# Towards a general construction of playgrounds

#### **Clovis Eberhart**

École Normale Supérieure de Cachan

August 5, 2013

# Outline



- 2 Building plays
- 3 A correctness criterion



э

< ∃ > < ∃ >

## Introduction

notion of playground

э

## Introduction

- notion of playground
- instances with similar constructions

э

∃ >

# Introduction

- notion of playground
- instances with similar constructions
- general and automated construction of playgrounds

# Introduction

- notion of playground
- instances with similar constructions
- general and automated construction of playgrounds
- simple playground to demonstrate the categorical combinatorics methods

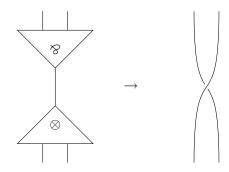
An example: MLL interaction nets Positions are presheaves Plays are cospans

### An MLL interaction net

イロト イポト イヨト イヨト

An example: MLL interaction nets Positions are presheaves Plays are cospans

# Reduction in MLL interaction nets



< 同 ▶

∃ ► < ∃ ►</p>

An example: MLL interaction nets Positions are presheaves Plays are cospans

### Let us take a closer look at the interaction net

• = • • = •

A 10

We suppose we have a base category  $\ensuremath{\mathcal{C}}$  that "describes the game".

< A ▶

- - E + - E +

We suppose we have a base category  ${\mathcal C}$  that "describes the game".

 ${\mathcal C}$  is graded: There is a functor  ${\it F}:{\mathcal C}\to\omega$  that reflects identities.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We suppose we have a base category  ${\mathcal C}$  that "describes the game".

 $\mathcal C$  is graded: There is a functor  $F:\mathcal C\to\omega$  that reflects identities.

The dimension of an object c of C is F(c).

・ 同 ト ・ ヨ ト ・ ヨ ト

We suppose we have a base category  ${\mathcal C}$  that "describes the game".

 ${\mathcal C}$  is graded: There is a functor  ${\it F}:{\mathcal C}\to\omega$  that reflects identities.

The dimension of an object c of C is F(c).

• objects of dimension 0 are called channels

伺 ト イ ヨ ト イ ヨ ト

We suppose we have a base category  ${\mathcal C}$  that "describes the game".

 ${\mathcal C}$  is graded: There is a functor  ${\it F}:{\mathcal C}\to\omega$  that reflects identities.

The dimension of an object c of C is F(c).

- objects of dimension 0 are called channels
- objects of dimension 1 are called *players*

伺 ト イヨト イヨト

We suppose we have a base category  ${\mathcal C}$  that "describes the game".

 ${\mathcal C}$  is graded: There is a functor  ${\it F}:{\mathcal C}\to\omega$  that reflects identities.

The dimension of an object c of C is F(c).

- objects of dimension 0 are called channels
- objects of dimension 1 are called *players*
- objects of dimension at least 2 are called moves

・ 同 ト ・ ヨ ト ・ ヨ ト

An example: MLL interaction nets Positions are presheaves Plays are cospans

### The base category

In the case of MLL interaction nets:

\*

dimension 0

(日) (同) (三) (三)

An example: MLL interaction nets Positions are presheaves Plays are cospans

#### The base category

In the case of MLL interaction nets:



dimension 1

\*

dimension 0

(日) (同) (三) (三)

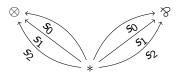
э

8

An example: MLL interaction nets Positions are presheaves Plays are cospans

### The base category

In the case of MLL interaction nets:



dimension 1

dimension 0

An example: MLL interaction nets Positions are presheaves Plays are cospans

#### The base category

In the case of MLL interaction nets:

cut

dimension 2



dimension 1

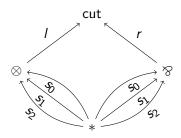
dimension 0

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

An example: MLL interaction nets Positions are presheaves Plays are cospans

#### The base category

In the case of MLL interaction nets:



dimension 2

dimension 1

dimension 0

< 67 ▶

A B > A B >

with the relations  $I \circ s_i = r \circ s_i$ .

An example: MLL interaction nets Positions are presheaves Plays are cospans

### Positions as presheaves

A presheaf on a category C is a functor  $F : C^{op} \to \text{Set}$ . We will only consider finitely presentable presheaves, whose category we denote  $\widehat{C}^{f}$ .

- A 🗄 🕨

### Positions as presheaves

A presheaf on a category C is a functor  $F : C^{op} \to \text{Set.}$ We will only consider finitely presentable presheaves, whose category we denote  $\hat{C}^f$ . Positions are a "suitable" subcategory of presheaves of dimension 1 on C.

## Positions as presheaves

A presheaf on a category C is a functor  $F : C^{op} \to \text{Set}$ .

We will only consider finitely presentable presheaves, whose category we denote  $\widehat{\mathcal{C}}^{f}$ .

Positions are a "suitable" subcategory of presheaves of dimension 1 on  $\ensuremath{\mathcal{C}}.$ 

In the case of MLL interaction nets, positions are presheaves of dimension 1 such that there are never more than two morphisms from players to a given channel.

An example: MLL interaction nets Positions are presheaves Plays are cospans

#### Positions as presheaves

(日) (同) (三) (三)

An example: MLL interaction nets Positions are presheaves Plays are cospans

### Category of elements

#### The category of elements el(F) of a presheaf $F : C^{op} \to Set$ has:

(日) (同) (三) (三)

# Category of elements

# The category of elements el(F) of a presheaf $F : C^{op} \to Set$ has:

• objects: pairs (c, x) where c is an object of  $\mathcal{C}$  and  $x \in F(c)$ 

- 4 同 ト 4 ヨ ト 4 ヨ ト

# Category of elements

The category of elements el(F) of a presheaf  $F : C^{op} \to Set$  has:

- objects: pairs (c, x) where c is an object of C and  $x \in F(c)$
- morphisms:  $u: (c, x) \to (c', x')$  if  $u: c \to c'$  is a morphism of C such that F(u)(x') = x.

- 4 同 ト 4 ヨ ト 4 ヨ ト

An example: MLL interaction nets Positions are presheaves Plays are cospans

### Category of elements

(日) (同) (三) (三)

## Seeds

We assume given, for every move m of C, a cospan in the category of presheaves  $Y \to M \leftarrow X$  (called a "seed"), where X and Y are positions, M is the representable presheaf corresponding to m and that verifies the following properties:

## Seeds

We assume given, for every move m of C, a cospan in the category of presheaves  $Y \to M \leftarrow X$  (called a "seed"), where X and Y are positions, M is the representable presheaf corresponding to m and that verifies the following properties:

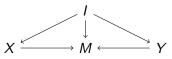
•  $X(p) + Y(p) \rightarrow M(p)$  is surjective for every player p

- 4 同 2 4 日 2 4 日 2

# Seeds

We assume given, for every move m of C, a cospan in the category of presheaves  $Y \to M \leftarrow X$  (called a "seed"), where X and Y are positions, M is the representable presheaf corresponding to m and that verifies the following properties:

- $X(p) + Y(p) \rightarrow M(p)$  is surjective for every player p
- it has a "canonical interface" I of dimension 0 such that:



commutes.

. . . . . . .

Building plays A correctness criterion Positions are presheaves Plays are cospans

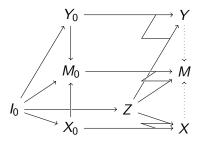


\*ロ \* \* @ \* \* 注 \* \* 注 \*

æ

### Moves

A move is a cospan  $Y \to M \leftarrow X$  built from a seed  $Y_0 \to M_0 \leftarrow X_0$  with canonical interface *I* by pushing out along some "suitable" position *Z* in the following way:



伺 ト イヨト イヨト

Building plays A correctness criterion Positions are presheaves Plays are cospans

### Moves

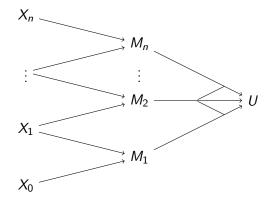
\*ロ \* \* @ \* \* 注 \* \* 注 \*

æ

Building plays A correctness criterion Plays are cospans

# Building plays

A play is a composition of moves in the bicategory of cospans.



< ∃ >

< 67 ▶

ъ

# A first example

<ロ> <同> <同> < 同> < 同>

æ

An example: MLL interaction nets Positions are presheaves Plays are cospans

### A second example

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions The criterion Sketch of the proof

### Problem

• plays are cospans  $Y \rightarrow U \leftarrow X$ , but when is such a cospan a play?

< 日 > < 同 > < 三 > < 三 >

## Problem

- plays are cospans  $Y \rightarrow U \leftarrow X$ , but when is such a cospan a play?
- need for a correctness criterion.

< 日 > < 同 > < 三 > < 三 >

For every seed  $Y \xrightarrow{s} M \xleftarrow{t} X$ , we define the past of M to be the set:

$$\mathsf{past}(M) = igcup_{p \in \mathcal{C}} M(p) - Y(p)$$

< 日 > < 同 > < 三 > < 三 >

### Cores, core separation

A core of a presheaf U is a move  $\mu$  of el(U) such that, if  $f : \mu \to x$ in el(U), then  $x = \mu$  and  $f = id_{\mu}$ .

A presheaf  $U \in \widehat{\mathcal{C}}^{f}$  is core-separating if for all cores  $\mu \neq \mu'$  in el(U), the pullback of  $\mu$  along  $\mu'$  is a position.

# Local 1-injectivity

A presheaf U on C is locally 1-injective iff for every seed  $Y \stackrel{s}{\hookrightarrow} M \stackrel{t}{\longleftrightarrow} X$  with canonical interface  $u : I \to M$  and for all corresponding core  $\mu \in el(U)$  (seen as a morphism  $\mu : M \to U$ ), if  $x \neq y \in M$  are such that  $\mu(x) = \mu(y)$ , then x, y are in the image of u.

伺 と く ヨ と く ヨ と

## Partitioning players and channels

For every seed, we partition players in the following way:

- consumed players:  $Co(M)(p) = X(p) \setminus Y(p)$
- created players:  $Cr(M)(p) = Y(p) \setminus X(p)$
- surviving players:  $Sr(M)(p) = X(p) \cap Y(p)$

We do the same for channels.

伺 ト イ ヨ ト イ ヨ ト

## Initial and final players and channels

For every presheaf  $U \in \widehat{\mathcal{C}}^{f}$ , we define the set of its initial and final players by:

- $\operatorname{Init}(U)(p) = \{x \in U(p) \mid \nexists m \in \mathcal{C}, \ \widetilde{m} \in U(m), \ x \in \operatorname{Cr}(\widetilde{m})(p)\}$
- Fin(U)(p) = { $x \in U(p) \mid \nexists m \in C, \ \widetilde{m} \in U(m), \ x \in Co(\widetilde{m})(p)$ }

→ □ → → □ →

## The causal graph

#### We define the causal graph $G_U$ that has:

#### $G_U$ is source-linear if for all $x \to \mu$ , $x \to \mu'$ , $\mu = \mu'$ .

< 日 > < 同 > < 三 > < 三 >

## The causal graph

We define the causal graph  $G_U$  that has:

• for vertices: the players, channels and cores of U

 $G_U$  is source-linear if for all  $x \to \mu$ ,  $x \to \mu'$ ,  $\mu = \mu'$ .

We define the causal graph  $G_U$  that has:

- for vertices: the players, channels and cores of U
- for edges:
  - $x \rightarrow x \cdot s$  for every player x and  $s : p \rightarrow *$

 ${\cal G}_U$  is source-linear if for all  $x o \mu$ ,  $x o \mu'$ ,  $\mu = \mu'$ .

We define the causal graph  $G_U$  that has:

- for vertices: the players, channels and cores of U
- for edges:
  - $x \rightarrow x \cdot s$  for every player x and  $s : p \rightarrow *$
  - $c \to \mu$  for every core  $\mu$  and  $c \in Cr(\mu)(*)$

$$G_U$$
 is source-linear if for all  $x \to \mu$ ,  $x \to \mu'$ ,  $\mu = \mu'$ .

We define the causal graph  $G_U$  that has:

- for vertices: the players, channels and cores of U
- for edges:
  - $x \rightarrow x \cdot s$  for every player x and  $s : p \rightarrow *$
  - $c 
    ightarrow \mu$  for every core  $\mu$  and  $c \in \mathsf{Cr}(\mu)(*)$
  - $x \to \mu$  for every core  $\mu$  and  $x \in Cr(\mu)(p)$

$$G_U$$
 is source-linear if for all  $x \to \mu$ ,  $x \to \mu'$ ,  $\mu = \mu'$ .

- 4 B b 4 B b

A 10

We define the causal graph  $G_U$  that has:

- for vertices: the players, channels and cores of U
- for edges:
  - $x \rightarrow x \cdot s$  for every player x and  $s : p \rightarrow *$
  - $c 
    ightarrow \mu$  for every core  $\mu$  and  $c \in \mathsf{Cr}(\mu)(*)$
  - $x \to \mu$  for every core  $\mu$  and  $x \in Cr(\mu)(p)$
  - $\mu \to x$  for every core  $\mu$  and  $x \in \mathsf{Co}(\mu)(*) \cup \mathsf{Sr}(\mu)(*)$

 ${\cal G}_U$  is source-linear if for all  $x \to \mu$ ,  $x \to \mu'$ ,  $\mu = \mu'$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

We define the causal graph  $G_U$  that has:

- ullet for vertices: the players, channels and cores of U
- for edges:
  - $x \rightarrow x \cdot s$  for every player x and  $s : p \rightarrow *$
  - $c 
    ightarrow \mu$  for every core  $\mu$  and  $c \in \mathsf{Cr}(\mu)(*)$
  - $x \to \mu$  for every core  $\mu$  and  $x \in Cr(\mu)(p)$
  - $\mu \to x$  for every core  $\mu$  and  $x \in \mathsf{Co}(\mu)(*) \cup \mathsf{Sr}(\mu)(*)$
  - $\mu \to \mu'$  for all cores  $\mu \neq \mu'$  when there is a player x in  $Co(\mu) \cap (Co(\mu') \cup Sr(\mu'))$

 $G_U$  is source-linear if for all  $x \to \mu$ ,  $x \to \mu'$ ,  $\mu = \mu'$ .

- 同 ト - ヨ ト - - ヨ ト

## Assumed

#### Assumed

- for every seed M, past(M) only contains moves and players
- there is no isolated channel
- every seed  $Y \stackrel{s}{\hookrightarrow} M \stackrel{t}{\longleftrightarrow} X$  has a canonical interface  $I = X_0$  $(X_0(x) = X(x)$  in dimension 0,  $X_0(x) = \emptyset$  otherwise)

<ロ> <同> <同> < 同> < 同>

Definitions T<mark>he criterion</mark> Sketch of the proof

### The correctness criterion

#### Correctness Criterion

A cospan  $Y \hookrightarrow U \longleftrightarrow X$  is a play iff the following conditions are met:

- U is core-separating and locally 1-injective
- X contains exactly the initial players and channels of U
- Y contains exactly the final players and channels of U
- $G_U$  is source-linear and acyclic

Definitions The criterion Sketch of the proof

#### Lemma

#### Lemma

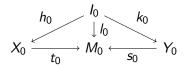
Let U be a presheaf on C and  $\mu$  be maximal in  $G_U$  (i.e., there is no path from  $\mu$  to any other core). Assume that U is core-separating. Then for all  $c \in el(U)$ ,  $U(c) - past(\mu) = (U \setminus \mu)(c)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions The criterion Sketch of the proof

## Sketch of the proof

#### Take $\mu_0$ maximal in $G_U$ , and be

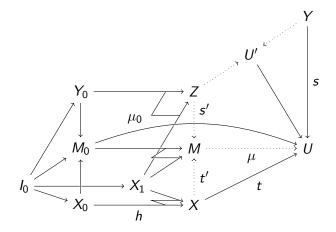


its canonical interface.

< ∃ >

Definitions The criterion Sketch of the proof

#### Sketch of the proof



< 🗇 > < 🖃 >

э

- ∢ ≣ →

## Conclusion

#### • MLL plays as cospans of presheaves

A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Conclusion

- MLL plays as cospans of presheaves
- correctness criterion

< ∃ →

э

# Conclusion

- MLL plays as cospans of presheaves
- correctness criterion
- garbage collection

< ∃ →