The probabilistic modal μ -calculus with independent product

Matteo Mio University of Edinburgh, School of Informatics, LFCS

- Introduced by D. Kozen (1983) .
- ► Interpreted on LTS= $\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a \in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$

 \blacktriangleright Semantics: $\llbracket \mathcal{F} \rrbracket_\rho \subseteq P$, with $\rho: \mathit{Var} \rightarrow 2^P$

$$
\begin{aligned}\n\llbracket F \rrbracket_{\rho} &= \rho(X) \\
\llbracket F \vee G \rrbracket_{\rho} &= \llbracket F \rrbracket_{\rho} \cup \llbracket G \rrbracket_{\rho} \\
\llbracket F \wedge G \rrbracket_{\rho} &= \llbracket F \rrbracket_{\rho} \cap \llbracket G \rrbracket_{\rho} \\
\llbracket \langle a \rangle F \rrbracket_{\rho} &= \{ p \mid \exists q \cdot p \xrightarrow{a} q, \ q \in \llbracket F \rrbracket_{\rho} \} \\
\llbracket [a] F \rrbracket_{\rho} &= \{ p \mid \forall q \cdot p \xrightarrow{a} q \text{ implies } q \in \llbracket F \rrbracket_{\rho} \} \\
\llbracket \mu X . F \rrbracket_{\rho} &= \text{ifp of } \lambda S. \llbracket F \rrbracket_{\rho[S/X]} \\
\llbracket \nu X . F \rrbracket_{\rho} &= \text{gfp of } \lambda S. \llbracket F \rrbracket_{\rho[S/X]}\n\end{aligned}
$$

(御) (重) (重)

- Introduced by D. Kozen (1983) .
- ► Interpreted on LTS= $\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a \in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \vee G \mid F \wedge G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$

 \blacktriangleright Semantics: $\llbracket \mathcal{F} \rrbracket_\rho \subseteq P$, with $\rho: \mathit{Var} \rightarrow 2^P$

$$
\[\mathbf{F}\]_{\rho} = \rho(X)
$$
\n
$$
\[\mathbf{F} \vee \mathbf{G}\]_{\rho} = \[\mathbf{F}\]_{\rho} \cup \[\mathbf{G}\]_{\rho}
$$
\n
$$
\[\mathbf{F} \wedge \mathbf{G}\]_{\rho} = \[\mathbf{F}\]_{\rho} \cap \[\mathbf{G}\]_{\rho}
$$
\n
$$
\[\langle a \rangle \mathbf{F}\]_{\rho} = \{p \mid \exists q.p \xrightarrow{a} q, q \in [\![F]\!]_{\rho}\}
$$
\n
$$
\[\text{a} \mathbf{F}\]_{\rho} = \{p \mid \forall q.p \xrightarrow{a} q \text{ implies } q \in [\![F]\!]_{\rho}\}
$$
\n
$$
\[\mu X.F]\]_{\rho} = \text{Ifp of } \lambda S. \[\mathbf{F}\]_{\rho[S/X]}
$$
\n
$$
\[\nu X.F]\]_{\rho} = \text{gfp of } \lambda S. \[\mathbf{F}\]_{\rho[S/X]}
$$

Expressivity: bisimilarity-invariant fragment of MSO (Janin, Walukiewicz 1996).

- ▶ Introduced by D. Kozen (1983).
- ► Interpreted on LTS= $\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a \in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \vee G \mid F \wedge G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- \blacktriangleright Semantics: $\llbracket F \rrbracket_\rho : P \to \{0,1\},$ with $\rho : \mathit{Var} \to (P \to \{0,1\})$

$$
\begin{aligned}\n[\![F \vee G]\!] &= [\![F]\!] \sqcup [\![G]\!] \\
[\![\langle a \rangle F]\!] \{p\} &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup
$$

(御) (重) (重) (

$$
\overset{a}{\underset{D}{\bigodot}} \rightarrow \overset{a}{\underset{a}{\bigodot}}
$$

$$
\digamma = \nu X. \langle a \rangle X
$$

There exist a infinite a-path.

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp

There is some a-step, after which no further a-step is possible.

 \leftarrow

$$
\digamma = \nu X.\langle \mathsf{a} \rangle X
$$

There exist a infinite a-path.

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp

There is some a-step, after which no further a-step is possible.

Game associated with F:

Player \diamond either gets stuck, or can force the play into an infinite ν -loop.

So,
$$
\Diamond
$$
 wins this game: $[[F]](p)=1$.

$$
\digamma = \nu X.\langle a \rangle X
$$

There exist a infinite a-path.

Game associated with G:

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp There is some a-step, after which no further a-step is possible.

.

Player \Box either gets stuck, or can force the play into an infinite μ -loop.

4 A D D D D D

```
So, \Box wins this game, i.e. \diamond loses:
\llbracket G \rrbracket (p) = 0.
```


$$
\digamma = \nu X. \langle a \rangle X
$$

There exist a infinite a-path.

Game associated with H:

つへへ

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp There is some a-step, after which no further a-step is possible.

.

Player \diamondsuit can make sure Player \Box will get stuck.

So, \diamond wins this game: $\llbracket H \rrbracket (p) = 1.$

Theorem [e.g. Stirling 96]: $\llbracket F \rrbracket (p)$ $=$ 1 iff \Diamond has a winning strategy in \mathcal{G}^F from $(p$: $F)$.

- ▶ Denotational Semantics and Game Semantics coincide
- \triangleright Useful to have an operational interpretation for the meaning of a formula.
- ▶ Game Semantics very successful: theoretical results, model checking algorithms, ...

へのへ

Probabilistic LTS and Probabilstic μ -calculus

A PLTS is a pair $\langle P, \{\stackrel{\mathsf{a}}{\longrightarrow}\}_{{\mathsf{a}}\in L}\rangle$ where

- \triangleright P is a countable set of states.
- \triangleright L is a countable set of labels, or atomic actions,
- $\blacktriangleright \stackrel{a}{\longrightarrow} \subseteq P \times \mathcal{D}(P)$ is the a-transition relation.

Probabilistic LTS and Probabilstic μ -calculus

A PLTS is a pair $\langle P, \{\stackrel{\mathsf{a}}{\longrightarrow}\}_{{\mathsf{a}}\in L}\rangle$ where

- \triangleright P is a countable set of states.
- \triangleright L is a countable set of labels, or atomic actions,
- $\blacktriangleright \stackrel{a}{\longrightarrow} \subseteq P \times \mathcal{D}(P)$ is the a-transition relation.

へのへ

- ▶ Introduced by D. Kozen (1983).
- ► Interpreted on LTS= $\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a \in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \vee G \mid F \wedge G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- \blacktriangleright Semantics: $\llbracket F \rrbracket_\rho : P \to \{0,1\},$ with $\rho : \mathit{Var} \to (P \to \{0,1\})$

$$
\begin{aligned}\n[\![F \vee G]\!] &= [\![F]\!] \sqcup [\![G]\!] \\
[\![\langle a \rangle F]\!] \{p\} &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{q\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup_{p \text{ odd}} [\![F]\!] \{p\} \\
[\![\langle a \rangle F]\!] &= \bigsqcup
$$

(御) (重) (重) (

The Probabilistic Modal μ -Calculus: pL μ

- ► Huth and Kwiatkowska (1997), McIver and Morgan (2003), de Alfaro and Majumdar (2004).
- ► Interpreted on PLTS $=\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a\in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P\times \mathcal{D}(P)$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- ► Semantics: $\llbracket F \rrbracket_\rho : P \to [0,1]$, with $\rho : \mathit{Var} \to (P \to [0,1])$

$$
\begin{aligned}\n\llbracket F \vee G \rrbracket &= \llbracket F \rrbracket \sqcup \llbracket G \rrbracket \\
\llbracket \langle a \rangle F \rrbracket (p) &= \bigsqcup_{p \to \alpha} \llbracket F \rrbracket (\alpha) & \llbracket [a] \ F \rrbracket (p) &= \bigsqcup_{p \to \alpha} \llbracket F \rrbracket (\alpha) \\
\llbracket [a] \ F \rrbracket (p) &= \bigsqcup_{p \to \alpha} \llbracket F \rrbracket (\alpha) \\
\llbracket \mu X . F \rrbracket &= \text{ifp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]} & \llbracket \nu X . F \rrbracket &= \text{gfp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]}\n\end{aligned}
$$

(御 ⊁ (君 ⊁ (君 ⊁)

つくへ

The Probabilistic Modal μ -Calculus: pL μ

- ► Huth and Kwiatkowska (1997), McIver and Morgan (2003), de Alfaro and Majumdar (2004).
- ► Interpreted on PLTS $=\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a\in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P\times \mathcal{D}(P)$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- ► Semantics: $\llbracket F \rrbracket_\rho : P \to [0,1]$, with $\rho : \mathit{Var} \to (P \to [0,1])$

$$
\begin{aligned}\n[\![F \vee G]\!] &= [\![F]\!] \sqcup [\![G]\!] \\
[\![\langle a \rangle F]\!] \cdot (\rho) &= \bigsqcup_{p \to \alpha} [\![F]\!] \cdot (\alpha) \\
[\![\mu X.F]\!] &= \text{Ifp of } \lambda f. \; [\![F]\!]_{\rho[f/X]} \\
[\![F]\!] \cdot (\alpha) &= \bigsqcup_{p \to \alpha} \text{ifp of } \lambda f. \; [\![F]\!]_{\rho[f/X]} \\
[\![F]\!] \cdot (\alpha) &= \sum_{p \in P} \alpha(p) \cdot [\![F]\!] \cdot (\rho)\n\end{aligned}
$$

(御 ⊁ (君 ⊁ (君 ⊁)

つくへ

$$
\bigcirc \stackrel{\frac{1}{3}}{\longrightarrow} \stackrel{\frac{2}{3}}{\longrightarrow} \bigcirc
$$

$$
F=\nu X.\langle a\rangle X
$$

There exist a infinite a-path.

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp There is some a-step, after which no further a-step is possible.

 \leftarrow \Box

Game associated with F:

$$
\bigcirc \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc}
$$

$$
F=\nu X.\langle a\rangle X
$$

There exist a infinite a-path.

$$
G=\mu X.\,[a]\,X
$$

Every a-path is finite.

$$
H=\langle a\rangle [a]\perp
$$

There is some a-step, after which no further a-step is possible.

Player \diamondsuit either gets stuck (and lose), or end up in a infinite ν -loop (and win). However, the probability of winning is 0.

So, \diamond wins this game with probability 0: $\llbracket F \rrbracket (p) = 0.$

Game associated with G:

$$
\bigcirc \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc}
$$

$$
F=\nu X.\langle a\rangle X
$$

There exist a infinite a-path.

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle [a] \perp$

There is some a-step, after which no further a-step is possible.

Player \Box either gets stuck (and lose), or end up in a infinite μ -loop (and win). However, this happens with prob. 0.

So, \Diamond wins this game with probability 1: $\llbracket G \rrbracket (p) = 1.$

Game associated with H:

$$
\bigcirc \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc}
$$

$$
F=\nu X.\langle a\rangle X
$$

There exist a infinite a-path.

 $G = \mu X$. [a] X Every a-path is finite.

 $H = \langle a \rangle$ [a] \perp

There is some a-step, after which no further a-step is possible.

Player \diamond reaches \perp with prob. $\frac{1}{3}$, and \Box gets stuck with probability $\frac{2}{3}$.

So, \diamondsuit wins this game with probability $\frac{2}{3}$: $\llbracket H \rrbracket (p) = \frac{2}{3}.$

$$
F = \nu X.\langle a \rangle X
$$

There exist a infinite *a*-path.

 $F = \nu X.\langle a \rangle X$ There exist a infinite a-path. Best probability of producing an infinite a-path.

 $G = \mu X$. [a] X $G = \mu X$. [a] X

Every a-path is finite. Probability that any adversary environment, fails in producing an infinite a-path

no further a-step is possible. $\qquad \qquad$ a state without a-edges.

 $H = \langle a \rangle$ [a] ⊥ H = $\langle a \rangle$ [a] ⊥ There is some a-step, after which Probability to reach after some a-step

In general Best probability of satisfying F (read as in $L\mu$) aga[ins](#page-17-0)t [a](#page-19-0)[n](#page-17-0)[y h](#page-18-0)[o](#page-19-0)[stil](#page-0-0)[e e](#page-47-0)[nvi](#page-0-0)[ron](#page-47-0)[m](#page-0-0)[ent.](#page-47-0)

Theorem [Mio 2010, Morgan and McIver 2004]:

 $\llbracket F \rrbracket (p) =$ value of the game \mathcal{G}^F at $(p: F)$.

where the (quantitative) value is defined as usual in game theory:

$$
\bigsqcup_{\sigma_{\Diamond}\ \sigma_{\Box}} E(M_{\sigma_{\Diamond},\sigma_{\Box}})=\bigsqcup_{\sigma_{\Box}\ \sigma_{\Diamond}} E(M_{\sigma_{\Diamond},\sigma_{\Box}})
$$

- ▶ Denotational Semantics and Game Semantics coincide.
- \triangleright Useful to have an operational interpretation for the meaning of a probabilistic sentences.
- ► Game Semantics provides: model checking algorithms, ...

へのへ

Prob. μ -Calculus with Independent Product: pL μ^\odot

- ► Interpreted on PLTS $=\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a\in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P\times \mathcal{D}(P)$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$ $F \odot G$ | $F \cdot G$
- ► Semantics: $\llbracket F \rrbracket_\rho : P \to [0,1]$, with $\rho : \textit{Var} \to (P \to [0,1])$ $\llbracket F \cdot G \rrbracket(p) = \llbracket F \rrbracket(p) \cdot \llbracket G \rrbracket(p) \quad \llbracket F \odot G \rrbracket(p) = \llbracket F \rrbracket(p) \odot \llbracket G \rrbracket(p)$

where $x \odot y = x + y - (x \cdot y)$

► the De Morgan dual of \cdot under $\neg x = 1-x$: $x \odot y \stackrel{\text{def}}{=} \neg(\neg x \cdot \neg y)$.

御 > スミ > スミ > ニミ

つくへ

Prob. μ -Calculus with Independent Product: pL μ^\odot

- ► Interpreted on PLTS $=\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a\in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P\times \mathcal{D}(P)$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$ $F \odot G$ | $F \cdot G$
- ► Semantics: $\llbracket F \rrbracket_\rho : P \to [0,1]$, with $\rho : \textit{Var} \to (P \to [0,1])$ $\llbracket F \cdot G \rrbracket(p) = \llbracket F \rrbracket(p) \cdot \llbracket G \rrbracket(p) \quad \llbracket F \odot G \rrbracket(p) = \llbracket F \rrbracket(p) \odot \llbracket G \rrbracket(p)$

$$
\blacktriangleright \text{ where } x \odot y = x + y - (x \cdot y)
$$

► the De Morgan dual of \cdot under $\neg x = 1-x$: $x \odot y \stackrel{\text{def}}{=} \neg(\neg x \cdot \neg y)$.

▶ Mathematically well defined (\cdot and \odot are monotone).

つくへ

Prob. μ -Calculus with Independent Product: pL μ^\odot

- ► Interpreted on PLTS $=\langle P, \{\stackrel{a}{\longrightarrow}\}_{{a\in L}}\rangle$, with $\stackrel{a}{\longrightarrow} \subseteq P\times \mathcal{D}(P)$.
- Syntax: $F ::= X \mid F \vee G \mid F \wedge G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$ $F \odot G$ | $F \cdot G$
- ► Semantics: $\llbracket F \rrbracket_\rho : P \to [0,1]$, with $\rho : \textit{Var} \to (P \to [0,1])$ $\llbracket F \cdot G \rrbracket(p) = \llbracket F \rrbracket(p) \cdot \llbracket G \rrbracket(p) \quad \llbracket F \odot G \rrbracket(p) = \llbracket F \rrbracket(p) \odot \llbracket G \rrbracket(p)$

$$
\blacktriangleright \text{ where } x \odot y = x + y - (x \cdot y)
$$

► the De Morgan dual of \cdot under $\neg x = 1-x$: $x \odot y \stackrel{\text{def}}{=} \neg(\neg x \cdot \neg y)$.

- \blacktriangleright Mathematically well defined (\cdot and \odot are monotone).
- \triangleright But is it meaningful?
	- \blacktriangleright $\llbracket F \cdot G \rrbracket$ probability that F and G holds independently?
	- \blacktriangleright $\mathbb{F} \odot \mathbb{G}$ probability that F or G holds independently?

→ イ君→ イ君→ 一君

Why pL μ^{\odot} ??

Let us define

$$
\blacktriangleright \mathbb{P}_{>0}F \stackrel{\text{def}}{=} \mu X.(F \odot X), \text{ and}
$$

$$
\blacktriangleright \mathbb{P}_{=1}F \stackrel{\text{def}}{=} \nu X.(F \cdot X).
$$

Then

$$
\begin{aligned}\n\blacktriangleright \[\mathbb{P}_{>0}F\](p) &= \left\{ \begin{array}{ll} 1 & \text{if } \[\![F]\!](p) > 0 \\
0 & \text{otherwise} \end{array} \right. \\
\blacktriangleright \[\mathbb{P}_{=1}F\](p) &= \left\{ \begin{array}{ll} 1 & \text{if } \[\![F]\!](p) = 1 \\
0 & \text{otherwise} \end{array} \right.\n\end{aligned}
$$

This allows:

- \triangleright the expression of interesting (new) properties involving qualitative/quantitative assertions (see paper).
- ► The encoding of the qualitative fragme[nt](#page-22-0) [of](#page-24-0) [P](#page-22-0)[C](#page-23-0)[T](#page-24-0)[L](#page-0-0) [int](#page-47-0)[o](#page-0-0) [pL](#page-47-0) $\mu^{\odot}.$ $\mu^{\odot}.$

 Ω

Game associated with $H \cdot J$:

 $H = \langle a \rangle$ [a] \perp Probability to reach after some a-step a state without a-edges.

 $J = \langle a \rangle \langle a \rangle \top$

Probability to reach after some a-step

a state with some a-edge.

 $H \cdot J$

Probability of satisfying both H and J when H and J independently verified.

Game associated with $H \cdot J$:

$$
\bigcirc \stackrel{\frac{1}{3}}{\longrightarrow} \stackrel{\frac{2}{3}}{\longrightarrow} \bigcirc
$$

$$
H = \langle a \rangle [a] \perp
$$

Probability to reach after some *a*-step
a state without *a*-edges.

Probability to reach after some a-step

a state with some a-edge.

 $H \cdot J$

Probability of satisfying both H and J when H and J independently verified.

At the state $p: H \cdot J$ the game is split in two concurrent and independent sub-games.

 \diamond wins iff He wins in **both** sub-games.

Since they are independent, this will happen with probability $\frac{1}{3} \cdot \frac{2}{3}$.

 A B A B

 Ω

 $\llbracket H \cdot J \rrbracket (p) = \frac{2}{9}.$

$$
\bigcirc \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc} \overline{\bigcirc}
$$

Game associated with $\mu X.(H \odot X)$:

つくい

$$
H = \langle a \rangle [a] \perp
$$

Probability to reach after some *a*-step
a state without *a*-edges.

 $\mathbb{P}_{>0}H = \mu X.(X \odot H)$ 1 if H is possible, 0 otherwise. \Uparrow probability that H holds at least once if verified infinitely many times.

$$
H = \langle a \rangle [a] \perp
$$

Probability to reach after some *a*-step
a state without *a*-edges.

$$
\mathbb{P}_{>0}H = \mu X.(X \odot H)
$$

1 if H is possible,
0 otherwise.

$$
\updownarrow
$$

probability that H holds at least once

if verified infinitely many times.

 \mathcal{G}^{H} $p:H$ | $\left\langle p:X\right\rangle$ μX $\sum_{D}^{8} H \odot \chi$ $\sqrt{p:\mu X.(H\odot X)}$

 $2Q$

 \diamond will win in at least on sub-game almost surely!

∢ 伊 ▶ 《 ヨ ▶

K 로)

Game associated with $\mu X.(H \odot X)$:

$$
\llbracket \mu X.(H \odot X) \rrbracket (p) = 1.
$$

 \leftarrow \Box

- These ideas are formalized using $2\frac{1}{2}$ -player tree games, which build on the intuitive idea of concurrent and independent execution of sub-games.
- \triangleright A new class of games having trees as outcomes, rather than paths.
	- \triangleright The branches of the trees are generated when the game is split in concurrent and independent sub-games.
- \blacktriangleright The winning-set of a 2 $\frac{1}{2}$ -player tree game is a set Φ of trees
	- \triangleright which we call **branching plays.**
- ► In the case of pL μ^{\odot} games the winning set, is the set of trees
	- ightharpoonup such that \Diamond can find a winning path by making or choices at the branching nodes $p : F \odot G$, against any and choice made by \Box on the nodes $p : F \cdot G$.
	- \triangleright i.e. the trees that, once interpreted as ordinary 2-player parity games, are won by \Diamond .
- If Th[a](#page-27-0)t's wh[y](#page-29-0) we call the[m](#page-47-0) $2\frac{1}{2}$ -player me[ta](#page-27-0) [-p](#page-29-0)a[rit](#page-28-0)y [ga](#page-0-0)m[es.](#page-0-0)

▶ One can define the notion of (upper and lower) value of a $2\frac{1}{2}$ $\frac{1}{2}$ -player tree game.

$$
\triangleright \ \text{Val}_{\downarrow}(\mathcal{G}) = \bigsqcup_{\sigma_{\Diamond}} \bigsqcup_{\sigma_{\Box}} E_{\sigma_{\Diamond}, \sigma_{\Box}}(\Phi)
$$

$$
\triangleright \; Val_{\uparrow}(\mathcal{G}) = \prod_{\sigma_{\Box}} \bigsqcup_{\sigma_{\Diamond}} E_{\sigma_{\Diamond}, \sigma_{\Box}}(\Phi)
$$

Theorem (\mathbf{MA}_{\aleph_1}) : If $\mathcal G$ is a pL μ^\odot game, then: $Val_{\perp}(\mathcal{G})=Val_{\uparrow}(\mathcal{G}).$

Theorem (MA_{\aleph_1}) **:** For every pL μ^{\odot} formula F: $\llbracket F \rrbracket (p) =$ value of \mathcal{G}^F at (p, F) .

Our theorems hold in ${\rm ZFC+MA}_{\aleph_1}$ set theory.

- \triangleright MA is an axiom considered by set theorists as a weaker alternative to CH.
- \blacktriangleright MA_{\aleph_1} is a consequence of $\mathrm{MA} + \neg \mathrm{CH}$ and itself implies $\neg \mathrm{CH}.$
- \blacktriangleright In particular it implies that:
	- measurable sets are closer under ω_1 unions.
	- \blacktriangleright measures are ω_1 -continuous.
- ▶ Therefore our proof is a consistent proof.

Our theorems hold in ${\rm ZFC+MA}_{\aleph_1}$ set theory.

- \triangleright MA is an axiom considered by set theorists as a weaker alternative to CH.
- \blacktriangleright MA_{\aleph_1} is a consequence of $\mathrm{MA} + \neg \mathrm{CH}$ and itself implies $\neg \mathrm{CH}.$
- \blacktriangleright In particular it implies that:
	- measurable sets are closer under ω_1 unions.
	- \blacktriangleright measures are ω_1 -continuous.
- \blacktriangleright Therefore our proof is a consistent proof.
	- Also Fermat's Last Theorem is proved in $ZFC + U!!$ $\forall a, b, c \in \mathbb{Z}. a^n + b^n \neq c^n$, when $n > 3$.

We use MA_{\aleph_1} to handle the complexity of the winning sets Φ of p $\mathsf{L}\mu^\odot$ games.

- ► We prove that Φ is always a $\mathbf{\Delta}^1_2$ set.
- ▶ Hence not Borel, and not necessarily measurable.
- \triangleright But we characterize Φ as a ω_1 -union of measurable sets: $\Phi = \bigcup_{\alpha < \omega_1} \Phi^{\alpha}.$
- Hence, under MA_{N_1} , Φ is measurable, and its measure is the limit of the measures of the approximants.

$$
\blacktriangleright \mu(\Phi) = \bigsqcup_{\alpha < \omega_1} \mu(\Phi^{\alpha})
$$

Matteo Mio [Lyon - September 2011](#page-0-0)

 \leftarrow \Box

→ 御 > → 君 > → 君 >

È

 299

 \blacktriangleright can MA_{\aleph_1} be dropped from the proof?

 \leftarrow \Box

重

∢ 伊 ▶ . ∢ ヨ ▶ . ∢ ヨ ▶

 299

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?
	- ▶ Conjecture was: YES!

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?
	- ► Conjecture was: YES!
	- ► Answer is: NO!

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?
	- ► Conjecture was: YES!
	- ▶ Answer is: NO!
- ► Is the value of a finite pL μ^{\odot} -game decidable? !!!

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?
	- ► Conjecture was: YES!
	- ▶ Answer is: NO!
- ► Is the value of a finite pL μ^{\odot} -game decidable? !!!
	- \blacktriangleright Failure of positional determinacy makes this problem challenging.

- \blacktriangleright can MA_{\aleph_1} be dropped from the proof?
- \blacktriangleright Is a finite pL μ^\odot -game positionally determined?
	- ► Conjecture was: YES!
	- ▶ Answer is: NO!
- ► Is the value of a finite pL μ^{\odot} -game decidable? !!!
	- \blacktriangleright Failure of positional determinacy makes this problem challenging.
- \triangleright Study the logical-equivalence (or metric) induced by the logic pL μ^{\odot} , or even the modal fragment $\{\top, \bot, \vee, \wedge, \langle a \rangle, [a] \, , \cdot, \odot\}.$

THANKS

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶

È

 299

A few interesting examples

Figure: Example of PLTS

1.
$$
F_2 \stackrel{\text{def}}{=} \nu X. \langle a \rangle X
$$

"Best probability of making an infinite sequence of a's".

 \leftarrow \Box

A few interesting examples

Figure: Example of PLTS

1.
$$
F_2 \stackrel{\text{def}}{=} \nu X. \langle a \rangle X
$$
 "Best probability of making an infinite sequence of $a's$ ".

2.
$$
F_3 \stackrel{\text{def}}{=} \mu X \cdot (F_2 \vee \langle b \rangle X)
$$

"Best probability of making a finite sequence of b's followed by an infinite sequence of a's".

 290

A few interesting examples

Figure: Example of PLTS

\n- 1.
$$
F_2 \stackrel{\text{def}}{=} \nu X. \langle a \rangle X
$$
 "Best probability of making an infinite sequence of a 's".
\n- 2. $F_3 \stackrel{\text{def}}{=} \mu X. (F_2 \vee \langle b \rangle X)$
\n

"Best probability of making a finite sequence of b's followed by an infinite sequence of a's".

3. $F_5 \stackrel{\text{def}}{=} \langle a \rangle \langle a \rangle \underline{1} \wedge [a] [a] \underline{0}$ $0 \leq [F_5] (p) \leq \frac{1}{2}$ $\frac{1}{2}$ for all p The logic is not Boolean! (Kleene Algebra)

Figure: Example of PLTS

1. $G_1 \stackrel{\text{def}}{=} \mathbb{P}_{=1}(\nu X.\langle a \rangle X)$ "Holds at p , if the best probability of making an infinite sequence of a's is 1".

 \leftarrow \Box

 \sim

Figure: Example of PLTS

1. $G_1 \stackrel{\text{def}}{=} \mathbb{P}_{=1}(\nu X.\langle a \rangle X)$ "Holds at p , if the best probability of making an infinite sequence of a's is 1".

2.
$$
G_2 {\, \stackrel{\mathrm{def}}{=}\, } \mu X. \bigl(\, G_1 \vee \langle b \rangle X \bigr)
$$

"Best probability of reaching, by a finite sequence of b 's, a state where G_1 holds".

Figure: Example of PLTS

- 1. $G_1 \stackrel{\text{def}}{=} \mathbb{P}_{=1}(\nu X.\langle a \rangle X)$ "**Holds at** p , if the best probability of making an infinite sequence of a's is 1".
- 2. $G_2 \stackrel{\text{def}}{=} \mu X \cdot (G_1 \vee \langle b \rangle X)$

"Best probability of reaching, by a finite sequence of b 's, a state where G_1 holds".

3. $G_5 \stackrel{\text{def}}{=} \mathbb{P}_{>0}(\mu X. (G_1 \vee \langle b \rangle X))$ "Holds iff the probability (above) is greater than 0".

つのへ

Figure: Example of PLTS

1.
$$
H_1 = \nu X \cdot P_{>0} \langle a \rangle X
$$

\n"Holds if it is possible to make infinitely many **possible** a's:
\n $p \stackrel{a}{\longrightarrow} d_1 \rightsquigarrow p_1 \stackrel{a}{\longrightarrow} d_2 \rightsquigarrow p_2 \dots$ with $d_n(p_n) > 0$

2. $H_2 = \mu X . \mathbb{P}_{-1}$ [a] X Dual of H_1 : "holds if it is impossible to make infinitely many possible a's:

3.
$$
H_3 = \mu X.((\mathbb{P}_{>0}\langle a \rangle X) \vee \mathbb{P}_{=1}H)
$$

"Holds if it is possible to make finitely many **possible** a's and reach a state where H holds with probability 1.