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The Modal µ-Calculus: Lµ

◮ Introduced by D. Kozen (1983).

◮ Interpreted on LTS= 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×P .

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ ⊆ P , with ρ : Var → 2P

[[F ]]ρ = ρ(X )

[[F ∨ G ]]ρ = [[F ]]ρ ∪ [[G ]]ρ
[[F ∧ G ]]ρ = [[F ]]ρ ∩ [[G ]]ρ
[[〈a〉F ]]ρ = {p | ∃q.p

a
−→ q , q∈ [[F ]]ρ}

[[[a]F ]]ρ = {p | ∀q.p
a

−→ q implies q∈ [[F ]]ρ}

[[µX .F ]]ρ = lfp of λS . [[F ]]ρ[S/X ]

[[νX .F ]]ρ = gfp of λS . [[F ]]ρ[S/X ]
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The Modal µ-Calculus: Lµ

◮ Introduced by D. Kozen (1983).

◮ Interpreted on LTS= 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×P .

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ ⊆ P , with ρ : Var → 2P

[[F ]]ρ = ρ(X )

[[F ∨ G ]]ρ = [[F ]]ρ ∪ [[G ]]ρ
[[F ∧ G ]]ρ = [[F ]]ρ ∩ [[G ]]ρ
[[〈a〉F ]]ρ = {p | ∃q.p

a
−→ q , q∈ [[F ]]ρ}

[[[a]F ]]ρ = {p | ∀q.p
a

−→ q implies q∈ [[F ]]ρ}

[[µX .F ]]ρ = lfp of λS . [[F ]]ρ[S/X ]

[[νX .F ]]ρ = gfp of λS . [[F ]]ρ[S/X ]

Expressivity: bisimilarity-invariant fragment of MSO

(Janin, Walukiewicz 1996).
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The Modal µ-Calculus: Lµ

◮ Introduced by D. Kozen (1983).

◮ Interpreted on LTS= 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×P .

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ : P → {0, 1}, with ρ : Var → (P → {0, 1})

[[F ∨ G ]] = [[F ]] ⊔ [[G ]] [[F ∧ G ]] = [[F ]] ⊓ [[G ]]

[[〈a〉F ]] (p) =
⊔

p
a

−→q

[[F ]] (q) [[[a]F ]] (p) =
l

p
a

−→q

[[F ]] (q)

[[µX .F ]] = lfp of λf . [[F ]]ρ[f /X ] [[νX .F ]] = gfp of λf . [[F ]]ρ[f /X ]

[[F ]] (α) =
∑

p∈P

α(p) · [[F ]] (p)
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Game Semantics: a few examples

p q
a

a

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.
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Game Semantics: a few examples

p q
a

a

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

Game associated with F :

p:X

νX

q:X

νXp:〈a〉X q:〈a〉X

p:F

Player ♦ either gets stuck, or
can force the play into an infinite ν-loop.

So, ♦ wins this game: [[F ]] (p)=1.
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Game Semantics: a few examples

p q
a

a

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

.

Game associated with G :

p:X

µX

q:X

µXp:[a]X q:[a]X

p:F

Player � either gets stuck, or
can force the play into an infinite µ-loop.

So, � wins this game, i.e. ♦ loses:
[[G ]] (p)=0.
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Game Semantics: a few examples

p q
a

a

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

.

Game associated with H:

p:⊥

p:[a]⊥ q:[a]⊥

p:〈a〉[a]⊥

Player ♦ can make sure
Player � will get stuck.

So, ♦ wins this game:
[[H]] (p)=1.
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Theorem [e.g. Stirling 96]:
[[F ]] (p)=1 iff ♦ has a winning strategy in GF from (p :F ).

◮ Denotational Semantics and Game Semantics coincide.

◮ Useful to have an operational interpretation for the meaning
of a formula.

◮ Game Semantics very successful: theoretical results, model
checking algorithms, ...
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Probabilistic LTS and Probabilstic µ-calculus

A PLTS is a pair 〈P , {
a

−→}a∈L〉 where

◮ P is a countable set of states,

◮ L is a countable set of labels, or atomic actions,

◮
a

−→ ⊆ P ×D(P) is the a-transition relation.
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Probabilistic LTS and Probabilstic µ-calculus

A PLTS is a pair 〈P , {
a

−→}a∈L〉 where

◮ P is a countable set of states,

◮ L is a countable set of labels, or atomic actions,

◮
a

−→ ⊆ P ×D(P) is the a-transition relation.

p

α β γ

q r s

a
a

b

1
2

1
2

1 1
3

2
3
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The Modal µ-Calculus: Lµ

◮ Introduced by D. Kozen (1983).

◮ Interpreted on LTS= 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×P .

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ : P → {0, 1}, with ρ : Var → (P → {0, 1})

[[F ∨ G ]] = [[F ]] ⊔ [[G ]] [[F ∧ G ]] = [[F ]] ⊓ [[G ]]

[[〈a〉F ]] (p) =
⊔

p
a

−→q

[[F ]] (q) [[[a]F ]] (p) =
l

p
a

−→q

[[F ]] (q)

[[µX .F ]] = lfp of λf . [[F ]]ρ[f /X ] [[νX .F ]] = gfp of λf . [[F ]]ρ[f /X ]

[[F ]] (α) =
∑

p∈P

α(p) · [[F ]] (p)
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The Probabilistic Modal µ-Calculus: pLµ

◮ Huth and Kwiatkowska (1997), McIver and Morgan (2003),
de Alfaro and Majumdar (2004).

◮ Interpreted on PLTS = 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×D(P).

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ : P → [0, 1], with ρ : Var → (P → [0, 1])

[[F ∨ G ]] = [[F ]] ⊔ [[G ]] [[F ∧ G ]] = [[F ]] ⊓ [[G ]]

[[〈a〉F ]] (p) =
⊔

p
a

−→α

[[F ]] (α) [[[a]F ]] (p) =
l

p
a

−→α

[[F ]] (α)

[[µX .F ]] = lfp of λf . [[F ]]ρ[f /X ] [[νX .F ]] = gfp of λf . [[F ]]ρ[f /X ]
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The Probabilistic Modal µ-Calculus: pLµ

◮ Huth and Kwiatkowska (1997), McIver and Morgan (2003),
de Alfaro and Majumdar (2004).

◮ Interpreted on PLTS = 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×D(P).

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

◮ Semantics: [[F ]]ρ : P → [0, 1], with ρ : Var → (P → [0, 1])

[[F ∨ G ]] = [[F ]] ⊔ [[G ]] [[F ∧ G ]] = [[F ]] ⊓ [[G ]]

[[〈a〉F ]] (p) =
⊔

p
a

−→α

[[F ]] (α) [[[a]F ]] (p) =
l

p
a

−→α

[[F ]] (α)

[[µX .F ]] = lfp of λf . [[F ]]ρ[f /X ] [[νX .F ]] = gfp of λf . [[F ]]ρ[f /X ]

[[F ]] (α) =
∑

p∈P

α(p) · [[F ]] (p)
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

Game associated with F :

p:X

νX

q:X

νX
α:X

1
3

2
3

p:〈a〉X q:〈a〉X

p:F

Player ♦ either gets stuck (and lose), or
end up in a infinite ν-loop (and win).
However, the probability of winning is 0.

So, ♦ wins this game with probability 0:
[[F ]] (p)=0.
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

Game associated with G :

p:X

µX

q:X

µX
α:X

1
3

2
3

p:[a]X q:[a]X

p:F

Player � either gets stuck (and lose), or
end up in a infinite µ-loop (and win).
However, this happens with prob. 0.

So, ♦ wins this game with probability 1:
[[G ]] (p)=1.
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

F = νX .〈a〉X
There exist a infinite a-path.

G = µX . [a]X
Every a-path is finite.

H = 〈a〉 [a]⊥
There is some a-step, after which

no further a-step is possible.

Game associated with H:

α:⊥

p:[a]⊥ q:[a]⊥

α:[a]⊥

1
3

2
3

p:〈a〉[a]⊥

Player ♦ reaches ⊥ with prob. 1
3 ,

and � gets stuck with probability 2
3 .

So, ♦ wins this game with probability 2
3 :

[[H]] (p)= 2
3 .
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Lµ pLµ

F = νX .〈a〉X F = νX .〈a〉X
There exist a infinite a-path. Best probability of producing

an infinite a-path.

G = µX . [a]X G = µX . [a]X
Every a-path is finite. Probability that any adversary environment,

fails in producing an infinite a-path

H = 〈a〉 [a]⊥ H = 〈a〉 [a]⊥
There is some a-step, after which Probability to reach after some a-step

no further a-step is possible. a state without a-edges.

In general Best probability of satisfying F

(read as in Lµ)

against any hostile environment.
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Theorem [Mio 2010, Morgan and McIver 2004]:

[[F ]] (p)= value of the game GF at (p :F ).

where the (quantitative) value is defined as usual in game
theory:

⊔

σ♦

l

σ�

E (Mσ♦,σ�
) =

l

σ�

⊔

σ♦

E (Mσ♦,σ�
)

◮ Denotational Semantics and Game Semantics coincide.

◮ Useful to have an operational interpretation for the meaning
of a probabilistic sentences.

◮ Game Semantics provides: model checking algorithms, ...
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Prob. µ-Calculus with Independent Product: pLµ⊙

◮ Interpreted on PLTS = 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×D(P).

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

F⊙G | F ·G

◮ Semantics: [[F ]]ρ : P → [0, 1], with ρ : Var → (P → [0, 1])

[[F · G ]] (p) = [[F ]] (p)·[[G ]] (p) [[F⊙G ]] (p) = [[F ]] (p)⊙[[G ]] (p)

◮ where x ⊙ y = x + y − (x · y)

◮ the De Morgan dual of · under ¬x=1−x : x ⊙ y
def
= ¬(¬x · ¬y).
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Prob. µ-Calculus with Independent Product: pLµ⊙

◮ Interpreted on PLTS = 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×D(P).

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

F⊙G | F ·G

◮ Semantics: [[F ]]ρ : P → [0, 1], with ρ : Var → (P → [0, 1])

[[F · G ]] (p) = [[F ]] (p)·[[G ]] (p) [[F⊙G ]] (p) = [[F ]] (p)⊙[[G ]] (p)

◮ where x ⊙ y = x + y − (x · y)

◮ the De Morgan dual of · under ¬x=1−x : x ⊙ y
def
= ¬(¬x · ¬y).

◮ Mathematically well defined (· and ⊙ are monotone).
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Prob. µ-Calculus with Independent Product: pLµ⊙

◮ Interpreted on PLTS = 〈P , {
a

−→}a∈L〉, with
a

−→⊆P×D(P).

◮ Syntax: F ::= X | F ∨G | F ∧G | 〈a〉F | [a]F | µX .F | νX .F

F⊙G | F ·G

◮ Semantics: [[F ]]ρ : P → [0, 1], with ρ : Var → (P → [0, 1])

[[F · G ]] (p) = [[F ]] (p)·[[G ]] (p) [[F⊙G ]] (p) = [[F ]] (p)⊙[[G ]] (p)

◮ where x ⊙ y = x + y − (x · y)

◮ the De Morgan dual of · under ¬x=1−x : x ⊙ y
def
= ¬(¬x · ¬y).

◮ Mathematically well defined (· and ⊙ are monotone).

◮ But is it meaningful?

◮ [[F · G ]] probability that F and G holds independently?

◮ [[F ⊙ G ]] probability that F or G holds independently?
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Why pLµ⊙??

Let us define

◮ P>0F
def
= µX .(F ⊙ X ), and

◮ P=1F
def
= νX .(F · X ).

Then

◮ [[P>0F ]] (p) =

{

1 if [[F ]] (p) > 0
0 otherwise

◮ [[P=1F ]] (p) =

{

1 if [[F ]] (p) = 1
0 otherwise

This allows:

◮ the expression of interesting ( new ) properties involving
qualitative/quantitative assertions (see paper).

◮ The encoding of the qualitative fragment of PCTL into pLµ⊙.

Matteo Mio Lyon - September 2011



Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

H = 〈a〉 [a]⊥
Probability to reach after some a-step

a state without a-edges.

J = 〈a〉〈a〉⊤
Probability to reach after some a-step

a state with some a-edge.

H · J
Probability of satisfying both H and J

when H and J independently verified.

Game associated with H · J:

Matteo Mio Lyon - September 2011



Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

H = 〈a〉 [a]⊥
Probability to reach after some a-step

a state without a-edges.

J = 〈a〉〈a〉⊤
Probability to reach after some a-step

a state with some a-edge.

H · J
Probability of satisfying both H and J

when H and J independently verified.

Game associated with H · J:

GH GJ

p:H p:J

p:H·J

At the state p :H · J the game is split in two
concurrent and independent sub-games.

♦ wins iff He wins in both sub-games.

Since they are independent, this will happen
with probability 1

3
·
2
3
.

[[H · J]] (p) = 2
9
.
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

H = 〈a〉 [a]⊥
Probability to reach after some a-step

a state without a-edges.

P>0H = µX .(X ⊙ H)
1 if H is possible,

0 otherwise.

m
probability that H holds at least once

if verified infinitely many times.

Game associated with µX .(H ⊙ X ):
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Game Semantics for pLµ: a few examples

p α q
a

1
3

2
3

H = 〈a〉 [a]⊥
Probability to reach after some a-step

a state without a-edges.

P>0H = µX .(X ⊙ H)
1 if H is possible,

0 otherwise.

m
probability that H holds at least once

if verified infinitely many times.

Game associated with µX .(H ⊙ X ):

GH

p:H p:X

µX

p:H⊙X

p:µX .(H⊙X )

♦ will win in at least on sub-game almost surely!

[[µX .(H ⊙ X )]] (p) = 1.

Matteo Mio Lyon - September 2011



◮ These ideas are formalized using 21
2 -player tree games, which

build on the intuitive idea of concurrent and independent
execution of sub-games.

◮ A new class of games having trees as outcomes, rather than
paths.

◮ The branches of the trees are generated when the game is split
in concurrent and independent sub-games.

◮ The winning-set of a 21
2 -player tree game is a set Φ of trees

◮ which we call branching plays.

◮ In the case of pLµ⊙ games the winning set, is the set of trees

◮ such that ♦ can find a winning path by making or choices at
the branching nodes p : F ⊙ G , against any and choice made
by � on the nodes p : F · G .

◮ i.e. the trees that, once interpreted as ordinary 2-player parity
games, are won by ♦.

◮ That’s why we call them 21
2 -player meta -parity games.
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◮ One can define the notion of (upper and lower) value of a
21
2 -player tree game.

◮ Val↓(G) =
⊔

σ♦

l

σ�

Eσ♦,σ�
(Φ)

◮ Val↑(G) =
l

σ�

⊔

σ♦

Eσ♦,σ�
(Φ)

Theorem (MAℵ1
): If G is a pLµ⊙ game, then:

Val↓(G)=Val↑(G).

Theorem (MAℵ1
): For every pLµ⊙ formula F :

[[F ]] (p) = value of GF at (p,F ).
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Our theorems hold in ZFC+MAℵ1
set theory.

◮ MA is an axiom considered by set theorists as a weaker
alternative to CH.

◮ MAℵ1
is a consequence of MA+¬CH and itself implies ¬CH.

◮ In particular it implies that:

◮ measurable sets are closer under ω1 unions.

◮ measures are ω1-continuous.

◮ Therefore our proof is a consistent proof.
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Our theorems hold in ZFC+MAℵ1
set theory.

◮ MA is an axiom considered by set theorists as a weaker
alternative to CH.

◮ MAℵ1
is a consequence of MA+¬CH and itself implies ¬CH.

◮ In particular it implies that:

◮ measurable sets are closer under ω1 unions.

◮ measures are ω1-continuous.

◮ Therefore our proof is a consistent proof.

◮ Also Fermat’s Last Theorem is proved in ZFC + U!!
∀a, b, c∈Z.an + bn 6= cn, when n>3.

Matteo Mio Lyon - September 2011



We use MAℵ1
to handle the complexity of the winning sets Φ of

pLµ⊙ games.

◮ We prove that Φ is always a ∆1
2 set.

◮ Hence not Borel, and not necessarily measurable.

◮ But we characterize Φ as a ω1-union of measurable sets:
Φ =

⋃

α<ω1
Φα.

◮ Hence, under MAℵ1
, Φ is measurable, and its measure is the

limit of the measures of the approximants.

◮ µ(Φ) =
⊔

α<ω1
µ(Φα)
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Many open problems!
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◮ can MAℵ1
be dropped from the proof?
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be dropped from the proof?

◮ Is a finite pLµ⊙-game positionally determined?

◮ Conjecture was: YES!
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Many open problems!

◮ can MAℵ1
be dropped from the proof?

◮ Is a finite pLµ⊙-game positionally determined?

◮ Conjecture was: YES!

◮ Answer is: NO!

◮ Is the value of a finite pLµ⊙-game decidable? !!!
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Many open problems!

◮ can MAℵ1
be dropped from the proof?

◮ Is a finite pLµ⊙-game positionally determined?

◮ Conjecture was: YES!

◮ Answer is: NO!

◮ Is the value of a finite pLµ⊙-game decidable? !!!

◮ Failure of positional determinacy makes this problem
challenging.
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Many open problems!

◮ can MAℵ1
be dropped from the proof?

◮ Is a finite pLµ⊙-game positionally determined?

◮ Conjecture was: YES!

◮ Answer is: NO!

◮ Is the value of a finite pLµ⊙-game decidable? !!!

◮ Failure of positional determinacy makes this problem
challenging.

◮ Study the logical-equivalence (or metric) induced by the logic
pLµ⊙, or even the modal fragment {⊤,⊥,∨,∧, 〈a〉, [a] , ·,⊙}.
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THANKS
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A few interesting examples

Figure: Example of PLTS

1. F2
def
= νX .〈a〉X

“Best probability of making an infinite sequence of a’s”.
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A few interesting examples

Figure: Example of PLTS

1. F2
def
= νX .〈a〉X

“Best probability of making an infinite sequence of a’s”.

2. F3
def
= µX .

(

F2 ∨ 〈b〉X
)

“Best probability of making a finite sequence of b’s followed
by an infinite sequence of a’s”.
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A few interesting examples

Figure: Example of PLTS

1. F2
def
= νX .〈a〉X

“Best probability of making an infinite sequence of a’s”.

2. F3
def
= µX .

(

F2 ∨ 〈b〉X
)

“Best probability of making a finite sequence of b’s followed
by an infinite sequence of a’s”.

3. F5
def
= 〈a〉〈a〉1 ∧ [a] [a] 0 0 ≤ [[F5]] (p) ≤

1
2 for all p

The logic is not Boolean! (Kleene Algebra)
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Figure: Example of PLTS

1. G1
def
= P=1(νX .〈a〉X )

“Holds at p, if the best probability of making an infinite
sequence of a’s is 1”.
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Figure: Example of PLTS

1. G1
def
= P=1(νX .〈a〉X )

“Holds at p, if the best probability of making an infinite
sequence of a’s is 1”.

2. G2
def
= µX .

(

G1 ∨ 〈b〉X
)

“Best probability of reaching, by a finite sequence of b’s, a
state where G1 holds”.
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Figure: Example of PLTS

1. G1
def
= P=1(νX .〈a〉X )

“Holds at p, if the best probability of making an infinite
sequence of a’s is 1”.

2. G2
def
= µX .

(

G1 ∨ 〈b〉X
)

“Best probability of reaching, by a finite sequence of b’s, a
state where G1 holds”.

3. G5
def
= P>0

(

µX .
(

G1 ∨ 〈b〉X
)

)

“Holds iff the probability (above) is greater than 0”.
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Figure: Example of PLTS

1. H1=νX .P>0〈a〉X
“Holds if it is possible to make infinitely many possible a’s:
p

a
−→ d1  p1

a
−→ d2  p2 . . . with dn(pn)>0

2. H2=µX .P=1 [a]X
Dual of H1: “holds if it is impossible to make infinitely many
possible a’s:

3. H3=µX .
(

(P>0〈a〉X ) ∨ P=1H
)

“Holds if it is possible to make finitely many possible a’s and
reach a state where H holds with probability 1.
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