
Duality and i/o-types in the π-calculus
Picoq

Jean-Marie Madiot

2012-07-10

π-calculus

π is a name-passing process calculus. Some notations:

ab sends the name b on the channel a;

a(x).P waits for some ab somewhere, then run P[b/x];

ab | a(x).P → P[b/x].

Two λ-encodings that seem different

Milner’s cbn encoding:

JxKp = xp

Jλx .MKp = p(x , q).JMKq
JMNKp = (νq)(JMKq | (νx)(q〈x , p〉.!x(r).JNKr))

van Bakel, Vigliotti’s (strong) cbn encoding:

JxKp = x(p′).p′ _ p

Jλx .MKp = p(x , q):JMKq
JMNKp = (νq)(JMKq | q(x , p′).(p′ _ p | !x(r).JNKr))

a _ b = !a(x).bx “link”

Duality in the π-calculus

Let’s try switching inputs and outputs:

a(x).P (νx)ax .P: we can certainly send a new name.

ab.P (?): “freely” receiving a name?

solution 1: forbid free outputs (internal mobility)

solution 2: authorize free inputs and unify names (fusion calculi)

Internal mobility: πI [Sangiorgi, 1996]

Outputs cannot be free, only bound:

(νb)ab.P = a(b).P (notation)

πI is a subcalculus of π, so we get this rule:

a(x).P | a(x).Q → (νx)(P | Q)

Consequences?

simpler theory: ∼ is a congruence

expressiveness: enough for the λ-calculus

duality:

a(x).x(y).(y | y) = a(x).x(y).(y | y)

Fusion calculi [Parrow, Victor, Fu, Wischik, Gardner, Laneve, . . .]

Authorizing both free outputs and free inputs. The objects fuse.

P ::= ab.P | ab.P | (a = b) | (νa)P | . . .

ab.P | ac.Q → P | Q | (b = c)

(a = b) | ac.P ≡ (a = b) | bc .P
(a = b) | ac | bd → (a = b) | (c = d)

Consequences?

nice theory: only one binder

unique notion of bisimilarity (substitution-closed)

duality:

ab | ac | (d = e) = ab | ac | (d = e)

links vs fusions

Types

Types provide safety, as always, but also a refined analysis of processes.

For example:
a :]oT B (νb)ab.b ' (νb)ab.0

Capability types (i/o-types) are a central type construct:

a : iT types processes receiving T -names on a;

a : oT types processes sending T -names on a;

a :]T types processes doing both.

Γ ` a : iT Γ, x : T ` P

Γ ` a(x).P
Γ ` a : oT Γ ` b : T

Γ ` ab

Subtypes

Subtyping in name-passing:

T1 ≤ T2 : any T1-name is also a T2-name.

e.g. a]T -name can be viewed as a iT -name.

Subtyping in depth is natural in i/o types; this rules follows for the
operational semantics of π:

T1 ≤ T2

iT1 ≤ iT2

T1 ≤ T2

oT2 ≤ oT1

Types and duality

Symmetric calculi and i/o-types don’t go so well together:

πI inherits i/o-types from π but they are not symmetric;

fusion calculi are not compatible with in-depth subtyping.

c : i , a :]i , b : o ` ab | ac | b

c : i ` (νab)(ab | ac | b)→ c

π: π with typed duality

A calculus containing π and the syntactic dual of π:

P ::= ab | ab | a(x).P | a(x).P | (νa)P | . . .

and behaving like π:

ab.P | a(x).Q → P | Q[b/x] (as in π)
ab.P | a(x).Q → P | Q[b/x] (dual of above)

a(x).P | a(x).Q → (νx)(P | Q) (as in πI)
ab | ac 6→ (no fusion)

We create two sorts to forbid the last reduction: FO and FI .

FO allows only free outputs: ab, a(x).P, a(x).P (like in π)

FI allows only free inputs: ab, a(x).P, a(x).P

Properties of π

We still have subtyping in depth:

in the FO world, i is covariant and o contravariant

in the FI world, i is contravariant and o covariant

Operational duality is straightforward:

P → P ′ ⇔ P → P ′ P ' Q ⇔ P ' Q

Typing is built towards duality, too:

a : iFOT ` P ⇔ a : oFIT ` P T1 ≤ T2 ⇔ T1 ≤ T2

More importantly (and new), the typed barbed congruence:

Γ ` P ' Q ⇔ Γ ` P ' Q

π compared to π

π contains π syntactically, but it is also very close to π:

Theorem (π is a conservative extension of π)

If Γ,P,Q are in π then:

Γ ` P 'π Q ⇔ Γ ` P 'π Q .

Back to the two λ-encodings

Milner’s cbn encoding:

JxKp = xp

Jλx .MKp = p(x , q).JMKq
JMNKp = (νq)(JMKq | (νx)(q〈x , p〉.!x(r).JNKr))

van Bakel, Vigliotti’s (strong) cbn encoding:

JxKp = x(p′).p′ _ p

Jλx .MKp = p(x , q):JMKq
JMNKp = (νq)(JMKq | q(x , p′).(p′ _ p | !x(r).JNKr))

Differences and similaritites

JxKp = xp Milner

Jλx .MKp = p(x , q).JMKq

JxKp = x(p′).p′ _ p van Bakel,

Jλx .MKp = p(x , q):JMKq Vigliotti

Differences:

inputs and outputs switched (duality)

strong cbn (not a problem)

usage of links: a _ b = !a(x).bx

We would like to relate them!

Available tools

We need a setting:

big enough to contain both encodings J · K and J · K;

powerful to study link processes (types);

closed by duality;

close enough to π.

What do we have?

πI:

hard to encode (not ALπ);
hard to relate to π;

fusion calculi:

hard to relate to π (not a conservative extension);
not enough types

π: has both types and duality, close to π.

First step: duality

From J · K (in the FO part of π) we get J · K.

J · K is in the FI part of π. (e.g. JxKp = xp)

Second step: link transformation

We define a link transformation J·K`:

Jab.PK` = a(x).(x _ b | JPK`) ; JabK` = ab ; . . .

Types are fundamental:

J·K` demands asynchrony and output-capability for the links to work

J·K` transforms FI -types into FO-types

J · K is in the FI -part of π.

r
J · K

z

`
is in the FO-part of π.

Composing

From J · K we get J · K and then
r
J · K

z

`
which is exactly J · K.

Conclusion

Contributions:

a calculus, π,

(first) typed duality
operationally close to π (with types)
useful enough to handle λ-encodings

a link transformation,

related two different λ-encodings.

Future work:

investigating the subtypes in symmetric calculi,

a theory of links in a more general framework.

Typing rules of π

Γ ` a : iFOT Γ, x : T ` P

Γ ` a(x).P

Γ ` a : iFIT Γ, x : T↔ ` P

Γ ` a(x).P

Γ ` a : oFIT Γ, x : T ` P

Γ ` a(x).P

Γ ` a : oFOT Γ, x : T↔ ` P

Γ ` a(x).P

Γ ` a : iFIT Γ ` b : T Γ ` P

Γ ` ab.P

Γ ` a : oFOT Γ ` b : T Γ ` P

Γ ` ab.P

Γ, a : T ` P

Γ ` (νa)P

Γ ` P Γ ` Q

Γ ` P | Q
Γ ` P

Γ ` !P Γ ` 0

Γ(a) ≤ T

Γ ` a : T

