Duality and i/o-types in the m-calculus

Picoq

Jean-Marie Madiot

2012-07-10

m-calculus

7 is a name-passing process calculus. Some notations:
m ab sends the name b on the channel a;
m a(x).P waits for some ab somewhere, then run P[b/x];
m 3b | a(x).P — P[b/x].

Two A-encodings that seem different

Milner's cbn encoding:

[x], =xp
[Ax.M], = p(x, q).[M],
[MN], = (va)([M], | (vx)(@(x, p).1x(r).[N],))

van Bakel, Vigliotti's (stong) cbn encoding:

[x], = x(p)-p" —p
[Ax.M], = B(x, q):[M],
[MN], = (vq)([M], | a(x,p")-(p" = p ['X(r).[N],))

a—»>b = !a(x).Bx “link”

Duality in the m-calculus

Let’s try switching inputs and outputs:
m a(x).P ~ (vx)ax.P: we can certainly send a new name.
m ab.P ~ (?): “freely” receiving a name?
m solution 1: forbid free outputs (internal mobility)

m solution 2: authorize free inputs and unify names (fusion calculi)

Internal mobility: 7l [Sangiorgi, 1996]

Outputs cannot be free, only bound:
(vb)ab.P = a(b).P (notation)
ml is a subcalculus of 7, so we get this rule:
a(x).P|a(x).Q — (vx)(P | Q)

Consequences?
m simpler theory: ~ is a congruence
m expressiveness: enough for the A-calculus

m duality:

a(x)x(y)-(y [y) = alx)x(y)-(v1y)

Fusion calculi [Parrow, Victor, Fu, Wischik, Gardner, Laneve, ...

Authorizing both free outputs and free inputs. The objects fuse.

P:=3b.P|abP|(a=b)|(va)P]...

ab.Plac.Q — P|Q|(b=c)
(a=b)|ac.P = (a=b)|bc.P
(a=b)|ac| bd — (a=b)|(c=4d)

Consequences?
m nice theory: only one binder
® unique notion of bisimilarity (substitution-closed)

m duality:

ab|ac|(d=e) = ab|ac|(d=c¢e)

m links vs fusions

Types provide safety, as always, but also a refined analysis of processes.

For example:
a:foT > (vb)ab.b =~ (vb)ab.0

Capability types (i/o-types) are a central type construct:
m a:iT types processes receiving T-names on a;
m a: oT types processes sending T-names on a;

m a: {7 types processes doing both.

NFa:iT Tyx: TEP FTra2:0T THH:-T
It a(x).P -3ab

Subtypes

Subtyping in name-passing:
T1 < Ty : any Ti-name is also a Tp-name.

e.g. a #T-name can be viewed as a iT-name.

Subtyping in depth is natural in i/o types; this rules follows for the
operational semantics of 7:

T1<T, T:<T>
iTl S IT2 OT2 S OT1

Types and duality

Symmetric calculi and i/o-types don't go so well together:
m 7l inherits i/o-types from 7 but they are not symmetric;

m fusion calculi are not compatible with in-depth subtyping.

c:i, a:fi, b:o F ablac|b

c:i + (vab)(ab|ac|b)—<

7. m with typed duality

A calculus containing 7 and the syntactic dual of
P:=3b|ab| a(x).P|a(x).P|(va)P|...
and behaving like 7:

ab.P | a(x).Q — P| Q[b/x] (asin)
ab.P | a(x).Q — P | Q[b/x] (dual of above)
a(x).P|a(x).Q — (vx)(P| Q) (asin =l)
ab | ac as (no fusion)
We create two sorts to forbid the last reduction: FO and FI.
m FO allows only free outputs: ab, a(x).P,a(x).P (like in)
m F/ allows only free inputs: ab,a(x).P, a(x).P

Properties of 7™

We still have subtyping in depth:
m in the FO world, i is covariant and o contravariant

m in the F/ world, i is contravariant and o covariant

Operational duality is straightforward:

PP < PP P~Q & P~Q
Typing is built towards duality, too:
a:if°THEP < a:0'THP Ti<Th, & T1<T

More importantly (and new), the typed barbed congruence:

MFP=Q & THP~Q

7 compared to 7

T contains 7 syntactically, but it is also very close to m:

Theorem (7 is a conservative extension of 7)
IfT,P,Q are in w then:

FP~Q & TFP~Q .

Back to the two A-encodings

Milner's cbn encoding:

[x], =xp
[Ax.M], = p(x, q).[M],
[MN], = (va)([M], | (vx)(G(x, p).!1x(r).[N],))

van Bakel, Vigliotti's (stong) cbn encoding:
[x], = x(p").p" —p
.M, = p(x, q):[MI,
[MN], = (vq)(IM], | a(x,p").(p" — p [X(r).[N],))

Differences and similaritites

[x], =xp Milner
[Ax.M], = p(x, q).IM],

[x], =x(p")-p" = p van Bakel,
[Ax.M], = p(x, q):[M], Vigliotti

Differences:
m inputs and outputs switched (duality)
m strong cbn (not a problem)

m usage of links: a — b = la(x).bx

We would like to relate them!

Available tools

We need a setting:
m big enough to contain both encodings [-] and [- [;
m powerful to study link processes (types);
m closed by duality;

m close enough to 7.

What do we have?
m 7wl

m hard to encode (not AL~);
m hard to relate to ;

m fusion calculi:

m hard to relate to 7 (not a conservative extension);
® not enough types

m 7 has both types and duality, close to 7.

First step: duality

From [-] (in the FO part of) we get [- .

[-] isin the FI part of 7. (e [x], = xp)

Second step: link transformation

We define a link transformation [-],:

[ab.P], = a(x).(x = b | [P],) ; [ab],=3b
Types are fundamental:

m [-], demands asynchrony and output-capability for the links to work
m [-], transforms Fl-types into FO-types

[-1is in the Fl-part of 7.

[[HL is in the FO-part of 7.

From [-] we get [-] and then Hﬂ .]]HZ which is exactly [-].

Conclusion

Contributions:
m a calculus, 7,
m (first) typed duality
m operationally close to m (with types)
m useful enough to handle A-encodings

m a link transformation,

m related two different A-encodings.

Future work:
m investigating the subtypes in symmetric calculi,

m a theory of links in a more general framework.

Typing rules of 7

Fa:if°T Ix:THP Frka:ifl' T Ix:TORP
I a(x).P I a(x).P
Frka:of'T Ix:THP FTFa:0f°T Ix:TOFP
r+3a(x).P r+alx).P
Frka: "7 THbL:T TFP
[+ ab.P
FTka:0°T THbL:T TFHP Fa:THP

r+3ab.P [+ (va)P
rTEP THQ F-pP ray<T
r-pP|Q FEIP r-o Tka:T

