 〈o, t〉) with
the set of initial states I is transformed into ((1 + PP(A))S , 〈oR, tR〉) where
oR : (1+PPA)S → 1+PPA and tR : (1+PPA)S → ((1+PPA)S)A are defined
for all functions ψ ∈ (1 + PPA)S as

oR(ψ) =
⊔
x∈I

ψ(x) tR(ψ)(a)(x) =

{
> if t(x)(a) = >⊔
y∈t(x)(a) ψ(y) otherwise

and the new initial state is IR = o.
Note that the result of this procedure is a Moore machine. Brzozowski’s

algorithm in Section 2.2 transforms an NDA (S, 〈o, t〉) with initial state I into
the minimal DA for [[I]]. Analogously, our algorithm transforms an LTS into the
minimal Moore machine for [[I]].

Let us illustrate the minimization procedure by means of an example. Take
the alphabet A = {a, b, c} and the LTS depicted below on the left.

q u o(p) = {0} o(s) = {0}
pa
$$

b --

c
33

a ((
s

a
hh

b 44

c **

o(q) = P(A) o(u) = P(A)

r v o(r) = P(A) o(v) = P(A)

Since there are no τ transitions, the function t : S → (1 + P(S))A is defined as
on the left, and the function o : S → (1 + PPA) (given on the right) assigns to
each state x the set Fail(t(x)). Suppose we want to build the minimal Moore
machine for the behaviour [[{p}]] : A∗ → 1 + PPA, which is the function

[[{p}]] : a∗ 7→ {0}, a∗b 7→ P(A), a∗c 7→ P(A), 7→ 0



where denotes all the words different from a∗, a∗b and a∗c. By applying our
algorithm to the coalgebra (S, 〈o, t〉), we first obtain the intermediate Moore
machine on the left below, where a double arrow ψ ⇒ Z means that the output
of ψ is the set Z. The initial state is ψ1 : S → 1 + PPA which, by definition, is
the output function o above. The explicit definitions of the other functions ψi
can be computed according to the definition of tR.

{0} ψ1
a //

b,c

��

ks ψ2

b,c

��

a

LL
+3 {0}

P(A) ψ3

a

XX b,c
//ks ψ4

a,b,c

XX
+3 0

α1a
$$

b,c
//

��
α2

a,b,c
//

��
α3 a,b,c
zz

��
{0} P(A) 0

Observe that [[ψ1]] is the “reversed” of [[{p}]]. For instance, triggering ba∗ from
ψ1 leads to ψ3 with output P(A); this is the same output we get by executing
a∗b from p, according to [[{p}]]. Executing reverse and determinize once more
(step 3) and taking the reachable part (step 4), we obtain the minimal Moore
machine on the right, with initial state α1.

We have proved the correctness of this algorithm in the full version of this
paper [5]; it builds on the coalgebraic perspective on Brzozowski’s algorithm
given in [4].

4 A family of examples

As discussed in the introduction, the problem of checking must equivalence is
PSPACE-complete [17]. Hence, a theoretical comparison of HKC, Brzozowski
(BRZ) and the partition refinement (PR) of [12] will be less informative than
a thorough experimental analysis. Designing adequate experiments is out of the
scope of this paper. We will instead just show the reader some concrete exam-
ples. It is possible to show some concrete cases where (a) HKC takes polynomial
time while BRZ and PR exponential time and (b) (BRZ) polynomial time while
HKC and PR exponential time. There are also examples where (c) PR is polyno-
mial and BRZ is exponential, but it is impossible to have PR polynomial and HKC

exponential. Indeed, cycle 2 of HKC is repeated at most 1 + |A|·|R| times where
|A| is the size of the alphabet and |R| is the size of the produced relation R.
Such relation always contains at most n pairs of states, for n being the size of
the reachable part of the determinised system. Therefore, if HKC takes exponen-
tial time, then also PR takes exponential time since it always needs to build the
reachable part of the determinised LTS.

In this section we show an example for (a). Examples for (b) and (c) can be
found in the full version of this paper [5].

Consider the following LTS, where n is an arbitrary natural number. After
the determinization, {x} can reach all the states of the shape {x} ∪XN , where



XN = {xi | i ∈ N} for any N ⊆ {1, . . . , n}. For instance for n = 2, {x} aa→ {x},
{x} ab→ {x, x1}, {x}

ba→ {x, x2} and {x} bb→ {x, x1, x2}. All those states are
distinguished by must and, therefore, the minimal Moore machine for [[{x}]] has
at least 2n states.

xa,b
$$ b // x1

a,b
// . . .

a,b
// xn

b // u τ
zz

ya,b
$$ b //

a,b ��

y1
a,b
// . . .

a,b
// yn

b // v τ
zz

z
a

TT
b
aa

One can prove that x and y are must equivalent by showing that relation

R = {({x}, {y}), ({x}, {y, z}), (>,>)}
∪ {({x} ∪XN , {y, z} ∪ YN ) | N ⊆ {1, . . . , n}}

is a bisimulation (here YN = {yi | i ∈ N}). Note that R contains 2n + 2 pairs.
In order to check [[{x}]]=[[{y}]], HKC builds the following relation,

R′ = {({x}, {y}), ({x}, {y, z})} ∪ {({x, xi}, {y, z, yi}) | i ∈ {1, . . . , n}}

which is a bisimulation up-to and which contains only n + 2 pairs. It is worth
to observe that R′ is like a “basis” of R: all the pairs (X,Y ) ∈ R can be gen-
erated by those in R′ by iteratively applying the rules in (4). Therefore, HKC
proves [[{x}]]=[[{y}]] in polynomial time, while minimization-based algorithms
(such as [12] or Brzozowski’s algorithm) require exponential time.

5 Conclusions and Future Work

We have introduced a coalgebraic characterization of must testing semantics by
means of the generalized powerset construction [28]. This allowed us to adapt
proof techniques and algorithms that have been developed for language equiva-
lence to must semantics. In particular, we showed that bisimulations up-to con-
gruence (that was recently introduced in [7] for NDA’s) are sound also for must
semantics. This fact guarantees the correctness of a generalization of HKC [7] for
checking must equivalence and preorder and suggests that the antichains-based
algorithms [32, 1] can be adapted in a similar way. We have also proposed a vari-
ation of Brzozowski’s algorithm [9] to check must semantics, by exploiting the
abstract theory in [4]. Our contribution is not a simple instantiation of [4], but
developing our algorithm has required some ingenuity to avoid the preliminary
determinization that would be needed to directly apply [4]. We implemented
these algorithms together with an interactive applet available online [6].

We focused on must testing semantics because it is challenging to compute,
but our considerations hold also for may testing and for several decorated trace
semantics of the linear time/branching time spectrum [30] (namely, those that



have been studied in [3]). Adapting these algorithms to check fair testing [24]
seems to be more complicated: while it is possible to coalgebraically capture
failure trees, we do not know how to model fair testing equivalence. We believe
that this is a challenging topic to investigate in the future. Moreover, since coal-
gebras can easily model probabilistic systems, we think promising to investigate
whether our approach can be extended to the testing semantics of probabilistic
and non-deterministic processes (e.g. [15]).
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