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Abstract

Binding, i.e. interconnecting objects to allow them to interoperate, is a key func-
tion of any middleware system. In this paper, we present a generic design pattern for
binding, based on the two primitives export and bind. This pattern has been embodied
in several software frameworks, and applied to a wide variety of situations, including
several communication protocols and different client-server systems. We show that
the export-bind pattern provides the flexibility needed to develop adaptable middle-
ware. Identifying and documenting this pattern contributes to a better understanding
of a fundamental aspect of middleware construction and opens perspectives for its
extension to new situations.
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1 Introduction

Binding, i.e. interconnecting objects to allow them to interoperate, is a key function of
any middleware system. Binding covers a wide range of situations, due to the variety
of communication semantics that reflect different application requirements, and to the
variety of contexts in which it may be applied: point to point or multicast communication,
multimedia streams, client-server or peer to peer systems, persistent object systems, mobile
applications. This variety calls for the use of generic and modular mechanisms that may be
adapted, extended or enhanced, possibly at run time, to respond to changing requirements.
The aim of this paper is twofold:

e to propose and to document a generic architectural pattern for binding in distributed
systems, based on two main primitives, export and bind;

e to demonstrate the usefulness of this pattern by showing how it is put to work in
several software frameworks that cover a wide range of situations and are used in
actual applications.

The pattern relies on the (possibly recursive) composition of the well-known notions
of naming context and binding factory. This results in a general and flexible binding
scheme, which allows binding objects (the concrete representation of bindings) to bridge
distributed address spaces and heterogeneous storage systems. By documenting this pat-
tern and its applications, we expect to contribute to a better understanding of a key issue
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of middleware design. We hope that the pattern will be applied to new situations, such
as mobile applications, which should take advantage of its generality and flexibility.

The pattern is the basis of the design of several software frameworks for communication
protocols, client-server systems, and persistent object support, which have been developed
within ObjectWeb (a consortium dedicated to innovative open source middleware), and
are freely available on the ObjectWeb site [11]. These generic frameworks support a num-
ber of “personalities”, i.e. specific middleware systems, including several communication
protocols, Java RMI and CORBA.

Patterns for distributed systems have been the subject of intensive work in recent years
[2, 14]. Most of the patterns developed until now fall in the category of design patterns,
which cover a basic construction, whereas the export-bind pattern is an architectural
pattern, which deals with overall design, and exploits several design patterns, including
Proxy, Adapter, and Factory [6].

The initial base of our work is the ODP model [12, 13], which has directly inspired
the design of Jonathan [4], one of the frameworks presented in this paper. Two other
frameworks inspired by ODP, FlexiNet [8] and OpenORB 2 [1], implicitly use the export-
bind pattern, but only apply it to communication services. Early work on a general model
for distributed binding is [15].

The rest of the paper is organized as follows. Section 2 briefly reviews the main
concepts related to naming and binding. Section 3 presents the export-bind pattern.
Section 4 details the use of the pattern for communication protocols and for ORBs used
in client-server systems. We conclude in Section 5.

2 A Brief Reminder of Naming and Binding

2.1 Names and Naming Contexts

In a computing system, a name is an information associated with an object! (the name
designates the object) in order to fulfill two functions:

e to identify the object, i.e. to distinguish it from other objects, so the object can be
unambiguously referred to.

e to provide an access path for the object, so the object can actually be used according
to its specification.

A naming system is the framework in which a specific category of objects is named; it
comprises the rules and algorithms that apply to the names of these objects. In a given
naming system, a name space defines the set of valid names; it is usually organized into
naming contexts, which correspond to organizational or structural subdivisions. A naming
context is a set of associations between names and objects.

When dealing with names defined in different naming contexts, e.g. NC1 and NC2, it
is useful to define a new context NC in which NC1 and NC2 have names (e.g. ncl and
nc2, respectively). This leads to the notion of a contezt graph: designating NC1 by name
ncl in NC creates an oriented arc in that graph, labeled by nc1, from NC to NC1 (Figure
1).

Composite names may now be defined: if a is the name of an object A in NC1, and
b is the name of an object B in NC2, then ncl.a and nc2.b (where the separator “.”

In this definition, the term “object” has a general meaning and could be replaced by “resource”,
meaning anything that we may wish to consider as an independent entity, be it physical or logical.
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Figure 1: Names and naming contexts

denotes a name composition operator) respectively designate A and B in NC. A name
thus constructed, be it simple or composite, is called a contextual name: it is relative to
some context, i.e. it is interpreted within that context.

In order to determine the object, if any, referred to by a valid name, a process called
name resolution must be carried out. It proceeds in steps, starting from an initial naming
context. At each step, a component of the name (a label in the current context) is resolved.
This operation either delivers a result, the target, or fails (if the current label is not bound
in this context). The target may be either the address of an object, in which case the
resolution is done, or a new name (together with a new context), which must itself be
resolved. Name resolution may be implemented using either recursion (following the chain
of contexts) or iteration (controlled by the initial context).

2.2 Binding
2.2.1 Overview

Binding is the process of interconnecting a set of objects in a computing system. The
result of this process, i.e. the link, or access path, created between the bound objects,
is also called a binding. Thus a binding may associate one or several sources with one
or several targets, allowing them to communicate. Examples of bindings include network
communication binding (4.1), client-server binding (4.2), and persistence binding (??).

In addition to setting up an access path, binding may involve the provision of some
guarantees as to properties of this path. For example, binding may check access rights
(e.g. at file opening), or may reserve resources in order to ensure a prescribed quality of
service (e.g. when creating a channel for multimedia transmission).

There is an important difference between centralized and distributed systems as regards
binding. In a centralized system, a memory address may directly be used to access an
object located at that address. In a distributed system, a reference to a remote object
(the equivalent of an address), such as [host network address, port number]| is not directly
usable for access. One first needs to actually create a binding to the remote object by
building an access chain involving a network protocol, as illustrated by the following simple
example.

Consider the case of a client to server connection using sockets. Initially, the client
knows the name of the server and a port number associated with the requested service.
Binding consists in creating a socket on the client host and connecting this socket to a
server socket associated with the server port. The server socket, in turn, creates a new
socket linked to the client socket (Figure 2). The name of the client socket is now used for
accessing the server, while the server socket remains available for new connections.

It should be noted, however, that the binding may only be set up if there is actually
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Figure 2: Client to server binding using sockets

a server socket accepting connections on the target port. As a rule, the binding must
be prepared, on the target’s side, by an operation that enables binding and sets up the
adequate data structures.

2.2.2 Binding Objects and Binding Factories

The notions of binding objects and binding factories have been introduced in the Reference
Model for Open Distributed Processing [12, 13], as a means for providing a concrete
representation of the binding process.

A key feature of the ODP model is to consider the bindings themselves as objects:
a binding object is an object that embodies a binding between two ore more objects. A
binding must therefore have a distinct interface for each object to which it is connected.
In addition, a binding may have a specific control interface, which is used to control the
behavior of the binding, e.g. as regards the quality of service that it supports or its
reactions to errors. The type of a binding is defined by its interfaces.

The notion of a binding factory has been introduced to define a systematic way of
setting up bindings. A binding factory, or binder, is an entity responsible for the creation
and administration of bindings of a certain type. Since the implementation of a binding
object is distributed, a binding factory may itself be distributed, and usually comprises
a set of local factories dedicated to the creation of the different parts that make up the
binding object, together with coordination code that invokes these factories. A local
binding factory is also a naming context, since it manages the names of the objects to be
bound.

In the above socket example (2.2.1), the binding object is composed of the client socket,
the server socket, and the connection between those sockets. The binding factory runs the
code that creates the sockets by invoking the accept and connect operations on the server
and client side, respectively.

3 The export-bind Pattern

3.1 Environment and Constraints

The pattern provides a generic mechanism for creating and managing bindings between
objects in a distributed system, in order to allow communication between these objects,
subject to the following requirements:

e The objects live in possibly heterogeneous systems, with different representation
conventions and communication semantics.

e The pattern should be applicable at several levels (operating system, network, appli-
cation), and may bridge different levels of organization. The organization structure
may be of any form (hierarchical, nested, acyclic graph, etc.).



e Communication may bridge several address spaces, on several machines on a network,
or may span several levels of storage hierarchies.

3.2 Pattern Description

The pattern is organized around three main entities: names, naming contexts, and binders.
It includes two main primitives, export (borne by naming contexts), and bind (borne by
names). A third primitive, resolve, is used for managing composite names. Additional
primitives, described in 3.3, allow names to be marshalled and unmarshalled in order to
be sent over a network or copied to persistent storage. In this section, the primitives are
presented in general terms. Specific implementations adapted to various situations are
described with each framework.

3.2.1 Exporting Objects and Resolving Names

To allow the construction of context graphs, such as described in 2.1, names may be
associated with chains of naming contexts. Such a chain may be (conceptually) represented
as, for instance, a.b.c.d in which a.b.c.d is a name in the first context of the chain, b.c.d
a name in the next context, etc. Note, however, that the names do not necessarily explicitly
exhibit this concatenated form, which is only presented here as an aid to understanding.
Two operations, export and resolve, are respectively used to construct and to parse such
chains.

e id = nc.export(obj, hints) is used to “export” an object obj to the target nam-
ing context, nc. This operation returns a name that designates object obj in the
naming context nc. The initial designation of obj may have various forms, e.g. obj
may be a name for the object in a different context, or a low-level name such as a
Java reference. The parameter hints may contain any additional information used
for expressing preferences or for optimization. In many cases, export also has the
side effect of building additional data structures that are subsequently used when
binding to object obj (see 3.2.2). The unexport operation precludes further use of
the target name.

e next_id = id.resolve() is used to find the “next” name in a chain. This op-
eration is the inverse of export, i.e. if idl = nc.export(obj, hints), then
id1l.resolve() returns id, the name of obj in nc.

Using the conceptual concatenated representation, if name id1 is represented asa.b.c.d,
then id1l.resolve () returns id represented as b.c.d, etc. Conversely, calling nc.export(idil)
where id1 is represented by the chain x.y.z returns a name id associated with nc and
represented as w.x.y.z. Calling resolve() on a name that is not a chain returns null.

3.2.2 Binding Names to Objects

Consider a name id in a naming context. If the naming context is also a binder, then a
binding may be set up by invoking id.bind (). If not, then the name may be resolved,
returning another name associated with another context, and the resolution is iterated
until the naming context associated with the name is a binder (Figure 3). A name that
may neither be resolved nor bound is said to be invalid and should not be used.

A point of terminology needs to be clarified: “resolving” a name, in the usual sense,
refers to the whole sequence represented on Figure 3. We carefully isolate the issues of
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Figure 3: Resolving and binding identifiers

naming (traversing a chain of contexts) from those related to binding proper (setting up
the access chain).
If the naming context of a name id is also a binder, then

handle = id.bind()

returns an object handle through which the target of the binding may be accessed
(the interface of handle therefore conforms to that of the target). The target is an object
designated by the name. The returned object handle may be the target itself, but it is
usually a (reference to) a representative of the target (a proxy). A special form of proxy is
a stub, which holds a communication object used to reach the target. The bind operation
may have parameters that specify e.g. a requested quality of service.

In order for bind to work, the target must have previously been exported.

3.2.3 Organization of a binder

A common organization for a binder consists of the following elements:

e a name factory for each name type managed by the binder (e.g. a binder for com-
munication has two types of names, for clients and servers, respectively, see 4.1).

e a table of context elements (name-object associations), which is a concrete represen-
tation of the contexts managed by the binder.

e 3 set of references to objects that provide services needed by the binder. This typi-
cally includes factories for the objects that make up a binding (e.g. stub and skeleton
factories for ORB binders, session factories for communication binders, marshaller
factories, etc.).

A simple example of a binder is an adapter (an implementation of the Adapter pattern),
which manages (and exports) a set of service providing objects (servants) on a server.

3.2.4 Examples

The socket example in 2.2.1 may be described in terms of the pattern: on the server site,
accept is an instance of export, while on the client site connect is an instance of bind.

Another example is the client to server binding in Java RMI, which is described in
detail in 4.2. For a better understanding of the pattern, we present a high-level view of
this example.

Java RMI [16] allows a client process to invoke a method on a Java object, the target,
located on a remote site. Like RPC, Java RMI relies on a stub-skeleton pair. Binding
proceeds as follows (Figure 4).

On the server site (a), the target object is exported in two steps.
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Figure 4: Using the export-bind pattern for client-server binding

1. An instance of the target is created, together with the skeleton and a copy of the
stub (to be later used by the client).

2. The stub is registered in a name server (the RMI registry) under a symbolic name.

On the client site (b), the client calls a binding factory, which also proceeds in two
steps.

1. The stub is retrieved from the registry using the symbolic name.

2. A communication session is created, to be used by the client to invoke the remote
object through the stub (the information needed to create the communication session
was written into the stub during the export phase).

Note that the target object is exported twice: first to a local context on the server
site, then to the name server. This is a usual situation: actually export is often called
recursively, in a chain of contexts.

3.3 APIs

Figure 5 describes the APIs of Name, NamingContext and Binder. While the APIs are
presented as Java interfaces, they may be used in a different environment.

The form presented here is subject to variations, depending on the context of use. As
a name is linked to a naming context, a name may delegate some of its operations to its
naming context, and vice versa.

3.4 Usage Rules

The export-bind pattern sets up a binding between separate address spaces and allows
for much flexibility as to the actual implementation of this mechanism.

e As regards binding time, the moment of the binding may be determined by the
specific framework. As a first example, in Java RMI, the stub and skeleton classes
are generated in advance, and the actual stubs and skeletons are created when the
target object is looked up in the registry. Another example is binding to a multiparty



public interface Name { public interface NamingContext {

/* Returns the NamingContext that created this name. */
NamingContext getContext ();

I* Creates and returns a name in this context to designate the
given object.
* 0: the exported object ( may be a name of another context).
/* Returns the object designated by the given name * hints: optional additional information.
(may be a Name in another context). * throws RuntimeException if theresolution fails
throws RuntimeException if the resolution fails */ */
Object resolve (); Name export (Object o, Object hints);

/* Returns an object that gives access to the object
designated by the target name.
* hints: optional additional information.
* throws RuntimeException if the binding fails */
Object bind (Object hints); I* Decodes the given encoded name and returns that name.
} * b an array of byte containing the encoded form of a name

/* Encodes the name as an array of bytes and returns this array.
* n: the name to be encoded (must belong to this context) */
byte[] encode (Name n);

created by this context.

* throws RuntimeException if the given encoded name cannot
be decoded. */
Name decode (byte[] b);

public interface Binder extends NamingContext {

/* Returns an object that gives access to the object
designated by the given name.
* n:aname of this context.
* hints: optional additional information.
* throws RuntimeException if the binding fails */
Object bind (Name n, Object hints);
}

Figure 5: The APIs for naming and binding

multimedia stream, in which the proxy objects that are used for communication are
dynamically created when a provider or consumer connects to the stream.

As regards the structure of the binding object, an arbitrary number of intermediate
naming contexts and binders may be inserted between the source and target address
spaces, for different reasons: adaptation layers, additional functions related to QoS
(e.g. security, availability, or performance), interposition layers providing device
or storage system independence. Therefore a binding may consist of a chain of
elementary bindings, built by recursive application of the export-bind pattern.

There is clearly a trade-off between cost and flexibility, since chained binding incurs

an incompressible indirection cost. This aspect is discussed in 4.3.

3.5 Known Uses

The export-bind pattern has been applied in the following frameworks.

1. Jonathan [4, 10], a generic ORB that consists of a minimal kernel for binding, com-

position, resource management, and communication protocols. Two personalities

have been developed on top of this kernel: CORBA 2.3 and Java RMI.

FlexiNet [8], a reflective Java ORB that provides support for mobile object clusters
and secure communications. Flexinet makes a direct use of names and bindings
as described in this paper, mostly for communications between objects and object
clusters. FlexiNet exploits the flexibility provided by the pattern, coupled with
reflection, to demonstrate the implementation of a multi-protocol ORB with mobility
and security support.

THINK [5], a framework for developing customized operating system kernels, directly
built on the export-bind pattern. All communications between THINK components,
whether local (e.g. inside an operating system kernel or between applications in user



space and the kernel - i.e. system calls and IPC) or remote (between different
machines), take the form of bindings that can be reified as first-class components.
Building an operating system kernel with the THINK framework is an exercise in
software component assembly, where the “glue” between components takes the form
of bindings with different semantics.

The next section describe the use of the pattern in two of these systems: the Jonathan

communication framework (4.1) and the Jonathan Java RMI personality (4.2).

4 Using the Pattern for Communication

4.1 Network Protocols Binding

A protocol provides a communication service for exchanging messages through a network.
A protocol relies on the services provided by a lower level protocol, down to the hardwired
communication interface. This defines a layered organization such as a protocol stack or
acyclic graph.

outgoing

message = application
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Session_Low
Session_High
_| send
session
send
Session_Low
Session_High send
session
incoming
[ } = message
emit connection receive
network

Figure 6: Sending and receiving messages

The model implemented in Jonathan is close to that of the z-kernel [9]. Its main ab-
straction is a session, an object that represents a communication channel and provides two
interfaces, Session_Low and Session High for incoming and outgoing messages, respec-
tively. A protocol is essentially a session factory. Like protocols, sessions are organized in
a hierarchy. The lower level mechanism, called a connection, is implemented by sockets in
many middleware systems

Incoming messages (when available after a receive call on a connection) are passed
up to the application by calling the “lower” interfaces of the sessions, in ascending order.
Outgoing messages are sent down the protocol stack by calling the “upper” interfaces in
descending order, down to an emit call on the connection (Figure 6).

A session represents a binding and is named by a session identifier (session_id) in the
context of a protocol. There are two kinds of session_ids, used on servers and clients,
respectively, to designate a service-providing interface, of type Session_Low. The client
session_id is initially unbound (i.e. cannot be used for access).

Client to server binding uses the export-bind pattern, as described on Figure 7. On
the server side, a protocol graph (a NamingContext, providing export) is first constructed
by assembling elementary protocols. export takes as parameter an interface srv_itf,



of type Session_Low, which provides the functionality of the server; it returns a server
session_id (a name for the exported interface), which contains all the information needed
to set up a communication with the server (e.g., for TCP/IP, the IP address of the server
and a port number). This information may be transmitted over the network and decoded
by a client. A call to export on the top element of a protocol graph recursively propagates
down the graph structure.

In order to use the interface exported by a server, a client must call bind on a client ses-
sion_id that designates that interface, passing its application’s “lower” interface (clt_itf)
as a parameter. This identifier may be obtained from the network (e.g. through a name
service), or it may be constructed locally using the server address and port number if
these are known. bind returns an interface session of type Session High, which may
be used by the client to call the server. Replies from the server are directed to the client
application, through the c1t_itf interface provided as a parameter of the call to bind.

session=cltsession_id.bind(clt_itf) srvsession_id=protocol_graph.export(serv_itf)

CltSession_id : SrvSession_id

[server host, port] Client [server host, port] Server

clt_itf Session_Low Protoc IGrap h Session_Low serv_itf
session Session_High Session_High
created CltSession created SrvSession
by bind i by export *
} N ]
connection network connection

Figure 7: The export-bind pattern in communication

This general scheme may be applied in a variety of cases. In Jonathan, it has been
used for the following protocols.

TCP-IP. On the client side, the Session High interface of Cl1tSession provides the
send method, which is used to send a message using an appropriate marshaller. On
the server side, the SrvSession relays an incoming message to the server application by
upcalling a send method provided by that application as part of its Session Low interface.

IP Multicast. As defined in IETF RFC 1112, “IP multicasting is the transmis-
sion of an IP datagram to a “host group”, a set of zero or more hosts identified by
a single IP destination address”. In the IP Multicast protocol, there are no separate
client and server roles; therefore there is no need to separate protocol graphs (export-
ing servers) from session identifiers (used by clients to bind to servers). A single data
structure, MulticastIpSessionIdentifier, is used for both functions (it implements
SessionIdentifier and ProtocolGraph and thus provides both export and bind). In
the implementation that uses multicast sockets, both methods create a new socket with
an associated session. They only differ by the type of the returned value (an identifier for
export, a session for bind); in addition, export needs to supply a lower level interface.

Event Channel. An event channel is a communication channel on which two types
of entities may be connected: event sources and event consumers. An event produced by
a source is delivered to all the consumers connected to the channel. The channel itself
is both an event source and consumer: it consumes events from the sources and delivers
them to the consumers, using either a “push” or a “pull” mode of communication.

The implementation of the event channel relies on two components that closely interact:
the event channel factory, and the event binder. The factory delivers implementations of
the EventChannel interface, both in the form of actual instances and of stubs. The binder

10



provides an interface (EBinder) allowing both sources and consumers to connect to an
event channel. The implementation uses an underlying multicast protocol, typically IP
Multicast.

EBinder provides a specific class of names, EIds. An EId designates an event channel
built on a particular IP address and port number used by the underlying IP Multicast
protocol. EIds are used as follows:

e An event source that needs to connect to an event channel designated by EId
channel_id executes channel_id.bind(), which returns a Session High session
on which the source will send events (on its own initiative for push, after an upcall
for pull).

e An event consumer that needs to connect to an event channel designated by EId
channel_id executes EBinder.bindConsumer (consumer, channel_id), where consumer
is the Session Low interface provided by the consumer to receive events according
to the implemented communication pattern (push or pull). bindConsumer is imple-
mented as follows:

ProtocolGraph protocol_graph =
channel_id.getProtocolGraph();
protocol_graph.export (consumer) ;

The export-bind pattern is again used here: bindConsumer () creates a communica-
tion session using the protocol graph of the underlying protocol; bind () returns a stub,
created by a stub factory using the communication session.

4.2 Client-server Binding

Client-server systems rely on a middleware layer called an Object Request Broker (ORB),
which has the following functions: identifying and locating objects; binding client to server
objects; performing method calls on objects; managing objects’ life cycle (creating, acti-
vating, deleting objects).

4.2.1 A Framework for ORBs

An ORB must support a variable number of objects of different types. To separate the
management of these objects from that of the client-server interaction, it is usual to distin-
guish servants (object instances that implement specific functions) from the server, which
supports the servants. The management (i.e. the control of the life cycle) of the servants
is delegated to an adapter, which is a binder (and therefore a naming context) for the
servants that it supports. Several adapters may coexist to implement different servant
management policies (e.g. with respect to location, activation, replication, etc.).

The ORB proper is also a binder: an adapter exports servants to the ORB, which in
turn allows remote clients to bind to them, using a communication protocol. This architec-
ture is open, i.e. other binders may be inserted as interceptors between the ORB and the
adapter to perform additional functions such as security, replication, or QoS management.
Likewise, interceptors may be added on the client side. The ORB may itself delegate some
of its functions to other binders, e.g. to accommodate different communication protocols.

As a consequence, an abstract view of the architecture of an ORB is a hierarchy
(or possibly a graph) of binders between clients and servant objects. The export-bind

11



pattern is used throughout: an invocation of either export (on the server side) or bind
(on the client side) is recursively propagated through the chain of binders. A similar global
architecture may be found in FlexiNet [8].

Figure 8 describes a generic implementation of export and bind for an ORB.

Implementation of export (in Bi nder) Implementation of bi nd (in Nane)

Name export (Object obj, Object hints){ Object bind (optional parameters){

create new name id (using binder's name type) case of

create New element in context table with (id, obj) local object:

optionally export obj to other context lookup target name in context table;

optionally create new session if (found)

return id (or last name created) {return associated object}

} remote object:

determine session from target name

(or create it if needed)
create stub with this session and parameters
return stub

}

Figure 8: Implementation of export and bind for ORB bindings

Recall 3.2.3 that a binder includes a name factory, delegates stub and skeleton creation
to a stub factory, and manages the association (context table) between names and objects.
Exporting an object causes the binder to create a new name, to associate it with the object,
and to prepare part of the future access, by calling export on the next binder in the chain.
Typically, an adapter calls the ORB, which in turn calls a stub and skeleton factory, and
delegates session creation to an underlying protocol, using the techniques described in 4.1.
Binding to a name attempts to find a local object with this name; if this fails, a stub and
a communication session are created or retrieved, using the structures prepared by export
and keyed to the name.

4.2.2 A Closer View

In this section, we illustrate the use of export-bind by a detailed view of some steps of
the client-server binding. The illustration is taken from the Jonathan implementation of
Java RMI, but applies to other ORBs as well. A complete description may be found in
[10].

Figure 9 describes the creation of a servant object in a “Hello World” application (this
is part (a) of Figure 4). The class of the servant, HelloImpl, extends the predefined class
UnicastRemoteObject, the parent class of remotely accessible objects. Starting from that
class, the hierarchy of binders is as follows: MOAContext and MinimalAdapter (a specific
adapter and the associated context), JIOP (the ORB binder of Java RMI), II0PBinder
(a binder associated with the IIOP protocol). The delegation structure shown on the
figure makes the framework highly generic: the delegation from UnicastRemoteObject to
MOAContext allows different adapters to be easily plugged in, whereas the delegation from
JIOP to I10PBinder does the same for protocols.

The net effect of the call (which recursively invokes export on the hierarchy of binders)
is to return a stub (actually a stub template) for the servant object (this stub will be stored
in a registry to be subsequently retrieved), with the side effect of creating both an instance
of the servant and the associated skeleton.

Figure 10 describes an instance of binding, specifically binding to a naming registry
located on a known host at a known port. This occurs when the server registers the stub
constructed in the previous step under a symbolic name.

The same delegation structure applies, i.e. the ORB binder, JIOP, delegates to II0PBinder,
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which itself relies on the underlying protocol stack (i.e. GIOP over TCP/IP). Note that
binding applies to a name managed by a binder; therefore a distribution-aware name (of
class C1tIdentifier) is created by II0PBinder, using the provided host and port infor-
mation.

4.3 Experience with Communication and ORBs

We have extensive experience with using the Jonathan framework, including an implemen-
tation of the communication layer of JONAS, an open source EJB platform developed by
ObjectWeb and used in several real life applications.

This experience has demonstrated the high degree of extensibility allowed by the open,
modular structure that results from the pattern. This allowed us, in particular, to readily
perform major changes such as integrating a new Portable Object Adapter (from another
open source implementation) in the CORBA personality, providing an implementation of
RMI over 1IOP, or experimenting with enhancements for mobility.

We also have experience with different points in the performance vs flexibility trade-off
spectrum. The implementations of the pattern allow for framework-specific optimizations,
of which three examples follow.

e The RMI personality uses a fast path for calls to local objects, which in turn improves
the performance of the EJB system built on RMI [3].

e The THINK library for building customized microkernels, not described in this paper
for lack of space, uses a lightweight implementation of the pattern. Measurement
results [5] show that the kernels built with THINK are competitive with the best
existing optimized microkernels.

¢ In another series of experiments, our group has introduced optimizing techniques [7]
that “freeze” a binding once established using code transformation and thus cancel
the performance penalty caused by indirection.

5 Conclusion and Perspectives

We have presented the export-bind architectural pattern and its use for binding in various
frameworks for communication protocols and client-server systems.
To summarize the main contributions of this paper:

1. We have elicited a pattern that provides a unified view and a systematic building
method for a general middleware mechanism that takes a wide variety of technical
incarnations. We have proved its usability by applying it to frameworks that support
real life applications. We believe we have thus contributed to a better understanding
of a central aspect of middleware construction.

2. We have shown that the pattern favors separation of concerns by isolating name
management from binding, and by isolating the aspects related to physical organi-
zation and data representation. This allows for a high degree of flexibility in the
implementation of binding.

3. While flexibility generally entails a cost, due to indirection, the openness and modu-
larity of the frameworks derived from the pattern allow for a wide range of trade-offs
between flexibility and performance, as demonstrated by the lightweight versions of
the binding framework and by post-binding optimizations.
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4. The chained structure of the bindings makes the frameworks readily extensible, al-
lowing functions to be easily inserted and replaced. Thus arbitrary types of commu-
nication may be supported, not limited to client-server bindings (e.g. event channels,
multimedia streams). Bindings can easily be composed and configured.

While different patterns have been proposed for specific distributed systems construc-
tions, none (to the best of our knowledge) exhibits the generality and the wide applicability
of export-bind.

We envisage two main follow-ups to this work. First, we intend to apply the pattern
to more dynamic environments, such as mobile and ad hoc networks (MANETS), by de-
veloping frameworks for communication and service provision in such systems. Second,
we are investigating the extension of the pattern to cover other functions of distributed
systems that are not directly related to communication services, but use communication
for their internal operation. These functions include bootstrap and configuration, resource
discovery and management, and the monitoring of distributed systems and applications.
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Code Availability
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available in open source (LGPL license) from the ObjectWeb site [11].
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