
Towards GCAB in Coq

Jean-Bernard Stefani

joint work with C. Di Giusto and A. Schmitt

INRIA

Stefani (INRIA) GCAB 02/13 1 / 24

Outline

1 Motivations

2 CAB: A process calculus intepretation of BIP

3 GCAB: Towards reconciling BIP and Fractal

Stefani (INRIA) GCAB 02/13 2 / 24

Outline

1 Motivations

2 CAB: A process calculus intepretation of BIP

3 GCAB: Towards reconciling BIP and Fractal

Stefani (INRIA) GCAB 02/13 3 / 24

Motivations

1 Understanding various software engineering / programming structures:
components, features, aspects

forms of modularity
structures with sharing

2 Programming model including dynamic modularity with preemption
isolation example

SafePluginReceipt = a(x).new i , s. Watchdog(s, i) | i : s[x] | Alarm(i)
Watchdog(s, i) = (i | s[z]).0

Stefani (INRIA) GCAB 02/13 4 / 24

Motivations

Reconciling two influential component models:

BIP
hierarchical components
gluing as parallel composition with superimposed synchronisation
multipoint synchronization under priority constraints
target: embedded, real-time systems

Fractal
hierarchical components with sharing
reflective structure for dynamic reconfiguration
target: dynamic systems

Stefani (INRIA) GCAB 02/13 5 / 24

Outline

1 Motivations

2 CAB: A process calculus intepretation of BIP

3 GCAB: Towards reconciling BIP and Fractal

Stefani (INRIA) GCAB 02/13 6 / 24

BIP in a nutshell

Primitive components: labelled transitions systems.
Composite components S = (B1, . . . ,Bn) with behavioral rules
obeying the format:

r :
{Bi

ai−→ B ′
i }i∈I {Bj 6

bk
j−→| k ∈ [1..mj]}j∈J

(B1, . . . ,Bn)
a−→ (B ′

1, . . . ,B ′
n)

Stefani (INRIA) GCAB 02/13 7 / 24

CAB: syntax

Given a family P of primitive components,
CAB composites are built by superimposition of glue processes
P,Q, ... on components

S ::= component ensembles
| ∅ null ensemble
| {C1, . . . ,Cn} finite ensemble

C ::= l [S ? P] component
| l [A] A ∈ P primitive component

l , li ∈ Nl

Stefani (INRIA) GCAB 02/13 8 / 24

CAB: syntax

P,Q ::= processes
0 null process
| X process variable
| α.P prefix
| P | Q parallel
| µX .P recursion

α ::= 〈pr :: a :: syn〉 actions

Stefani (INRIA) GCAB 02/13 9 / 24

CAB: syntax

pr ::= priority constraints
∅ void
| {l1 : a1, . . . , ln : an} preemptive actions

syn ::= synchronisation constraints
∅ void
| {l1 : a1, . . . , ln : an} synchronised actions

a, ai ∈ Np l , li ∈ Nl

Stefani (INRIA) GCAB 02/13 10 / 24

CAB: operational semantics

Behavioral rules for glue processes:

Act α.P α−→ P
Par1

P α−→ P ′

P | Q α−→ P ′ | Q
Par2

Q α−→ Q ′

P | Q α−→ P | Q ′

Rec
P{µX .P/X}

α−→ P ′

µX .P α−→ P ′

Stefani (INRIA) GCAB 02/13 11 / 24

CAB: operational semantics

Behavioral rules for composites:

Comp

{Ci
li :ai−−→ C ′

i | i ∈ I}
P

〈pr ::a::{li :ai |i∈I}〉−−−−−−−−−−→ P ′ {Ci | i ∈ I} ⊆ S S |= pr

l [S ? P]
l :a−→ l [(S \ {Ci | i ∈ I}) ∪ {C ′

i | i ∈ I} ? P ′]

Tau
C h:τ−−→ C ′

l [{C} ∪ S ? P]
l :τ−→ l [{C ′} ∪ S ? P]

Stefani (INRIA) GCAB 02/13 12 / 24

BIP in CAB

BIP glues can be encoded in CAB as glue processes of the form
∏n

i=1JriK,
where:

r :
{Ci

ai−→ C ′
i }i∈I {Cj 6

ck
j−→| k ∈ [1..mj]}j∈J

(C1, . . . ,Cn)
tag−−→ (C ′

1, . . . ,C ′
n)

JrK =!〈{hj : ck
j | k ∈ [1,mj]}j∈J , tag , {hi : ai}i∈I 〉

!α.P = rec X . α.(P ‖ X)

Theorem
BIP systems defined over a set P of components can be faithfully encoded
in CAB(P): any BIP system S is strongly bisimilar to its encoding JSK.

Stefani (INRIA) GCAB 02/13 13 / 24

Some results on CAB

Theorem

CAB(∅) is Turing complete.

Proved by encoding of Minsky machines in CAB(∅).

Theorem
CAB(∅) without priorities is not Turing complete.

Proved by encoding of CAB(∅) without priorities in Petri nets.

Stefani (INRIA) GCAB 02/13 14 / 24

Outline

1 Motivations

2 CAB: A process calculus intepretation of BIP

3 GCAB: Towards reconciling BIP and Fractal

Stefani (INRIA) GCAB 02/13 15 / 24

GCAB: intuitions

GCAB generalizes CAB in four ways:

Pure port synchronization −→ value passing on ports.
Tree structure for composites −→ directed graph.
Static composite structure −→ dynamic structure.
CCS-based glue language −→ π-calculus-based glue language.

Stefani (INRIA) GCAB 02/13 16 / 24

GCAB (static) core: syntax

κ ::= Γ� S configurations

Γ,∆ ::= control graphs
∅ empty graph
| {h1 . l1, . . . , hn . ln} graph

S ::= component ensembles
∅ null ensemble
{C1, . . . ,Cn} finite ensemble

C ::= l [P] component

h, l ∈ Nl
Stefani (INRIA) GCAB 02/13 17 / 24

GCAB core: LTS for processes

Act α.P α−→ P

Par1
P α−→ P ′

P | Q α−→ P ′ | Q
Par2

Q α−→ Q ′

P | Q α−→ P | Q ′

Rec
P{µX .P/X}

α−→ P ′

µX .P α−→ P ′

Stefani (INRIA) GCAB 02/13 18 / 24

GCAB core: LTS for configurations

GComp

{Γ� Si
li :ai−−→ Γ� S ′

i | i ∈ I} P
〈pr ::a::{li :ai |i∈I}〉−−−−−−−−−−→ P ′

{l . li | i ∈ I} ⊆ Γ
⋃
i∈I

Si ⊆ S Γ� S |=l pr

Γ� {l [P]} ∪ S l :a−→ Γ� {l [P ′]} ∪ (S \
⋃
i∈I

Si) ∪
⋃
i∈I

S ′
i

GTau
Γ� S h:τ−−→ Γ� S ′ l . h ∈ Γ

Γ� {l [P]} ∪ S l :τ−→ Γ� {l [P]} ∪ S ′

Stefani (INRIA) GCAB 02/13 19 / 24

GCAB core: priority constraints

Γ� S |=l {li : ai | i ∈ I} ⇐⇒ ∃{Ci | i ∈ I},
{Ci | i ∈ I} ⊆ S
∧ ∀i ∈ I ,
li = nm(Ci)

∧ ¬(Γ� S li :ai−−→)

∧ l . li ∈ Γ

Stefani (INRIA) GCAB 02/13 20 / 24

GCAB core: Defining the LTS as a least fixpoint

F(R1,R2) = 〈R ′
1,R

′
2〉

R ′
1 = R1 ∪ r(R1,R2)

R ′
2 = R2 ∩ r(R2,R1)

r(R1,R2) = {〈κ, l : a, κ′〉 | gcomp(R1,R2, κ, l , a, κ′)}
∪ {〈κ, l , κ′〉 | gtau(R1, κ, l : τ, κ′)}

gtau(R1, κ, l , κ′, n) ⇐⇒
∃Γ,P, S , S ′, h,
∧ κ = Γ� {l [P]} ∪ S
∧ κ′ = Γ� {l [P]} ∪ S ′

∧ l . h ∈ Γ

∧ 〈Γ� S , h : τ, Γ� S ′〉 ∈ R1

Stefani (INRIA) GCAB 02/13 21 / 24

GCAB core: Defining the LTS as a least fixpoint

〈R1,R2〉 v 〈T1,T2〉 ⇐⇒ R1 ⊆ T1 ∧ T2 ⊆ R2

F is an order-preserving function on a complete lattice

→ ∆
= π1(µF)

Theorem
−→ is the least well supported model of the GCAB core rules and it is
complete, i.e. µF = (→,→).

Stefani (INRIA) GCAB 02/13 22 / 24

Dynamic extensions

Creating new components: new(x ,P)

Adding an edge: .a
Removing an edge: /a
Updating processes: swap(a,X ,P)

Stefani (INRIA) GCAB 02/13 23 / 24

Formalizing GCAB in Coq ?

Start with GCAB core
Essential use of negative premises in rule GComp =⇒ no inductive
Coq definition possible for →.
Strategy: formalize F fixpoint construction.

Define gcomp and gtau as inductive predicates with relation parameters
Define r and F as functions on relations
Prove F monotonous wrt v
Obtain µF as intersection of pre-fixed points
Prove µF of the form (R,R) and define → ∆

= R
Define inductive principle on F .

Question: can we envisage Coq tools to support this way of dealing with
negative premises ?

Stefani (INRIA) GCAB 02/13 24 / 24

	Motivations
	CAB: A process calculus intepretation of BIP
	GCAB: Towards reconciling BIP and Fractal

