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Abstract

We propose a novel approach to the well-known view update problem for the case of tree-structured data:
a domain-specific programming language in which all expressions denote bi-directional transformations
on trees. In one direction, these transformations—dubbed lenses—map a “concrete” tree into a simplified
“abstract view”; in the other, they map a modified abstract view, together with the original concrete
tree, to a correspondingly modified concrete tree. Our design emphasizes both robustness and ease of
use, guaranteeing strong well-behavedness and totality properties for well-typed lenses.

We identify a natural space of well-behaved bi-directional transformations (over arbitrary structures),
study definedness and continuity in this setting, and state a precise connection with the classical theory
of “update translation under a constant complement” from databases. We then instantiate this semantic
framework in the form of a collection of lens combinators that can be assembled to describe transforma-
tions on trees. These combinators include familiar constructs from functional programming (composition,
mapping, projection, conditionals, recursion) together with some novel primitives for manipulating trees
(splitting, pruning, merging, etc.). We illustrate the expressiveness of these combinators by developing
a number of bi-directional list-processing transformations as derived forms.

1 Introduction

Computing is full of situations where one wants to transform some structure into a different form—a view—
in such a way that changes made to the view can be reflected back as updates to the original structure.
This view update problem is a classical topic in the database literature, but has so far been little studied by
programming language researchers.

This paper addresses a specific instance of the view update problem that arises in a larger project
called Harmony [32]. Harmony is a generic framework for synchronizing tree-structured data—a tool for
propagating updates between different copies of tree-shaped data structures, possibly stored in different
formats. For example, Harmony can be used to synchronize the bookmark files of several different web
browsers, allowing bookmarks and bookmark folders to be added, deleted, edited, and reorganized in any
browser and propagated to the others. Other Harmony instances currently in daily use or under development
include synchronizers for calendars (Palm DateBook, ical, and iCalendar formats), address books, slide
presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize disparate data formats we define a single common
abstract view and a collection of lenses that transform each into this abstract view. For example, we can
synchronize a Mozilla bookmark file with an Explorer bookmark file by transforming each into an abstract

bookmark structure and synchronizing the results. Having done so, we need to take the updated abstract
structures and perform the corresponding updates to the concrete structures. Thus, each lens must include
not one but two functions—one for extracting an abstract view from a concrete one and another for pushing
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an updated abstract view back into the original concrete view to yield an updated concrete view. We call
these the get and put components, respectively. The intuition is that the mapping from concrete to abstract
is commonly some sort of projection, so the get direction involves getting the abstract part out of a larger
concrete structure, while the put direction amounts to putting a new abstract part into an old concrete
structure. We present a concrete example in §2.

The difficulty of the view update problem springs from a fundamental tension between expressiveness

and robustness. The richer we make the set of possible transformations in the get direction, the more difficult
it becomes to define corresponding functions in the put direction in such a way that each lens is both well

behaved, in the sense that its get and put behaviors fit together in a sensible way, and total, in the sense
that its get and put functions are guaranteed to be defined on all the inputs to which they may be applied.
To reconcile this tension, any approach to the view update problem must be carefully designed with a
particular application domain in mind. The approach described here is tuned to the kinds of projection-
and-rearrangement transformations on trees and lists that we have found useful for implementing Harmony
instances. It does not directly address some well-known difficulties with view update in the classical setting
of relational databases—such as the difficulty of “inverting” queries involving joins—though we hope that
our work may suggest new attacks on these problems.

A second difficulty concerns ease of use. In general, there are many ways to equip a given get function with
a put function to form a well-behaved and total lens; we need some means of specifying which put is intended
that is natural for the application domain and that does not involve onerous proof obligations or checking
of side conditions. We adopt a linguistic approach to this issue, proposing a set of lens combinators—a
small domain-specific language—in which every expression simultaneously specifies both a get function and
the corresponding put. Moreover, each combinator is accompanied by a type declaration, designed so that
the well-behavedness and—for non-recursive lenses—totality of composite lens expressions can be verified by
straightforward, compositional checks. (Proving totality of recursive lenses, like ordinary recursive programs,
requires global reasoning that goes beyond types.)

The first step in our formal development, in §3, is identifying a natural space of well-behaved lenses over
arbitrary data structures. There is a good deal of territory to be explored at this abstract level. First, we
must phrase our basic definitions to allow the underlying functions in lenses to be partial, since there will in
general be structures to which a given lens cannot sensibly be applied. The sets of structures to which we
do intend to apply a given lens is specified by associating it with a type of the form C 
 A, where C is a
set of concrete “source structures” and A is a set of abstract “target structures.” Second, we define a notion
of well-behavedness that captures our intuitions about how the get and put parts of a lens should behave in
concert. (E.g., if we use the get part of a lens to extract a from c and then use the put part to push the very
same a back into c, we should get c.) Third, we use standard tools to define monotonicity and continuity for
lens combinators, establishing a foundation for defining lenses by recursion (which we need because the trees
that our lenses manipulate may in general have arbitrarily deep nested structure). Finally, to allow lenses to
be used to create new concrete structures rather than just updating existing ones (which can happen, e.g.,
when new records are added to a database in the abstract view), we show how to adjoin a special “missing”
element to the structures manipulated by lenses and establish suitable conventions for how it is treated.

We next proceed to syntax. We first (§4), present a group of generic lens combinators (identities, compo-
sition, and constants), which can work with any kind of data. Next (§5) we focus attention on tree-structured
data and present several more combinators that perform various manipulations on trees (hoisting, splitting,
mapping, etc.) and show how to assemble these primitives, along with the generic combinators from before,
to yield some useful derived forms. §6 introduces another set of generic combinators implementing various
sorts of bi-directional conditionals. §7 gives a more ambitious illustration of the expressiveness of these
combinators by implementing a number of bi-directional list-processing transformations as derived forms;
our main example is a bi-directional list filter lens whose put direction must perform a rather intricate
“weaving” operation to recombine a potentially updated abstract list with the concrete list elements that
were filtered away by the get. A more pragmatic illustration of the use of our combinators in real-world lens
programming may be found in the accompanying technical report [15], where we walk through a substantial
example derived from the Harmony bookmark synchronizer.
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§8 surveys a variety of related work and states a precise correspondence (amplified in [31]) between our
well-behaved lenses and “update translation under a constant complement” from databases. §9 sketches
directions for future research. Omitted proofs can be found in [15].

2 A Small Example

Suppose our concrete tree c is a small address book:

c =












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∣

∣

∣

∣

∣

∣

∣

Pat 7→
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∣
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∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

}
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Phone 7→ 888-9999
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∣

∣

}
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∣

∣

∣
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



(We draw trees sideways to save space. Each set of hollow braces corresponds to a tree node, and each
“X 7→ ...” denotes a child labeled with the string X. The children of a node are unordered. To avoid clutter,
when an edge leads to an empty tree, we usually omit the braces, the 7→ symbol, and the final childless
node—e.g., “333-4444” above stands for “

{∣

∣333-4444 7→ {||}
∣

∣

}

.” When trees are linearized in running text,
we separate children with commas.)

Now, suppose that we want to edit the data from this concrete tree in a simplified format, where each
name is associated directly with a phone number.

a =

{
∣

∣

∣

∣

Pat 7→ 333-4444

Chris 7→ 888-9999

∣

∣

∣

∣

}

Why would we want this? Perhaps because the edits are going to be performed by synchronizing this abstract
tree with another replica of the same address book in which no URL information is recorded. Or perhaps
there is no synchronizer involved, but the edits are going to be performed by a human who is only interested
in phone information and whose screen should not be cluttered with URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a′ of the same form but with
modified content.1 For example, let us change Pat’s phone number, drop Chris, and add a new friend, Jo.

a′ =

{∣

∣

∣

∣

Pat 7→ 333-4321

Jo 7→ 555-6666

∣

∣

∣

∣

}

Lastly, we want to compute a new concrete tree c′ reflecting the new abstract tree a′. That is, we want
the parts of c′ that were kept when calculating a (e.g., Pat’s phone number) to be overwritten with the
corresponding information from a′, while the parts of c that were filtered out (e.g., Pat’s URL) have their
values carried over from c.

c′ =








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∣
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∣
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∣

Phone 7→ 333-4321

URL 7→ http://pat.com

∣

∣

∣

∣

}

Jo 7→

{∣

∣

∣

∣

Phone 7→ 555-6666

URL 7→ http://google.com

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣


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





We also need to “fill in” appropriate values for the parts of c′ (in particular, Jo’s URL) that were created in
a′ and for which c therefore contains no information. Here, we simply set the URL to a constant default, but
in general we might want to compute it from other information.

Together, the transformations from c to a and from a′ and c to c′ form a lens. Our goal is to find a
set of combinators that can be assembled to describe a wide variety of lenses in a concise, natural, and
mathematically coherent manner. (Just to whet the reader’s appetite, the lens expression that implements
the transformation sketched above is written map (focus Phone

{∣

∣URL 7→ http://google.com
∣

∣

}

).)

1Note that we are interested here in the final tree a′, not the particular sequence of edit operations that was used to transform
a into a′. This is important in the context of Harmony, where we only have access to the current states of the replicas, rather
than a trace of modifications; see [32].
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3 Semantic Foundations

Although many of our combinators are designed to perform various transformations on trees, their semantic
underpinnings can be presented in an abstract setting parameterized by the data structures (“views”) ma-
nipulated by lenses. In this section—and in §4, where we discuss generic combinators—we simply assume
some fixed set U of views; from §5 on, we will choose U to be the set of trees.

3.1 Basic Structures

When f is a partial function, we write f(a) ↓ if f is defined on argument a and f(a) = ⊥ otherwise. We
write f(a) v b for f(a) = ⊥ ∨ f(a) = b. We write dom(f) for the set of arguments on which f is defined.
When S ⊆ U , we write f(S) for {r | s ∈ S ∧ f(s) ↓ ∧ f(s) = r}. We take function application to be strict,
i.e., f(g(x)) ↓ implies g(x) ↓. We extend function application to sets of arguments in a pointwise fashion,
writing f(C) for {f(c) | c ∈ C ∩ dom(f)}.

3.1.1 Definition [Lenses]: A lens l comprises a partial function l↗ from U to U , called the get function

of l, and a partial function l↘ from U × U to U , called the put function.

The intuition behind the notations l↗ and l↘ is that the get part of a lens “lifts” an abstract view out of
a concrete one, while the put part “pushes down” a new abstract view into an existing concrete view.

3.1.2 Definition [Well-behaved lenses]: Let l be a lens and let C and A be subsets of U . We say that l

is a well behaved lens from C to A, written l ∈ C 
 A, iff it maps arguments in C to results in A and vice
versa

l↗(C) ⊆ A (Get)
l↘(A × C) ⊆ C (Put)

and its get and put functions obey the following laws:

l↘ (l↗ c, c) v c for all c ∈ C (GetPut)
l↗ (l↘ (a, c)) v a for all (a, c) ∈ A × C (PutGet)

We call C the source and A the target in C 
 A.

Intuitively, the GetPut law states that, if we get some abstract view a from a concrete view c and immedi-
ately put a (with no modifications) back into c, we must get back exactly c (if both operations are defined).
PutGet, on the other hand, demands that the put function must capture all of the information contained in
the abstract view: if putting a view a into a concrete view c yields a view c′, then the abstract view obtained
from c′ is exactly a.

An example of a lens satisfying PutGet but not GetPut is the following. Suppose C = string× int

and A = string, and define l by l↗ (s, n) = s and l↘ (s′, (s, n)) = (s′, 0). Then l↘ (l↗ (s, 1), (s, 1)) =
(s, 0) 6= (s, 1). Intuitively, the law fails because the put function has “side effects”: it modifies information
from the concrete view that is not reflected in the abstract view.

An example of a lens satisfying GetPut but not PutGet is the following. Let C = string and
A = string× int, and define l by l↗ s = (s, 0) and l↘ ((s′, n), s) = s′. PutGet fails here because some
information contained in the abstract view does not get propagated to the concrete view. For example,
l↗ (l↘ ((s′, 1), s)) = l↗ s′ = (s′, 0) 6= (s′, 1).

The GetPut and PutGet laws reflect fundamental expectations about the behavior of lenses; removing
either law significantly weakens the semantic foundation. The long version of this paper describes a third
law, PutPut. Well-behaved lenses that also obey PutPut are very well behaved. Both well-behaved and
very well behaved lenses correspond to well-known classes of “update translators” from the classical database
literature (see §8).

A final important property that lenses may satisfy (on a given domain) is totality.
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3.1.3 Definition [Totality]: A lens l ∈ C 
 A is said to be total, written l ∈ C ⇐⇒ A, if C ⊆ dom(l↗)
and A × C ⊆ dom(l↘).

Note that well-behavedness is trivial in the absence of totality: for any function l↗ from C to A, we can
obtain a well-behaved lens by taking l↘ to be undefined on all inputs (or—very slightly less trivially—to be
defined only on inputs of the form (l↗ c, c)).

This is consistent with the pragmatic intuition that we always want our lenses to be defined on the whole
of the domains where we intend to use them. However, totality of lenses—like totality of ordinary recursive
functions or termination of while loops—is more difficult to reason about than simple well-behavedness,
requiring invention of global termination measures, in contrast to the purely local reasoning used to show
well-behavedness. This is why we formulate it as a separate condition rather than building it into the
definition of well-behavedness.

3.2 Recursion

Since our lens framework will be instantiated for the universe of trees, and since trees in many interesting
application domains may have unbounded depth (e.g., a bookmark item can be either a link or a folder
containing a list of bookmark items), we will need to define lenses by recursion. Our next task in this
foundational section is to set up the necessary structure for interpreting such definitions.

The development follows familiar lines. We introduce an information ordering on lenses and show that
the set of lenses equipped with this ordering is a complete partial order (cpo). We then apply standard
tools from domain theory to interpret a variety of common syntactic forms from programming languages—in
particular, functional abstraction and application (“higher-order lenses”) and lenses defined by single or
mutual recursion.

We say that a lens l′ is more informative than a lens l, written l ≺ l′, if both the get and put functions of
l′ have domains that are at least as large as those of l and if their results agree on their common domains.

A cpo is a partially ordered set in which every increasing chain of elements has a least upper bound in
the set. A cpo with bottom is a cpo with an element ⊥ that is smaller than every other element. In our
setting, ⊥ is the lens whose get and put functions are everywhere undefined.

3.2.1 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The lens l defined by

l↘ (a, c) = li ↘ (a, c) if li ↘ (a, c) ↓ for some i

l↗ c = li↗ c if li↗ c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

3.2.2 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and let C0 ⊆ C1 ⊆ . . . and
A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of U . Then(∀i ∈ ω. li ∈ Ci 
 Ai) =⇒ (

⊔

n ln) ∈ (
⋃

i Ci) 


(
⋃

i Ai).

3.2.3 Theorem: Let L be the set of well-behaved lenses from C to A. Then (L, ≺) is a cpo with bottom.

We can now apply standard domain theory to interpret recursive definitions: the least fixed point of a
continuous function on well-behaved lenses is a well-behaved lens.

3.3 Dealing with Creation

In practice, there will be cases where we need to apply a put function, but where no old concrete view is
available (as we saw with Jo’s URL in §2). We deal with these cases by enriching the universe U of views
with a special placeholder Ω, pronounced “missing,” which we assume is not already in U . When S ⊆ U , we
write SΩ for S ∪ {Ω},
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Intuitively, l↘ (a, Ω) means “create a new concrete view from the information in the abstract view a.”
By convention, Ω is only used in an interesting way when it is the second argument to the put function: in
all of the lenses defined below, we maintain the invariants that (1) l↗Ω = Ω, (2) l↘ (Ω, c) = Ω for any
c, (3) l↗ c 6= Ω for any c 6= Ω, and (4) l↘ (a, c) 6= Ω for any a 6= Ω and any c (including Ω). We write
C 


Ω

A for the set of well-behaved lenses from CΩ to AΩ obeying these conventions, and C ⇐⇒Ω A for the
set of total lenses obeying these conventions. For brevity in the lens definitions below, we always assume
that c 6= Ω when defining l↗ c and that a 6= Ω when defining l↘ (a, c), since the results in these cases are
uniquely determined by these conventions. (There are other, formally equivalent, ways of handling missing
concrete views. The advantages of this one are discussed in §5.4.)

4 Generic Lenses

With these semantic foundations in hand, we are ready to move on to syntax. We begin in this section with
several generic lens combinators, whose definitions are independent of the particular choice of universe U .
Each definition is accompanied by a type declaration asserting its well-behavedness under certain conditions
(e.g., “the identity lens belongs to C 


Ω

C for any C”).
Most of the lens definitions in this and following sections are parameterized on one or more arguments.

These may be of various types: views, other lenses, predicates on views, edge labels, predicates on labels,
etc. The long version includes proofs that every lens we define is well behaved (i.e., that the type declaration
accompanying its definition is a theorem) and total, and that every lens that takes other lenses as parameters
is continuous in these parameters.

The identity lens copies the concrete view in the get direction and the abstract view in the put direc-
tion.

id↗ c = c

id↘ (a, c) = a

∀C⊆U . id ∈ C 

Ω

C

The lens composition combinator l; k places two lenses l and k in sequence.

(l; k)↗ c = k↗ (l↗ c)
(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c)

∀A, B, C⊆U . ∀l ∈ C 

Ω

B. ∀k ∈ B 

Ω

A. l; k ∈ C 

Ω

A

The get direction applies the get function of l to yield a first abstract view, on which the get function of k is
applied. In the put direction, the two put functions are applied in turn: first, the put function of k is used to
put a into the concrete view that the get of k was applied to, i.e., l↗ c; the result of this put is then put into
c using the put function of l. (If the concrete view c is Ω, then, l↗ c will also be Ω by our conventions on
Ω, so the effect of (l; k)↘ (a, Ω) will be to use k to put a into Ω and then l to put the result into Ω.) Note
that we record two different type declarations for composition: one for the case where the parameter lenses
l and k are only known to be well behaved, and another for the case where they are also known to be total.

Another simple combinator is the constant lens, const v d, which transforms any view into the view v

in the get direction. In the put direction, const simply restores the old concrete view if one is available; if
the concrete view is Ω, it returns a default view d.

(const v d)↗ c = v

(const v d)↘ (a, c) = c if c 6= Ω
d if c = Ω

∀C⊆U . ∀v∈U . ∀d∈C. const v d ∈ C 

Ω {v}
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Note that the type declaration demands that the put direction should only be applied to the abstract
argument v.

We will define a few more generic lenses in §6; now, though, let us turn to lens combinators that work
on tree-structured data, so that we can ground our definitions in specific examples.

5 Lenses for Trees

To keep our lens definitions as straightforward as possible, we work with an extremely simple form of trees:
unordered, edge-labeled trees with no repeated labels. This does not give us—primitively—all the structure
we need for some applications; in particular, we will need to deal with ordered data such as lists and XML
documents via an encoding instead of primitively. Experience has shown that the reduction in the complexity
of the lens definitions that we obtain in this way far outweighs the increase in complexity of lens programs

due to manipulating ordered data in encoded form.

5.1 Notation

From this point forward, we will choose the universe U to be the set T of finite, unordered, edge-labeled
trees, with labels drawn from some infinite set N of names—e.g., character strings—and with the children
of a given node all labeled with distinct names. The variables a, c, d, and t range over T ; by convention, we
use a for trees that are thought of as abstract and c or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be more convenient, though,
to choose a slightly different definition: we will consider a tree t ∈ T to be a total function from N to TΩ

that yields Ω on all but a finite number of names. We write dom(t) for the domain of t—i.e., the set of the
names for which it returns something other than Ω—and t(n) for the subtree associated to name n in t, or
Ω if n 6∈ dom(t).

Tree values are written using hollow curly braces. The empty tree is written {||}. (Note that {||},
the tree with no children, is different from Ω.) We often describe trees by comprehension, writing
{
∣

∣n 7→ F (n) | n ∈ N
∣

∣

}

, where F is some function from N to TΩ and N ⊆ N is some set of names. When t

and t′ have disjoint domains, we write t · t′ or
{
∣

∣t t′
∣

∣

}

(the latter especially in multi-line displays) for the tree
mapping n to t(n) for n ∈ dom(t), to t′(n) for n ∈ dom(t′), and to Ω otherwise.

When p ⊆ N is a set of names, we write p for N\p, the complement of p. We write t|p for the
restriction of t to children with names from p—i.e., the tree

{
∣

∣n 7→ t(n) | n ∈ p ∩ dom(t)
∣

∣

}

—and t\p for
{∣

∣n 7→ t(n) | n ∈ dom(t)\p
∣

∣

}

. When p is just a singleton set {n}, we drop the set braces and write just
t|n and t\n instead of t|{n} and t\{n}.

To shorten some of the lens definitions, we adopt the conventions that dom(Ω) = ∅, and that Ω|p = Ω
for any p.

For writing down types,2 we extend these tree notations “pointwise” to sets of trees. If T ⊆ T and
n ∈ N , then

{
∣

∣n 7→ T
∣

∣

}

denotes the set of singleton trees {
{
∣

∣n 7→ t
∣

∣

}

| t ∈ T }. If T ⊆ T and N ⊆ N , then
{∣

∣N 7→ T
∣

∣

}

denotes the set of trees {t | dom(t) = N and ∀n ∈ N. t(n) ∈ T } and
{
∣

∣

∣N
?
7→ T

∣

∣

∣

}

denotes the set of

trees {t | dom(t) ⊆ N and ∀n ∈ N. t(n) ∈ TΩ}. We write T1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} and T (n) for
{t(n) | t ∈ T } \ {Ω}. If T ⊆ T , then dom(T ) = {dom(t) | t ∈ T }.

A value is a tree of the special form
{∣

∣k 7→ {||}
∣

∣

}

, often written just k. For instance, the phone number
{∣

∣333-4444 7→ {||}
∣

∣

}

in the example of §2 is a value.

2Note that, although we are defining a syntax for lens expressions, the types used to classify these expressions are semantic—
they are just sets of lenses or views. We are not (yet!—see §9) proposing an algebra of types or an algorithm for mechanically
checking membership of lens expressions in type expressions.
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Figure 1: The get direction of xfork

5.2 Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transformations on trees of very simple
shapes. We will see in §5.3 how to combine these with a powerful “forking” operator to perform related
operations on more general sorts of trees.

The lens hoist n is used to “shorten” a tree by removing an edge at the top. In the get direction, it
expects a tree that has exactly one child, named n. It returns this child, removing the edge n. In the put

direction, the value of the old concrete tree is ignored and a new concrete tree is created, with a single edge
n pointing to the given abstract tree.

(hoist n)↗ c = t if c =
{∣

∣n 7→ t
∣

∣

}

(hoist n)↘ (a, c) =
{
∣

∣n 7→ a
∣

∣

}

∀C⊆T . ∀n∈N . hoist n ∈
{
∣

∣n 7→ C
∣

∣

}



Ω

C

Conversely, the plunge lens is used to “deepen” a tree by adding an edge at the top. In the get direction,
a new tree is created, with a single edge n pointing to the given concrete tree. In the put direction, the value
of the old concrete tree is ignored and the abstract tree is required to have exactly one subtree, labeled n,
which becomes the result of the plunge.

(plunge n)↗ c =
{∣

∣n 7→ c
∣

∣

}

(plunge n)↘ (a, c) = t if a =
{∣

∣n 7→ t
∣

∣

}

∀C⊆T . ∀n∈N . plunge n ∈ C 

Ω

{∣

∣n 7→ C
∣

∣

}

5.3 Forking

The lens combinator xfork applies different lenses to different parts of a tree: it splits the tree into two
parts according to the names of its immediate children, applies a different lens to each, and concatenates the
results. Formally, xfork takes as arguments two sets of names and two lenses. The get direction of xfork pc

pa l1 l2 can be visualized as in Figure 1 (the concrete tree is at the bottom). The triangles labeled pc denote
trees whose immediate child edges have labels in pc; dotted arrows represent splitting or concatenating trees.
The result of applying l1↗ to c|pc (the tree formed by dropping the immediate children of c whose names
are not in pc) must be a tree whose top-level labels are in the set pa, and, similarly the result of applying
l2↗ to c\pc must be in pa. That is, the lenses l1 and l2 are allowed to change the sets of names in the trees
they are given, but each must map from its own part of pc to its own part of pa. Conversely, in the put

direction, l1 must map from pa to pc and l2 from pa to pc. Here is the full definition:
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(xfork pc pa l1 l2)↗ c = (l1↗ c|pc) · (l2↗ c\pc)
(xfork pc pa l1 l2)↘ (a, c) = (l1 ↘ (a|pa, c|pc)) · (l2 ↘ (a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa.

∀C2⊆T \pc. ∀A2⊆T \pa.

∀l1 ∈ C1 

Ω

A1. ∀l2 ∈ C2 

Ω

A2.

xfork pc pa l1 l2 ∈ (C1 · C2) 

Ω

(A1 · A2)

We rely here on our convention that Ω|p = Ω to avoid explicitly splitting out the Ω case in the put direction.
We have now defined enough basic lenses to implement several useful derived forms for manipulating trees.

In many uses of xfork, the sets of names specifying where to split the concrete tree and where to split
the abstract tree are identical. We define the simpler fork as:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p.

∀l1 ∈ C1 

Ω

A1. ∀l2 ∈ C2 

Ω

A2.

fork p l1 l2 ∈ (C1 · C2) 

Ω

(A1 · A2)

We may now define a lens that discards all of the children of a tree whose names do not belong to some
set p:

filter p d = fork p id (const {||} d)

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.

filter p d ∈ (C|p · C\p) 

Ω

C|p

In the get direction, this lens takes a concrete tree, keeps the part of the tree whose children have names in
p (using id), and throws away the rest of the tree (using const {||} d). The tree d is used when putting an
abstract tree into a missing concrete tree, providing a default for information that does not appear in the
abstract tree but is required in the concrete tree. The type of filter follows directly from the types of the
three primitive lenses: const {||} d, with type C\p ⇐⇒Ω {{||}}, the lens id, with type C|p ⇐⇒Ω C|p, and fork

(with the observation that C|p = C|p · {||}.)
The next derived lens focuses attention on a single child n:

focus n d = (filter {n} d); (hoist n)

∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T . focus n d ∈ (C ·
{
∣

∣n 7→ D
∣

∣

}

) 

Ω

D

In the get direction, focus filters away all other children, then removes the edge n and yields n’s subtree.
As usual, the default tree is only used in the case of creation, where it is the default for children that have
been filtered away. Again the type of focus follows from the types of the lenses from which it is defined,
observing that filter {n} d ∈ (C · {|n 7→ D|}) ⇐⇒Ω {|n 7→ D|} and that hoist n ∈ {|n 7→ D|} ⇐⇒Ω D.

Our next derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plunge n) id

∀m, n∈N . ∀C⊆T . ∀D⊆T \{m,n}.

rename m n ∈ (
{∣

∣m 7→ C
∣

∣

}

· D) 

Ω (

{∣

∣n 7→ C
∣

∣

}

· D)

In the get direction, rename splits the concrete tree in two. The first tree has a single child m (which is
guaranteed to exist by the type annotation) and is hoisted up, removing the edge named m, and then plunged
under n. The rest of the original tree is passed through the id lens. Similarly, the put direction splits the
abstract view into a tree with a single child n, and the rest of the tree. The tree under n is put back using
the lens (hoist m; plunge n), which first removes the edge named n and then plunges the resulting tree
under m. Note that the type annotation on rename demands that the concrete view have a child named m

and that the astract view has a child named n.
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5.4 Mapping

So far, all of our lens combinators do things near the root of the trees they are given. Of course, we also want
to be able to perform transformations in the interior of trees. The map combinator is our fundamental means
of doing this. When combined with recursion (and sometimes conditionals), it also allows us to iterate over
structures of arbitrary depth.

The map combinator is parameterized on a single lens l. In the get direction, map applies l↗ to each
subtree of the root and combines the results together into a new tree. (Later in the section, we will define a
more general combinator, called wmap, that applies a different lens to each subtree.) The put direction of map
is more interesting. In the simple case where a and c have equal domains, its behavior is straightforward: it
uses l↘ to combine concrete and abstract subtrees with identical names and assembles the results into a new
concrete tree. In general, however, the abstract tree in the put direction need not have the same domain as
the concrete tree (i.e., the edits that produced the new abstract view may have involved adding and deleting
children); the behavior of map in this case is a little more involved. First, note that the domain of the result
is determined by the domain of the abstract argument. If (map l)↘ (a, c) is defined, then, by rule PutGet,
we should have (map l)↗ ((map l)↘ (a, c)) v a; thus we necessarily have dom((map l)↘ (a, c)) = dom(a) (if
the put is defined). This means we can simply drop children that occur in dom(c) but not dom(a). Children
bearing names that occur both in dom(a) and dom(c) are dealt with as described above. This leaves the
children that only appear in dom(a). These need to be passed through l so that they can be included in
the result; to do this, we need some concrete argument to pass to l↘. There is no corresponding child
in c, so instead these abstract trees are put into the missing tree Ω—indeed, this case is precisely why we
introduced Ω! Formally, the behavior of map is defined as follows. (It relies on the convention that c(n) = Ω
if n 6∈ dom(c); the type declaration also involves some new notation, explained below.)

(map l)↗ c =
{∣

∣n 7→ l↗ c(n) | n ∈ dom(c)
∣

∣

}

(map l)↘ (a, c) =
{∣

∣n 7→ l↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, and dom(C) = dom(A).
∀l ∈ (

⋂

n∈N . C(n) 

Ω

A(n)).
map l ∈ C 


Ω

A

Because of the way that it takes tree apart, transforms the pieces, and reassembles them, the typing of
map is a little subtle. For example, in the get direction, map does not modify the names of the immediate
children of the concrete tree and in the put direction, the names of the abstract tree are left unchanged; we
might therefore expect a simple typing rule stating that, if l ∈ (

⋂

n∈N C(n) 

Ω

A(n))—i.e., if l is a well-
behaved lens from the concrete subtree type C(n) to the abstract subtree type A(n) for each child n—then
map l ∈ C 


Ω

A. Unfortunately, for arbitrary C and A, the map lens is not guaranteed to be well-behaved at
this type. In particular, if dom(C), the set of domains of trees in C, is not equal to dom(A), then the put

function can produce a tree that is not in C, as the following example shows. Consider the sets of trees

C =
{{∣

∣x 7→ m
∣

∣

}

,
{∣

∣y 7→ n
∣

∣

}}

A = C ∪
{{

∣

∣x 7→ m, y 7→ n
∣

∣

}}

and observe that with trees
a =

{∣

∣x 7→ m, y 7→ n
∣

∣

}

c =
{∣

∣x 7→ m
∣

∣

}

we have map id↘ (a, c) = a, a tree that is not in C. This shows that the type of map must include the
requirement that dom(C) = dom(A). (Recall that for any type T the set dom(T ) is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies between the names of
children and the trees that may appear under those names. Again, one might naively expect that, if l has
type C(n) 


Ω

A(m) for each name m, then map l would have type C 

Ω

A. Consider, however, the set

A = {{|x 7→ m, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,
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in which the value m only appears under x when p appears under y, and the set

C = {{|x 7→ m, y 7→ p|}, {|x 7→ m, y 7→ q|}, {|x 7→ n, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,

where both m and n appear with both p and q. When we consider just the projections of C and A at specific
names, we obtain the same sets of subtrees: C(x) = A(x) = {{|m|}, {|n|}} and C(y) = A(y) = {{|p|}, {|q|}}, and
the lens id has type C(x) 


Ω

A(x) and C(y) 

Ω

A(y) (and C(z) = ∅ 

Ω ∅ = A(z) for all other names z).

But it is clearly not the case that map id ∈ C 

Ω

A. To avoid this error (but still give a type for map that
is precise enough to derive interesting types for lenses defined in terms of map), we require that the source
and target sets in the type of map be closed under the “shuffling” of their children. Formally, if T is a set of
trees, then the set of shufflings of T , denoted T 	, is

T 	 =
⋃

D∈dom(T )

{|n 7→ T (n) | n ∈ D|}

where {|n 7→ T (n) | n ∈ D|} is the set of trees with domain D whose children under n are taken from the set
T (n). We say that T is shuffle closed iff T = T 	. For instance, in the example above, A	 = C	 = C.

In the situations where map is used, shuffle closure is typically very easy to check. For example, any
set of trees whose elements each have singleton domains is shuffle closed. Also, for every set of trees T ,
the encoding introduced in §7 of lists with elements in T is shuffle closed, which justifies using map (with
recursion) to implement operations on lists.

A final point worth emphasizing is the relation between the map lens combinator and the missing tree Ω.
The put function of every other lens combinator only results in a put into the missing tree if the combinator
itself is called on Ω. In the case of map l, calling its put function on some a and c where c is not the
missing tree may result in the application of the put of l to Ω if a has some children that are not in c. In
an earlier version of map, we dealt with missing children by providing a default concrete child tree, which
would be used when no actual concrete tree was available. However, we discovered that, in practice, it is
often difficult to find a single default concrete tree that fits all possible abstract trees, particularly because
of xfork (where different lenses are applied to different parts of the tree) and recursion (where the depth
of a tree is unknown). We tried parameterizing this default concrete tree by the abstract tree and the lens,
but noticed that most primitive lenses ignore the concrete tree when defining the put function, as enough
information is available in the abstract tree. The natural choice for a concrete tree parameterized by a and
l was thus l↘ (a, Ω), for some special tree Ω. The only lens for which the put function needs to be defined
on Ω is const, as it is the only lens that discards information. This led us to the present design, where only
the const lens (and other lenses defined from it, such as focus) expects a default tree d. This approach is
much more local than the others we tried, since one only needs to provide a default tree at the exact point
where information is discarded.

We now define the general form of map, parameterized on a total function from names to lenses.

(wmap m)↗ c =
{∣

∣n 7→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

(wmap m)↘ (a, c) =
{
∣

∣n 7→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, and dom(C) = dom(A).
∀m ∈ (Πn∈N . C(n) 


Ω

A(n)).
wmap m ∈ C 


Ω

A

In the type annotation, we use the dependent type notation m ∈ Πn. C(n) 

Ω

A(n) to mean that m is a total
function mapping each name n to a well-behaved lens from C(n) to A(n). Although m is a total function,
we will often describe it by giving its behavior on a finite set of names and adopting the convention that it
maps every other name to id. For example, the lens wmap {x 7→ plunge a} maps plunge a to trees under x

and id to the subtrees of every other child.
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5.5 Copying and Merging

It sometimes happens that a concrete representation requires equality between two distinct subtrees within
a view. A merge lens is one way to preserve this invariant when the abstract view is updated. In the get

direction, the merge lens takes a tree with two (equal) branches and deletes one of them. In the put direction,
merge copies the updated value of the remaining branch to both branches in the concrete view.

There is some freedom in the type of merge. We can either give it a precise type that captures the
equality constraint in the concrete view; the lens is well-behaved and total at that type. Alternatively, we
can give it a more permissive type (which we do) by ignoring the equality constraint — if the two original
branches are unequal, merge is still defined and well-behavedness is preserved. This is possible because the
old concrete view is an argument to the put function, and can be tested to see whether the two branches were
equal or not in c. If not, then the value in a does not overwrite the value in the deleted branch, allowing
merge to obey PutGet.

(merge m n)↗ c = c\n

(merge m n)↘ (a, c) =

{

a ·
{∣

∣n 7→ a(m)
∣

∣

}

if c(m) = c(n)
a ·

{∣

∣n 7→ c(n)
∣

∣

}

if c(m) 6= c(n)

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .

merge m n ∈
(C ·

{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

) 

Ω

(C ·
{∣

∣m 7→ DΩ

∣

∣

}

)

It is also possible (as we show in the long version) to define a copy lens that duplicates a subtree in
the get direction and performs an equality comparison in the put direction. Unfortunately, because of the
asymmetry between get and put, this lens cannot be given a permissive type like the one we gave to merge:
the fact that the duplicated subtrees must be kept equal shows up as a constraint on the target type of copy.
This, in turn, means that it is nearly impossible to use copy as part of interesting composite lenses, except
as the very last step.

6 Conditionals

Conditional lens combinators, which can be used to selectively apply one lens or another to a view, are
necessary for writing many interesting derived lenses. Whereas xfork and its variants split their input trees
into two parts, send each part through a separate lens, and recombine the results, a conditional lens performs
some test and sends the whole trees through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able to take a concrete view,
put it through our conditional lens to obtain some abstract view, and then take any other abstract view
of suitable type and push it back down. But this will only work if either (1) we somehow ensure that the
abstract view is guaranteed to be sent to the same sub-lens on the way down as we took on the way up, or else
(2) the two sub-lenses are constrained to behave coherently. Since we want reasoning about well-behavedness
and totality to be compositional in the absence of recursion, (2) is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete characterization of all possible
conditional lenses: we argue (in the long version of the paper) that every binary conditional operator that
yields well-behaved and total lenses is an instance of the general cond combinator presented below. Since
this general cond is a little complex, however, we start by discussing two particularly useful special cases.

Our first conditional, ccond, is parameterized on a predicate B on views and two lenses, l1 and l2. In
the get direction, it tests the concrete view, c, and applies the get of l1 if c satisfies the predicate and l2
otherwise. In the put direction, ccond again examines the concrete view and applies the put of l1 if it satisfies
the predicate and l2 otherwise.
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(ccond C1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(ccond C1 l1 l2)↘ (a, c) =

{

l1 ↘ (a, c) if c ∈ C1

l2 ↘ (a, c) if c 6∈ C1

∀C, C1, A⊆U . ∀l1 ∈ C∩C1 

Ω

A. ∀l2 ∈ C\C1 

Ω

A. ccond C1 l1 l2 ∈ C 

Ω

A

A quite different way of defining a conditional lens is to make it ignore its concrete argument in the put

direction, basing its decision whether to use l1↘ or l2↘ entirely on its abstract argument.

(acond C1 A1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(acond C1 A1 l1 l2)↘ (a, c) =















l1 ↘ (a, c) if a ∈ A1 and c ∈ C1

l1 ↘ (a, Ω) if a ∈ A1 and c 6∈ C1

l2 ↘ (a, c) if a 6∈ A1 and c 6∈ C1

l2 ↘ (a, Ω) if a 6∈ A1 and c ∈ C1

∀C, A, C1, A1⊆U .

∀l1 ∈ C∩C1 

Ω

A∩A1. ∀l2 ∈ (C\C1) 

Ω (A\A1).

acond C1 A1 l1 l2 ∈ C 

Ω

A

The general conditional, cond, is essentially obtained by combining the behaviors of ccond and acond.
The concrete conditional requires that the targets of the two lenses be identical, while the abstract conditional
requires that they be disjoint. More generally, we can let them overlap arbitrarily, behaving like ccond in the
region where they do overlap (i.e., for arguments (a, c) to put where a is in the intersection of the targets)
and like acond in the regions where the abstract argument to put belongs to just one of the targets. To this
we can add one additional observation: that the use of Ω in the definition of acond is actually arbitrary. All
that is required is that, when we use the put of l1, the concrete argument should come from (C1)Ω, so that
l1 is guaranteed to do something good with it. These considerations lead us to the following definition.

(cond C1 A1 A2 f21 f12 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(cond C1 A1 A2 f21 f12 l1 l2)↘ (a, c) =































l1 ↘ (a, c) if a ∈ A1∩A2 and c ∈ C1

l2 ↘ (a, c) if a ∈ A1∩A2 and c 6∈ C1

l1 ↘ (a, c) if a ∈ A1\A2 and c ∈ (C1)Ω
l1↘(a, f21(c)) if a ∈ A1\A2 and c 6∈ (C1)Ω
l2 ↘ (a, c) if a ∈ A2\A1 and c 6∈ C1

l2↘(a, f12(c)) if a ∈ A2\A1 and c ∈ C1

∀C, C1, A1, A2 ⊆ U .

∀l1 ∈ (C∩C1) 

Ω

A1.

∀l2 ∈ (C\C1) 

Ω

A2.

∀f21 ∈ (C\C1) → (C∩C1)Ω.

∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C 

Ω (A1∪A2)

When a is in the targets of both l1 and l2, cond↘ chooses between them based solely on c (as does ccond,
whose targets always overlap). If a lies uniquely in the range of either l1 or l2, then cond’s choice of lens
for put is predetermined (as with acond, whose targets are disjoint). Once l↘ is chosen to be either l1↘
or l2↘, then if the old value of c is not in ran(l↘)Ω, then we apply a “fixup function,” f21 or f12, to c to
choose a new value from ran(l↘)Ω. Ω is one possible result of the fixup functions, but it is sometimes useful
to compute a more interesting one; we will see an example in §7.

Somewhat surprisingly, all this generality can actually be quite useful in practice! We will see an example
depending on the full power of cond in the next section.
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7 Derived Lenses for Lists

XML and many other concrete data formats make heavy use of ordered lists. We describe in this section
how we can represent lists as trees, using a standard cons cell encoding, and introduce some derived lenses to
manipulate them. We begin with some very simple lenses for projecting the head and tail of a list encoded as
a cons cell. We then define some recursive lenses implementing more complex operations on lists: mapping,
reversal, and filtering. The simplest of these lenses, list map, uses wmap and recursion to apply a lens to
every element of a list. The next lens reverses the order of elements in a list. We conclude with a quite
intricate derived form, list filter, that uses the general conditional, cond, to filter lists according to some
predicate.

In the long version of the paper, we also show how to derive a list-reversing lens that takes a list encoded
as a tree and yields the same list in reverse order (in both directions, ignoring its concrete argument in
the put direction). Other list-processing derived forms that we have implemented (but do not show here)
include a “grouping” lens that, in the get direction, takes a list whose elements alternate between elements
of D and elements of E and returns a list of pairs of Ds and Es—e.g., it maps [d1 e1 d2 e2 d3 e3] to
[[d1 e1] [d2 e2] [d3 e3]].

A tree t is said to be a list iff either it is empty (no children) or it has exactly two children, one named
*h and another named *t, with t(*t) also a list. In the following, we use the lighter notation [t1 . . . tn] for
the tree

{
∣

∣*h 7→ t1 *t 7→
{∣

∣. . . 7→
{∣

∣*h 7→ tn *t 7→ {||}
∣

∣

}∣

∣

}∣

∣

}

. In types, we write [] for the set {{||}} containing

only the empty list, C :: D for the set
{∣

∣*h 7→ C, *t 7→ D
∣

∣

}

of “cons cell trees” whose head belongs to C

and whose tail belongs to D, and [C] for the set of lists with elements in C—i.e., the smallest set of trees
satisfying [C] = [] ∪ (C :: [C]). We sometimes refine this notation to describe lists of specific lengths,
writing [Di..j] for lists of Ds whose length is at least i and at most j. The interleaving of a list of type
[Bi..j] and a list of type [Cn..m], taking elements from the first list and elements from the second in an
arbitrary fashion but maintaining the relative order of each, is written [Bi..j]&[Cm..n].

Our first two list lenses extract the head or tail of a list (or, more generally, any cons cell).

hd d = focus *h
{∣

∣*t 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈D. hd d ∈ (C :: D) 

Ω

C

tl d = focus *t
{
∣

∣*h 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈C. tl d ∈ (C :: D) 

Ω

D

The lens hd expects a default tree, which it uses in the put direction as the tail of the created tree when
the concrete tree is missing. In the get direction, hd returns the tree under *h. The lens tl works anal-
ogously. Note that the types of these lenses apply to both homogeneous lists (the type of hd implies
∀C⊆T . ∀d∈[C]. hd d ∈ [C] ⇐⇒Ω C) as well as cons cells whose head and tail have arbitrary types. The
types of hd and tl follow straightforwardly from the type of focus.

The list map lens iterates over a list, applying a lens l to every element of the list:

list map l = wmap {*h 7→ l, *t 7→ list map l}

∀C, A⊆T . ∀l ∈ C 

Ω

A. list map l ∈ [C] 

Ω

[A]

The get direction of this lens applies l to the subtree under *h and recurses on the subtree under *t. The
put direction uses l↘ to put back corresponding pairs of elements from the abstract and concrete lists. The
result has the same length as the abstract list; if the concrete list is longer, the extra tail is thrown away. If
it is shorter, each extra element of the abstract list is put into Ω.

It is worth noting how the recursive calls in list map terminate. In the get direction, the wmap lens
simply applies l to the head and list map l to the tail until it reaches a tree with no children. Similarly, in
the put direction, the lens is applied at each level of the abstract tree, using the corresponding part of the
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concrete tree, if it is present, and Ω otherwise. In either case, the recursive calls continue until the entire
tree has been traversed.

Because list map is defined recursively, proving it is well behaved requires (just) a little more work than
has been needed for the derived lenses we have seen above: we need to show that it has a particular type
assuming that the recursive use of list map has the same type. This is nothing very surprising: exactly the
same reasoning process is used in typing recursive functional programs.

Our most interesting derived lens, list filter, is parameterized on two sets of views, D and E, which
we assume to be disjoint and non-empty. In the get direction, it takes a list whose elements belong to either
D or E and projects away those that belong to E, leaving an abstract list containing only Ds; in the put

direction, it restores the projected-away Es from the concrete list. Unlike list reverse, the put function for
list filter depends on both the abstract and concrete views. Its definition utilizes our most complex lens
combinators—wmap and two forms of conditionals—and mutual recursion, yielding a lens that is well-behaved
and total on lists of arbitrary length.

In the get direction, the desired behavior of list filter D E (for brevity, let us call it l) is clear. In
the put direction, things are more interesting. To begin with, the lens laws impose some key constraints on
the behavior of l↘. The GetPut law forces the put function to restore each of the filtered elements when
the abstract list is put into the original concrete list. For example (letting d and e be elements of D and E)
we must have l↘ ([d], [e d]) = [e d]. The PutGet law forces the put function to include every element
of the abstract list in the resulting concrete list and to only take Es (not Ds) from the concrete list. In the
general case, where the abstract list a is different from the filtered concrete list l↗ c, there is some freedom
in how l↘ behaves. First, it may selectively restore only some of the elements of E from the concrete list
(or indeed, even less intuitively, it might add some new elements of E that it somehow makes up). Second,
it may interleave the restored Es with the Ds from the abstract list in any order, as long as the order of the
Ds is preserved from a. From these possibilities, the behavior that seems most natural to us is to overwrite
elements of D in c with elements of D from a, element-wise, until either c or a runs out of elements of D. If
c runs out first, then l↘ appends the rest of the elements of a at the end. If a runs out first, then l↘ keeps
any remaining Es that may be left at the end of c (discarding any remaining Ds in c, as it must to satisfy
PutGet). For example, l↘ ([], [d e]) yields [e], not [], and l↘ ([d], [e]) is [e d], not [d e].

These choices lead us to the following specification for a single step, in the put direction, of a recursively
defined lens implementing l. If the abstract list a and concrete list c are both cons cells whose heads are in D,
then it yields the head of a and recurses on both tails. If c begins with an E (i.e., c has type E :: [D]&[E]),
then it restores the head of c and recurses on a and the tail of c. If a is empty and c begins with a D (c has
type D :: [D]&[E]), then it restores all the remaining Es from c and returns. Translating this into the lens
combinators defined above leads (modulo a little new notation and a few additional technicalities, explained
below) to the definition below of list filter and a helper lens, inner filter, by mutual recursion. The
singly recursive variant with inner filter inlined has the same behavior as the version presented here.
We split out inner filter so that we can give it a more precise type, facilitating reasoning about well-
behavedness and totality: in the get direction it maps lists containing at least one D to D :: [D]; the
corresponding types for list filter include empty lists.
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list filter D E =
cond [E] [] [D1..ω] fltrE (λc. c@[anyD])

(const [] [])
(inner filter D E)

inner filter D E =
ccond (E :: ([D1..ω]&[E]))

(tl anyE ; inner filter D E)
(wmap {*t 7→ list filter D E})

∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.
list filter D E ∈ [D]&[E] 


Ω

[D] and

inner filter D E ∈ [D1..ω]&[E] 

Ω

[D1..ω]

The “choice operator” anyD denotes an arbitrary element of a non-empty set D.3 The function fltrE is used
by the cond to strip out any Ds from the tail of c remaining when the a argument becomes empty; this is the
usual list-filtering function, which for present purposes we simply assume has been defined as a primitive.
(In our implementation, we actually use list filter↗ here; but for expository purposes we prefer to avoid
this extra bit of recursiveness.) Finally, the function λc. c@[anyD] appends some arbitrary element of D to
the right-hand end of a list c. It is used by cond for the case where a non-empty a is being put into a list
c that does not contain any Ds; by adding a dummy d at the end of c, it produces a concrete list that can
validly be passed to inner filter, which expects at least one D in its concrete argument marking the point
where the head of a should be placed.

To illustrate how all this works, let us step through two examples in detail. In both, the concrete type is
[D]&[E] and the abstract type is [D] where D = {d} and E = {e}. For the first example, let the abstract
tree a = [d], and the concrete tree c = [e d e]. At each step, we underline the next term to be reduced.

(list filter D E)↘ (a, c)

= (inner filter D E)↘ (a, c)

by the definition of cond, as a = [d] ∈ D :: [D] and c ∈ ([D]&[E]) \ [E]

= (tl anyE ; inner filter D E)↘ (a, c)

by the definition of ccond, as c = [e d e] ∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

(inner filter D E)↘
(

a, (tl anyE)↗ c
)

, c
)

by the definition of composition

= (tl anyE)↘
(

(inner filter D E)↘ (a, [d e]), c
)

reducing (tl anyE)↗ c

= (tl anyE)↘
(

(wmap {*t 7→ list filter D E})↘ (a, [d e]), c
)

by the definition of ccond, as a = [d] 6∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

d :: ((list filter D E)↘ ([], [e])), c
)

by the definition of wmap plus id↘ (d, d) = d

= (tl anyE)↘
(

d :: ((const [] [])↘ ([], [e])), c
)

by the definition of cond, as [] ∈ [] and [e] ∈ [E]

= (tl anyE)↘ (d :: [e], c)

by the definition of const
= [e d e]

by the definition of tl

3We are dealing with countable sets of finite trees here, so this construct poses no metaphysical conundrums; alternatively,
but less readibly, we can pass list filter an extra argument d ∈ D.
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The second example illustrates how the “fixup functions” supplied to the cond lens are used. Let a = []

and c = [d e].
(list filter D E)↘ (a, c)

= (const [] [])↘
(

[], (λc.fltrE c)[d e]
)

by the definition of cond, as a = [] but c 6∈ [E]

= (const [] [])↘ ([], [e])

by the definition of fltrE
= [e]

by definition of const

8 Related Work

The lens combinators described in this paper evolved in the setting of the Harmony data synchronizer. The
overall architecture of Harmony and the role of lenses in building synchronizers for various forms of data are
described in [32], along with a detailed discussion of related work on synchronization.

Our foundational structures—lenses and their laws—are not new: closely related structures have been
studied for decades in the database community. However, our “programming language treatment” of these
structures has led us to a formulation that is arguably simpler (transforming states rather than “update
functions”) and somewhat more refined (treating well-behavedness as a form of type assertion). Our formu-
lation is also novel in considering the issue of continuity, thus supporting a rich variety of surface language
structures including definition by recursion. The idea of defining programming languages for constructing
bi-directional transformations of various sorts has also been explored previously in diverse communities. We
appear to be the first to take totality as a primary goal (while connecting the language with a formal seman-
tic foundation, choosing primitives that can be combined into composite lenses whose totality is guaranteed
by construction), and the first to emphasize types (i.e., compositional reasoning) as an organizing design
principle.

Foundations of View Update The foundations of view update translation were studied intensively by
database researchers in the late ’70s and ’80s. This thread of work is closely related to our semantics of
lenses in §3.

Dayal and Bernstein [13] gave a seminal formal account of the theory of “correct update translation.”
Their notion of “exactly performing an update” corresponds to our PutGet law. Their “absence of side
effects” corresponds to our GetPut and PutPut laws. Their requirement of preservation of semantic
consistency corresponds to the partiality of our put functions.

Bancilhon and Spyratos [7] developed an elegant semantic characterization of update translation, intro-
ducing the notion of complement of a view, which must include at least all information missing from the
view. When a complement is fixed, there exists at most one update of the database that reflects a given up-
date on the view while leaving the complement unmodified—i.e., that “translates updates under a constant
complement.” In general, a view may have many complements, each corresponding to a possible strategy
for translating view updates to database updates. The problem of translating view updates then becomes a
problem of finding, for a given view, a suitable complement.

Gottlob, Paolini, and Zicari [16] offered a more refined theory based on a syntactic translation of view
updates. They identified a hierarchy of restricted cases of their framework, the most permissive form being
their “dynamic views” and the most restrictive, called “cyclic views with constant complement,” being
formally equivalent to Bancilhon and Spyratos’s update translators.

In a companion report [31], we state a precise correspondence between our lenses and the structures
studied by Bancilhon and Spyratos and by Gottlob, Paolini, and Zicari. Briefly, our set of very well behaved
lenses is isomorphic to the set of translators under constant complement in the sense of Bacilhon and Spyratos,
while our set of well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini,
and Zicari. To be precise, both of these results must be qualified by an additional condition regarding
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partiality. The frameworks of Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari are both formulated
in terms of translating update functions on A into update functions on C, i.e., their put functions have
type (A −→ A) −→ (C −→ C), while our lenses translate abstract states into update functions on C, i.e.,
our put functions have type (isomorphic to) A −→ (C −→ C). Moreover, in both of these frameworks,
“update translators” (the analog of our put functions) are defined only over some particular chosen set U

of abstract update functions, not over all functions from A to A. These update translators return total

functions from C to C. Our put functions, on the other hand, are defined over all abstract states and return
partial functions from C to C. Finally, the get functions of lenses are allowed to be partial, whereas the
corresponding functions (called views) in the other two frameworks are assumed to be total. In order to
make the correspondences tight, our sets of well-behaved and very well behaved lenses need to be restricted
to subsets that are also total in a suitable sense.

In the literature on programming languages, laws similar to our lens laws (but somewhat simpler, dealing
only with total get and put functions) appear in Oles’ category of “state shapes” [30] and in Hofmann and
Pierce’s work on “positive subtyping” [17].

Recent work by Lechtenbörger [21] establishes that translations of view updates under constant comple-
ments are possible precisely if view update effects may be undone using further view updates.

Languages for Bi-Directional Transformations At the level of syntax, different forms of bi-directional
programming have been explored across a surprisingly diverse range of communities, including programming
languages, databases, program transformation, constraint-based user interfaces, and quantum computing.
One useful way of classifying these languages is by the “shape” of the semantic space in which their trans-
formations live. We identify three major classes:

• Bi-directional languages, including ours, form lenses by pairing a get function of type C → A with a
put function of type A×C → C. In general, the get function can project away some information from
the concrete view, which must then be restored by the put function.

• In bijective languages, the put function has the simpler type A → C—it is given no concrete argument
to refer to. To avoid loss of information, the get and put functions must form a (perhaps partial)
bijection between C and A.

• Reversible languages go a step further, demanding only that the work performed by any function to
produce a given output can be undone by applying the function “in reverse” working backwards from
this output to produce the original input. Here, there is no separate put function at all: instead, the
get function itself is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is Meertens’s formal treatment of
constraint maintainers for constraint-based user interfaces [26]. Meertens’s semantic setting is actually even
more general: he takes get and put to be relations, not just functions, and his constraint maintainers are
symmetric: get relates pairs from C × A to elements of A and put relates pairs in A × C to elements of C;
the idea is that a constraint maintainer forms a connection between two graphical objects on the screen so
that, whenever one of the objects is changed by the user, the change can be propagated by the maintainer to
the other object such that some desired relationship between the objects is always maintained. Taking the
special case where the get relation is actually a function (which is important for Meertens because this is the
case where composition [in the sense of our ; combinator] is guaranteed to preserve well-behavedness), yields
essentially our very well behaved lenses. Meertens proposes a variety of combinators for building constraint
maintainers, most of which have analogs among our lenses, but does not directly deal with definition by
recursion; also, some of his combinators do not support compositional reasoning about well-behavedness. He
considers constraint maintainers for structured data such as lists, as we do for trees, but here adopts a rather
different point of view from ours, focusing on constraint maintainers that work with structures not directly
but in terms of the “edit scripts” that might have produced them. In the terminology of synchronization,
he switches from a state-based to an operation-based treatment at this point.
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Recent work of Mu, Hu, and Takeichi on “injective languages” for view-update-based structure editors
[27] adopts a similar perspective. Although their transformations obey our GetPut law, their notion of well-
behaved transformations is informed by different goals than ours, leading to a weaker form of the PutGet

law. A primary concern is using the view-to-view transformations to simultaneously restore invariants within

the source view as well as update the concrete view. For example, an abstract view may maintain two lists
where the name field of each element in one list must match the name field in the corresponding element
in the other list. If an element is added to the first list, then not only must the change be propagated to
the concrete view, it must also add a new element to the second list in the abstract view. It is easy to see
that PutGet cannot hold if the abstract view, itself, is—in this sense—modified by the put. Similarly, they
assume that edits to the abstract view mark all modified fields as “updated.” These marks are removed
when the put lens computes the modifications to the concrete view—another change to the abstract view
that must violate PutGet. Consequently, to support invariant preservation within the abstract view, and
to support edit lists, their transformations only obey a much weaker variant of PutGet (described above
in Section 5.5).

Another paper by Hu, Mu, and Takeichi [18] applies a bi-directional programming language quite closely
related to ours to the design of “programmable editors” for structured documents. As in [27], they support
preservation of local invariants in the put direction. Here, instead of annotating the abstract view with
modification marks, they assume that a put or a get occurs after every modification to either view. They
use this “only one update” assumption to choose the correct inverse for the lens that copied data in the get

direction — because only one branch can have been modified at any given time. Consequently, they can put

the data from the modified branch and overwrite the unmodified branch.
The TRIP2 system (e.g. [23]) uses bidirectional transformations specified as collections of Prolog rules

as a means of implementing direct-manipulation interfaces for application data structures. The get and put

components of these mappings are written separately by the user.

Languages for Bijective Transformations An active thread of work in the program transformation
community concerns program inversion and inverse computation—see, for example, [3, 4] and many other
papers cited there. Program inversion [14] derives the inverse program from the forward program. Inverse
computation [24] computes a possible input of a program from the program and a particular output. One
approach to inverse computation is to design languages that produce easily invertible expressions. For
example, designing languages that can only express injective functions (in which case every program is
trivially invertible). These languages bear some intriguing similarities to ours, but differ in a number of
ways, primarily in their focus on the bijective case.

In the database community, Abiteboul, Cluet, and Milo [1] defined a declarative language of correspon-

dences between parts of trees in a data forest. In turn, these correspondence rules can be used to translate
one tree format into another through non-deterministic Prolog-like computation. This process assumes an
isomorphism between the two data formats. The same authors [2] later defined a system for bi-directional
transformations based around the concept of structuring schemas (parse grammars annotated with semantic
information). Thus their get functions involved parsing, whereas their puts consisted of unparsing. Again,
to avoid ambiguous abstract updates, they restricted themselves to lossless grammars that define an isomor-
phism between concrete and abstract views.

Ohori and Tajima [29] developed a statically-typed polymorphic record calculus for defining views on
object-oriented databases. They specifically restricted which fields of a view are updatable, allowing only
those with a ground (simple) type to be updated, whereas our lenses can accommodate structural updates
as well.

A related idea from the functional programming community, called views [35], extends algebraic pattern
matching to abstract data types using programmer-supplied in and out operators.

Languages for Reversible Transformations Our work is the first (of which we are aware) in which
totality and compositional reasoning about totality are taken as primary design goals. Nevertheless, in all of
the languages discussed above there is an expectation that programmers will want their transformations to
be “total enough”—i.e., that the sets of inputs for which the get and put functions are defined should be large
enough for some given purpose. In particular, we expect that put functions should be accept a suitably large
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set of abstract inputs for each given concrete input, since the whole point of these languages is to allow editing
through a view. A quite different class of languages have been designed to support reversible computation,
in which the put functions are only ever applied to the results of the corresponding get functions. While the
goals of these languages are quite different from ours—they have nothing to do with view update—there are
intriguing similarities in the basic approach.

Landauer [20] observed that non-injective functions were logically irreversible, and that this irreversibil-
ity requires the generation and dissipation of some heat per machine cycle. Bennet [9] demonstrated that
this irreversibility was not inevitable by constructing a reversible Turing machine, showing that thermo-
dynamically reversible computers were plausible. Baker [6] argued that irreversible primitives were only
part of the problem; irreversibility at the “highest levels” of computer usage cause the most difficulty due
to information loss. Consequently, he advocated the design of programs that “conserve information.” Be-
cause deciding reversibility of large programs is unsolvable, he proposed designing languages that guaranteed
that all well-formed programs are reversible, i.e. designing languages whose primitives were reversible, and
whose combinators preserved reversibility. A considerable body of work has developed around these ideas
(e.g. [28]).

Update Translation for Tree Views There have been many proposals for query languages for trees
(e.g., XQuery and its forerunners, UnQL, StruQL, and Lorel), but these either do not consider the view
update problem at all or else handle update only in situations where the abstract and concrete views are
isomorphic.

For example, Braganholo, Davidson, and Heuser [10] and others studied the problem of updating rela-
tional databases “presented as XML.” Their solution requires a 1:1 mapping between XML view elements
and objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [34] described a mechanism for translating updates on XML structures
that are stored in an underlying relational database. In this setting there is again an isomorphism between
the concrete relational database and the abstract XML view, so updates are unambiguous—rather, the
problem is choosing the most efficient way of translating a given XML update into a sequence of relational
operations.

The view update problem has also been studied in the context of object-oriented databases. School,
Laasch, and Tresch [33] restrict the notion of views to queries that preserve object identity. The view update
problem is greatly simplified in this setting, as the objects contained in the view are the objects of the
database, and an update on the view is directly an update on objects of the database.

Update Translation for Relational Views Research on view update translation in the database
literature has tended to focus on taking an existing language for defining get functions (e.g., relational
algebra) and then considering how to infer corresponding put functions, either automatically or with some
user assistance. By contrast, we have designed a new language in which the definitions of get and put go
hand-in-hand. Our approach also goes beyond classical work in the relational setting by directly transforming
and updating tree-structured data, rather than flat relations. (Of course, trees can be encoded as relations,
but it is not clear how our tree-manipulation primitives could be expressed using the recursion-free relational
languages considered in previous work in this area.) We briefly review the most relevant research from the
relational setting.

Masunaga [22] described an automated algorithm for translating updates on views defined by relational
algebra. The core idea was to annotate where the “semantic ambiguities” arise, indicating they must be
resolved either with knowledge of underlying database semantic constraints or by interactions with the user.

Keller [19] catalogued all possible strategies for handling updates to a select-project-join view and showed
that these are exactly the set of translations that satisfy a small set of intuitive criteria. Building on this
foundation, Barsalou, Siambela, Keller, and Wiederhold [8] described a scheme for interactively constructing
update translators for object-based views of relational databases.

Medeiros and Tompa [25] presented a design tool for exploring the effects of choosing a view update
policy. This tool shows the update translation for update requests supplied by the user; by considering all
possible valid concrete states, the tool predicts whether the desired update would in fact be reflected back
into the view after applying the translated update to the concrete database.
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Atzeni and Torlone [5] described a tool for translating views and observed that if one can translate any
concrete view to and from a meta-model (shared abstract view), one then gets bi-directional transformations
between any pair of concrete views. They limited themselves to mappings where the concrete and abstract
views are isomorphic.

Complexity bounds have also been studied for various versions of the view update inference problem.
In one of the earliest, Cosmadakis and Papadimitriou [12] considered the view update problem for a single
relation, where the view is a projection of the underlying relation, and showed that there are polynomial
time algorithms for determining whether insertions, deletions, and tuple replacements to a projection view
are translatable into concrete updates. More recently, Buneman, Khanna, and Tan [11] established a variety
of intractability results for the problem of inferring “minimal” view updates in the relational setting for
query languages that include both join and either project or union.

9 Conclusions and Future Work

We have taken care to find combinators that fit together in a sensible way and that are easy to program
with. Starting with lens laws that define “reasonable behavior”, adding type annotations, and proving that
each of our lenses is total, has imposed constraints on our design of new lenses. These strong constraints,
paradoxically, make the design process easier. In the early stages of the Harmony, working in an under-
constrained design space, we found it extremely difficult to converge on a useful set of primitive lenses. Later,
when we understood how to impose the framework of type declarations and the demand for compositional
reasoning, we experienced a huge increase in manageability. The types helped not just in finding programming
errors in derived lenses, but in exposing design mistakes in the lenses themselves at an early stage.

Naturally, the progress we have made on lens combinators raises a host of further challenges. The
most urgent of these is automated typechecking. At present, it is the lens programmers’ responsibility to
check the well-behavedness of the lenses that they write. But the types of the primitive combinators have
been designed so that these checks are both local and essentially mechanical. The obvious next step is to
reformulate the type declarations as a type algebra and find a mechanical procedure for checking (or, more
ambitiously, inferring) types. A number of other interesting questions are related to static analysis of lenses.
For instance, can we characterize the complexity of programs built from these combinators? Is there an
algebraic theory of lens combinators that would underpin optimization of lens expressions in the same way
that the relational algebra and its algebraic theory are used to optimize relational database queries? (For
example, the combinators we have described here have the property that map l1; map l2 = map (l1; l2) for all
l1 and l2, but the latter should run substantially faster.)

This algebraic theory will play a crucial role in a more serious implementation effort. Our current
prototype performs a straightforward translation from a concrete syntax similar to the one used in this paper
to a combinator library written in OCaml. This is fast enough for experimenting with lens programming
(Malo Denielou has built an interactive programming environment that recompiles and re-applies lenses on
every keystroke) and for small demos (our calendar lenses can process a few thousands of appointments in
under a minute), but we would like to apply the Harmony system to applications such as synchronization of
biological databases that will require much higher throughput.

Another area for further investigation is the design of additional combinators. While we have found the
ones we have described here to be expressive enough to code a large number of both intricate structural
manipulations such as the list transformations in §7 as well as more prosaic application transformations such
as the ones needed by our bookmark synchronizer, there are some areas where we would like more general
forms of the lenses we have (e.g., a more flexible form of xfork, where the splitting and recombining of trees
is not based on top-level names, but involves deeper structure), lenses expressing more global transformations
on trees (including analogs of database operations such as join), or lenses addressing completely different
sorts of transformations (e.g., none of our combinators do any significant processing on edge labels, which
might include string processing, arithmetic, etc.).

More generally, what are the limits of bi-directional programming? How expressive are the combinators
we have defined here? Do they cover any known or succinctly characterizable classes of computations (in
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the sense that the set of get parts of the total lenses built from these combinators coincide with this class)?
We have put considerable energy into these questions, but at the moment we can only report that they are
challenging!

Finally, we intend to experiment with instantiating our semantic framework with other structures besides
trees—in particular, with relations, to establish closer links with existing research on the view update problem
in databases.
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