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Abstract

Distributed software environments are increasingly com-

plex and difficult to manage, as they integrate various

legacy software with proprietary management interfaces.

Moreover, the fact that management tasks are performed by

humans leads to many configuration errors and low reac-

tivity.

This paper presents Jade, a middleware for self-

management of distributed software environments. The

main principle is to wrap legacy software pieces in compo-

nents in order to provide a uniform management interface,

thus allowing the implementation of management applica-

tions. Management applications are used to deploy dis-

tributed applications and to autonomously reconfigure them

as required.

We report our experiments in using Jade for the manage-

ment of a clustered J2EE application.

KEY WORDS: Autonomic management, Legacy systems, Self-

optimization, Cluster, J2EE

1 Introduction

Today’s computing environments are becoming increas-

ingly sophisticated. They involve numerous complex soft-

ware that cooperate in potentially large scale distributed en-

vironments. These software are developed with very hetero-

geneous programming models and their configuration fa-

cilities are generally proprietary. Therefore, the manage-

ment 1 of these software (installation, configuration, tuning,

repair ...) is a much complex task which consumes a lot of

resources:

1we also use the term administration to refer to management operations

• human resources as administrators have to react to

events (such as failures) and have to reconfigure (re-

pair) complex applications,

• hardware resources which are often reserved (and

overbooked) to anticipate load peaks or failures.

A very promising approach to the above issue is to im-

plement administration as an autonomic software. Such a

software can be used to deploy and configure applications in

a distributed environment. It can also monitor the environ-

ment and react to events such as failures or overloads and re-

configure applications accordingly and autonomously. The

main advantages of this approach are:

• Providing a high-level support for deploying and con-

figuring applications reduces errors and administra-

tor’s efforts.

• Autonomic management allows the required reconfig-

urations to be performed without human intervention,

thus saving administrator’s time.

• Autonomic management is a means to save hardware

resources as resources can be allocated only when re-

quired (dynamically upon failure or load peak) instead

of pre-allocated.

This paper presents Jade, an environment for developing

autonomic management software. Jade mainly relies on the

following features:

• A component model. Jade models the managed en-

vironment as a component-based software architecture

which provides means to configure and reconfigure the

environment.
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• Control loops which link probes to reconfiguration ser-

vices and implement autonomic behaviors.

We used Jade to implement self-optimization in a clus-

tered J2EE application. Here, self-optimization consists in

dynamically increasing or decreasing the number of replicas

(at any tier of the J2EE architecture) in order to accommo-

date load peaks.

The rest of the paper is organized as follows. Section 2

details the context of this work. Section 3 presents the de-

sign principles underlying Jade. Section 4 describes the im-

plementation of self-optimization. Results of our experi-

mental evaluation are described in Section 5, while related

work is discussed in Section 6. Finally, Section 7 draws our

conclusions.

2 Experimental Context: Multi-Tier Internet

Services

As experimental environment, we made use of the Java 2

Platform, Enterprise Edition (J2EE), which defines a model

for developing web applications [20] in a multi-tiered ar-

chitecture. Such applications usually receive requests from

web clients, that flow through a web server (provider of

static content), then to an application server to execute the

business logic of the application and generate web pages

on-the-fly, and finally to a database that persistently stores

data (see Figure 1).

Database server Client Web server Application 
server

SQL req. 

SQL res. 

HTTP response 

HTTP request 

Internet 

Web tier Business tier Database tier 

Figure 1. Architecture of dynamic web appli­
cations

Upon an HTTP client request, either the request targets a

static web document, in which case the web server directly

returns that document to the client; or the request refers to a

dynamic document, in which case the web server forwards

that request to the application server. When the application

server receives a request, it runs one or more software com-

ponents (e.g. Servlets, EJBs) that query a database through

a JDBC driver (Java DataBase Connection driver) [21]. Fi-

nally, the resulting information is used to generate a web

document on-the-fly that is returned to the web client.

In this context, the increasing number of Internet users

has led to the need of highly scalable and highly available

services. Moreover, several studies show that the com-

plexity of multi-tier architectures with their dynamically

generated documents represent a large portion of web re-

quests, and that the rate at which dynamic documents are

delivered is often one or two orders of magnitudes slower

than static documents [10, 11]. This places a significant

burden on servers [7]. To face high loads and provide

higher scalability of Internet services, a commonly used

approach is the replication of servers in clusters. Such

an approach usually defines a particular (hardware or soft-

ware) component in front of the cluster of replicated servers,

which dynamically balances the load among the replicas.

Here, different load balancing algorithms may be used,

e.g. Random, Round-Robin, etc. Among the existing J2EE

clustering solutions we can cite C-JDBC for a cluster of

database servers [8], JBoss clustering for a cluster of JBoss

EJB servers [6], mod jk for a cluster of Tomcat Servlet

servers [17], and the L4 switch for a cluster of replicated

Apache web servers [19].

Clustered multi-tier J2EE systems represent an interest-

ing experimental environment for our autonomic manage-

ment environment, since they bring together all the chal-

lenges addressed by Jade:

• the management of a variety of legacy systems, since

each tier in the J2EE architecture embeds a different

piece of software (e.g. a web server, an application

server, or a database server),

• very complex administration interfaces and procedures

associated with very heterogeneous software,

• the requirement for high reactivity in taking into ac-

count events which may compromize the normal be-

haviour of the managed system, e.g. load peaks or

failures.

Therefore, we chose the J2EE platform to illustrate the

research contributions of this paper.

3 Design Principles and Architecture

The main motivation for Jade is to allow software to be

managed by programs (instead of humans). Since the man-

aged software is very hererogeneous, our key design choice

was to rely on a component model to provide a uniform

management interface for any managed resource.

Therefore, any software managed with Jade is wrapped

in a component which interfaces its administration proce-

dures.

The component model that we use (Fractal [5]) is

overviewed in Section 3.1. We then describe in Section 3.2
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the wrapping of J2EE tiers in Fractal components. Sec-

tion 3.3 and Section 3.4 respectively present how appli-

cations can be deployed and reconfigured, thanks to this

component-based approach.

3.1 The Fractal Component Model

The Fractal component model is a general component

model which is intended to implement, deploy, monitor, and

dynamically configure, complex software systems, includ-

ing in particular operating systems and middleware. This

motivates the main features of the model: composite com-

ponents (to have a uniform view of applications at various

levels of abstraction), introspection capabilities (to moni-

tor, and control the execution of a running system), and re-

configuration capabilities (to deploy, and dynamically con-

figure a system).

A Fractal component is a run-time entity that is encapsu-

lated, and that has a distinct identity. A component has one

or more interfaces. An interface is an access point to a com-

ponent, that supports a finite set of methods. Interfaces can

be of two kinds: server interfaces, which correspond to ac-

cess points accepting incoming method calls, and client in-

terfaces, which correspond to access points supporting out-

going method calls. The signatures of both kinds of inter-

face can be described by a standard Java interface decla-

ration, with an additional role indication (server or client).

A Fractal component can be composite, i.e. defined as an

assembly of several sub-components, or primitive, i.e. en-

capsulating an executable program.

Communication between Fractal components is only

possible if their interfaces are bound. Fractal supports both

primitive bindings and composite bindings. A primitive

binding is a binding between one client interface and one

server interface in the same address space. A composite

binding is a Fractal component that embodies a commu-

nication path between an arbitrary number of component

interfaces. These bindings are built out of a set of prim-

itive bindings and binding components (stubs, skeletons,

adapters, etc.). The Fractal model thus provides two mecha-

nisms to define the architecture of an application: bindings

between component interfaces, and encapsulation of com-

ponents in a composite.

The above features (hierarchical components, explicit

bindings between components, strict separation between

component interfaces and component implementation) are

relatively classical. The originality of the Fractal model lies

in its open reflective features. In order to allow for well

scoped dynamic reconfiguration, components in Fractal can

be endowed with controllers, which provide access to a

component internals, allowing for component introspection

and the control of component behaviour.

A controller provides a control interface and implements

a control behavior for the component, such as controlling

the activities in the components (suspend, resume) or mod-

ifying some of its attributes. The Fractal model allows

for arbitrary (including user defined) classes of controller.

It specifies, however, several useful forms of controllers,

which can be combined and extended to yield components

with different control features. This includes the following

controllers :

• Attribute controller: An attribute is a configurable

property of a component. This controller supports an

interface to expose getter and setter methods for its at-

tributes.

• Binding controller: supports an interface to allow

binding and unbinding its client interfaces to server in-

terfaces by means of primitive bindings.

• Content controller: for composite components, sup-

ports an interface to list, add and remove subcompo-

nents in its contents.

• Life-cycle controller: This controller allows an explicit

control over a component execution. Its associated in-

terface includes methods to start and stop the execution

of the component.

Several implementations of the Fractal model have been

issued in different contexts, e.g. an implementation devoted

to the configuration of operating systems on a bare hardware

(Think) or an implementation on top of the Jave virtual ma-

chine (Julia) targeted to the configuration of middleware or

applications. The work reported in this paper relies on this

later implementation of Fractal.

3.2 Component­based management

In order to allow software to be managed by programs

(instead of humans), any software managed with Jade is

wrapped in a Fractal component which interfaces its admin-

istration procedures, through the provision of controllers.

Thanks to Fractal’s hierachical model, arbitrary sophisti-

cated organizations can be modelized.

This provides a means to:

• Manage legacy entities using a uniform model (the

Fractal control interface), instead of relying on

software-specific, hand-managed, configuration files.

• Manage complex environments with different points of

view. For instance, using appropriate composite com-

ponents, it is possible to represent the network topol-

ogy, the configuration of the J2EE middleware, or the

configuration of an application on the J2EE middle-

ware.
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• Add a control behavior to the encapsulated legacy en-

tities (e.g. monitoring, interception and reconfigura-

tion).

Therefore, the Fractal component model is used to im-

plement a management layer on top of the legacy layer

(composed of the actual managed software). In the man-

agement layer, all components provide the same (uniform)

management interface for the encapsulated software, and

the corresponding implementation (the wrapper) is spe-

cific to each software (e.g. in the case of J2EE, Apache

web server, Tomcat Servlet server, MySQL database server,

etc.). The interface allows managing the element’s at-

tributes, bindings and lifecycle.

Relying on this management layer, sophisticated ad-

ministration programs can be implemented, without having

to deal with complex, proprietary configuration interfaces,

which are hidden in the wrappers. The management layer

provides all the facilities required to implement such admin-

istration programs:

Introspection. The framework provides an introspection

interface that allows observing managed components. For

instance, an administration program can inspect an Apache

web server component (encapsulating the Apache server) to

discover that this server runs on node1:port 80 and is bound

to a Tomcat Servlet server running on node2:port 66. It can

also inspect the overall J2EE infrastructure, considered as

a single composite component, to discover that it is com-

posed of two Apache servers interconnected with two Tom-

cat servers connected to the same MySQL database server.

Reconfiguration. The framework provides a reconfigu-

ration interface that allows control over the component ar-

chitecture. In particular, this control interface allows chang-

ing component attributes or bindings between components.

These configuration changes are reflected onto the legacy

layer. For instance, an administration program can add

or remove an Apache replica in the J2EE infrastructure to

adapt to workload variations.

The above approach is illustrated in Figure 2 in the case

of a J2EE architecture. In this setting, an L4-switch bal-

ances the requests between two Apache server replicas. The

Apache servers are connected to two Tomcat server repli-

cas. The Tomcat servers are both connected to the same

MySQL server. The vertical dashed arrows (between the

management and legacy layers) represent management re-

lationships between components and the wrapped software

entities. In the legacy layer, the dashed lines represent

relationships (or bindings) between legacy entities, whose

implementations are proprietary. These bindings are rep-

resented in the management layer by (Fractal) component

bindings (full lines in the figure).

Figure 2. Management layer for a clustered
J2EE application

We now give an example of a Fractal wrapper for the

Apache server that is part of the J2EE architecture. The

wrapper provides an attribute controller, a binding con-

troller and a lifecycle controller:

The attribute controller interface is used to set attributes

related to the local execution of the Apache server. For in-

stance, a modification of the port attribute of the Apache

component is reflected in the httpd.conf file in which the

port attribute is defined.

The binding controller interface is used to connect

Apache with other middleware tiers. For instance, invok-

ing the bind operation on the Apache component sets up a

binding between one instance of Apache and one instance

of Tomcat. The implementation of this bind method is re-

flected at the legacy layer in the worker.properties file used

to configure the connections between Apache and Tomcat

servers.

The life cycle controller interface is used to start or to

stop the server as well as to read its state (i.e. running or

stopped). It is implemented by calling the Apache com-

mands for starting/stopping a server.

Other servers (Tomcat and MySQL) are wrapped in a

similar way into Fractal components, and provide the same

management interface. These elements are then used by

the J2EE self-optimization mechanism, as described in sec-

tion 4.

3.3 Deployment

The architecture of an application is described using an

Architecture Description Language (ADL), which is one of

the basic features of the Fractal component model. This

description is an XML document which details the archi-

tectural structure of the application to deploy on the clus-

ter, e.g. which software resources compose the multi-tier
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J2EE application, how many replicas are created for each

tier, how are the tiers bound together, etc ...

A Software Installation Service component (a com-

ponent of Jade) allows retrieving the encapsulated soft-

ware resources involved in the multi-tier J2EE application

(e.g., Apache Web server software, MySQL database server

software, etc.) and installing them on nodes of the cluster.

A Cluster Manager component is responsible for the allo-

cation of nodes (from a pool of available nodes) which will

host the replicated servers of each tier.

The deployment of an application is the interpretation

of an ADL description, using the Software Installation Ser-

vice and the Cluster Manager to deploy application’s com-

ponents on nodes. The autonomic administration software

is also described using this ADL and deployed in the same

way. However, this description of the administration soft-

ware is separated from that of the application.

3.4 Implementing autonomic managers

Autonomic computing is achieved through autonomic

managers, which implement feedback control loops. These

loops regulate and optimize the behavior of the managed

system. Figure 3 illustrates control loops in the Jade au-

tonomic management system. It shows two managers that

regulate two specific aspects of the platform (self-recovery,

detailed in [4], and self-optimization, discussed in this pa-

per). Each autonomic manager in Jade is based on a con-

trol loop that includes sensor, actuator and analysis/decision

components.

sensor actuator
actuatorsensor

actuatorsensor

Repair

Cluster

manager

Self-recovery

manager

actuator
actuator

sensor
sensor

actuatorsensor

Resize

Self-optimization

manager

Jade

Software

Installation

service

Managed system

Figure 3. Control loops in Jade

Sensors are responsible for the detection of the occur-

rence of a particular event, e.g. a QoS requirement violation

in case of a self-optimization manager, or an element fail-

ure (node, middleware or component) for a self-recovery

manager. Sensors must be efficient and lightweight. In

the particular case of the self-optimization manager, sen-

sors must monitor and aggregate low-level information such

as CPU/memory usage, or higher-level information such as

client response times.

Analysis/decision components (or reactors) represent the

actual reconfiguration algorithm, e.g. repairing a failed el-

ement in case of a self-recovery manager, or resizing the

cluster of replicated servers upon load changes in case of

a self-optimization manager. Reactors receive notifications

from sensors and make use of actuators when a reconfigu-

ration operation is necessary.

Actuators represent the individual mechanisms neces-

sary to implement reconfiguration operations, e.g. allocat-

ing a new node to a cluster of replicas, adding/removing a

replica to the cluster of replicated servers, updating connec-

tions between the tiers.

Sensors, Actuators and Reactors are implemented as

Fractal components, which allows reusing and combining

them to assemble specific autonomic managers. Moreover,

this allows autonomic managers to be deployed and man-

aged using the same Jade framework (Jade administrates it-

self).

4 Implementation of Self-Optimization

In this section, we discuss the means of implementing

self-optimization in replicated cluster-based systems, us-

ing the framework described in Section 3. Optimization

is defined using two main criteria: performance, as per-

ceived by the clients (e.g. response time) or by the applica-

tion’s provider (e.g. global throughput); and resource usage

(e.g. processor occupation). One may then define an “opti-

mal” region using a combination of these criteria. Providing

self-optimization for a system consists in maintaining the

system in the optimal region, in the presence of dynamic

changes, e.g. widely varying workload. Here, we consider

implementing self-optimization using resizing techniques,

i.e. dynamically increasing or decreasing the number of

nodes allocated to the application.

4.1 Self­sizeable clustered application

A standard pattern for implementing scalable clustered

servers is the load balancer. In this pattern, a given appli-

cation server is statically replicated at deployment time and

a front-end proxy distributes incoming requests among the

replicated servers.

Jade aims at autonomously adjusting the number of

replicas used by the application when the load varies. This

is implemented by an autonomic manager which imple-

ments the required control loops. We implemented two con-

trol loops, one devoted to the management of the replicated

web container (Tomcat) and the other devoted to the man-

agement of the replicated database (MySQL). In both cases
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the control loop has the following sensors, actuators and re-

actors.

The sensors periodically measure the chosen perfor-

mance (or QoS) criteria, i.e. a combination of CPU usage

and user-perceived response time. In our expriments with

Tomcat and MySQL servers, the used sensor is a probe that

collects CPU usage information on all the nodes where such

a server is deployed. This probe computes a moving average

of the collected data in order to remove artifacts character-

izing the CPU consumption. It finally computes an average

CPU load across all nodes, so as to observe a general load

indication of the whole replicated server.

The actuators are used to reconfigure the system.

Thanks to the uniform management interface provided by

Jade, the actuators are generic, since increasing or decreas-

ing the number of replicas of an application is implemented

as adding or removing components in the application struc-

ture.

The reactors implement an analysis/decision algorithm.

They receive notifications from sensors, and react, if

needed, by increasing or decreasing the number of replicas

allocated to the controlled tier. In our experiments, the de-

cision logic implemented to trigger such a reconfiguration

is based on thresholds on CPU loads provided by sensors.

The main operations performed by the reactor when

more replicas are required are the following: allocate free

nodes for the application, deploy the required software on

the new nodes if necessary, perform state reconciliation

with other replicas in case of servers with dynamic data, and

integrate the new replicas with the load balancer. Similarly,

if the clustered server is under-utilized, the main operations

performed by the reactor are the following: unbind some

replicas from the load balancer, stop these replicas, and re-

lease the nodes hosting these replicas if no longer used. To

create an additional replica (i.e. node + software server), the

reactor uses the services provided by Jade, e.g. the Cluster

Manager component to allocate new nodes, the Software

Installation Service component to install the required soft-

ware.

One important issue to address when managing repli-

cated servers with dynamic data (modifiable state) is data

consistency. This was not a problem in the case of the web

container (Tomcat) as our evaluation application was com-

posed of servlets with no dynamically changing session in-

formation. In the case of database servers, the load bal-

ancer that we used was C-JDBC; C-JDBC plays the role of

load balancer and replication consistency manager [8], each

server containing a full copy of the whole database (full mir-

roring).

To manage a dynamic set of database servers, a newly

allocated server must synchronize its state with respect to

the whole clustered database before it is activated. To do

so, a ”recovery log” has been added to the C-JDBC load-

balancer. This recovery log is implemented as a particular

database whose purpose is to keep track of all the requests

that affect the state of the database. Basically, all write re-

quests are logged and indexed as strings in this recovery log.

When a new server is inserted in the clustered database, the

state of this server is initially known and is potentially not

up-to-date. The recovery log enables us to know the exact

set of write requests to replay on this server to make it be

up-to-date. Once these requests have been processed by the

newly allocated server, we can reinsert it in the clustered

database as an active and up-todate replica. Symmetrically,

removing a database replica is realized by keeping trace of

the state of this replica. This state is stored as the index

value in the recovery log corresponding to the last write re-

quest that it has executed before being disabled.

4.2 Generality of the approach

One of our objectives when building Jade was to provide

an environment for building autonomic managers which

manages a variety of specific legacy systems. Jade is built

on top of a set of generic components which are assembled

in a specific way so as to implement the required autonomic

managers.

For instance, the self-optimization autonomic manager is

realized by the means of a control-loop which is composed

of three kinds of components:

The sensors: the set of sensors that we currently use is

rather generic with respect to the J2EE experiment that we

conducted. Indeed, they provide estimators mainly related

to resource usage and can therefore be used under various

contexts.

The decision logic: the logic which is in charge of decid-

ing a reconfiguration policy of the system consists in a set

of triggers based on thresholds. Such a logic is generic and

can be used in many cases.

The actuators: The wrappers provide a uniform represen-

tation of the managed system as a set of components which

expose a uniform interface. Thus the actuators are built us-

ing this uniform interface and are therefore fully generic.

However, in the context of the J2EE use-case, some com-

ponents are submitted to some specificities:

Though the wrapper components provide a uniform in-

terface which is used to build the actuators, the implemen-

tation of these wrappers is specific to the legacy software

they wrap.

The implementation of the decision logic is based on

thresholds. This implies a configuration of the various pa-

rameters characterizing the thresholds. This configuration

is specific to the managed system. For instance, the thresh-

olds of the self-optimization manager have been determined

manually with some benchmarks. Note that the determina-

tion of these parameters constitutes a key challenge of this
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manager.

Even if the set of sensors used in the current prototype

is generic, some sensors can be specifically written for a

particular aspect we are interested in. For example, a sen-

sor specific to optimization may provide an estimator of the

response-time to client requests. However the CPU was

known to be the bottleneck resource as far as our J2EE sys-

tem was concerned.

5 Evaluation

This section describes a qualitative and quantitative eval-

uation conducted with Jade.

5.1 Qualitative evaluation

In this section, we show the benefits of using Jade to

perform system reconfiguration, compared to an ad-hoc ap-

proach. Figure 4 illustrates a scenario where, initially, an

Apache web server (Apache1) is running on node1, and

connected to a Tomcat Servlet server (Tomcat 1) running

on node2. In this scenario we want to reconfigure the clus-

tered middleware layer by replacing the connection between

Apache1 and Tomcat1 by a connection between Apache1

and a new server Tomcat2.

Figure 4. Reconfiguration scenario

Without the Jade infrastructure, this simple reconfigura-
tion scenario requires the following steps to be manually
done (with very low reactivity), in a legacy-dependent way:
first log on node1, then stop the Apache server by running
the Apache shutdown script, then edit and update the con-
figuration file (worker.properties) in Apache to specify its
binding to the new Tomcat server (Tomcat2 on node3) as
follows:

worker.worker.port=8098

worker.worker.host=node3

worker.worker.type=ajp13

worker.worker.lbfactor=100

worker.list=worker, loadbalancer

worker.loadbalancer.type=lb

worker.loadbalancer.balanced_workers=worker

Finally, the Apache server is restarted by running the httpd

script.

With Jade, as soon as the required wrappers have been
implemented, such a reconfiguration can easily be imple-
mented in an administration application. The operations re-
quired to perform this same reconfiguration are simply few
operations on the involved components in the management
layer, namely:

Apache1.stop()

// unbind Apache1 from Tomcat1

Apache1.unbind("ajp-itf")

// bind Apache1 to Tomcat2

Apache1.bind("ajp-itf",tomcat2-itf)

// restart Apache1

Apache1.start()

5.2 Quantitative evaluation

Testbed application

The evaluation of the self-optimization management im-

plemented in Jade has been realized with RUBiS [1], a

J2EE application benchmark based on servlets, which im-

plements an auction site modeled over eBay. It defines 26

web interactions, such as registering new users, browsing,

buying or selling items. RUBiS also provides a benchmark-

ing tool that emulates web client behaviors and generates

a tunable workload. This benchmarking tool gathers statis-

tics about the generated workload and the web application

behavior.

Hardware environment

The experimental evaluation has been performed on a

cluster of x86-compatible machines. The experiments re-

quired up to 9 machines: one node for the Jade manage-

ment platform, one node for the load-balancer in front of

the replicated web/application servers, up to two nodes for

the replicated web and application servers, one node for the

database load-balancer, up to three nodes for the replicated

database servers, one node for the client emulator (which

emulates up to 500 clients). The number of nodes actually

used during these experiments varies, according to the dy-

namic changes of the workload, and thus to the dynamic

resizing of the application. All the nodes are connected

through a 100Mbps Ethernet LAN to form a cluster.

Software Environment

The nodes run various versions of the Linux kernel. The

J2EE application has been deployed using open source mid-

dleware solutions: Jakarta Tomcat 3.3.2 [22] for the web

and servlet servers, MySQL 4.0.17 [13] for the database

servers, C-JDBC 2.0.2 [8] for the database load-balancer,

PLB 0.3 [15] for the application server load-balancer. We

used RUBiS 1.4.2 as the running J2EE application. These

experiments have been realized with Sun’s JVM JDK

1.5.0.04. We used the MySQL Connector/J 3.1.10 JDBC

driver to connect the database load-balancer to the database

servers.
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Evaluation Scenario

In order to evaluate the performance optimization as-

pect of the Jade management platform, we have designed

a scenario that illustrates the dynamic allocation and deal-

location of nodes to tackle performance issues related to a

changing workload. This scenario is described below.

We aim at showing the dynamic allocation and dealloca-

tion of nodes in response to workload variations. Therefore

we have submitted our managed J2EE system to the follow-

ing workload: (i) at the beginning of the experiment, the

managed system is submitted to a medium workload: 80

emulated clients; then (ii) the load increases progressively

up to 500 emulated clients: 21 new emulated clients every

minute; finally (iii) the load decreases symmetrically down

to the initial load (80 clients).

Initially, the J2EE system is deployed with one appli-

cation server (Tomcat) and one database server (MySQL).

The optimization manager reacts to the load variation by

allocating and freeing nodes, as described below.

In this experiment, we have deployed two instances of

a control loop in order to tackle performance issues of the

clustered database and the clustered application server. Pe-

riodically, the resource usage of the nodes participating to

the managed service is monitored. In practice, the sensor

of the control loops gathers the CPU usage of these nodes

every second and computes a spatial (over these nodes) and

temporal (over the last period) average CPU usage value.

This average CPU usage value is compared to minimum and

maximum thresholds. The objective is to keep the CPU us-

age value between these two thresholds. Therefore, if this

value is over the maximum threshold, the replicas are over-

loaded and the control loop deploys a new replica on a free

node. On the contrary, if this value is under the minimum

threshold, the replicas are under-used, and the control loop

removes one node hosting a replica of the managed service.

The two control loops are executed independently. How-

ever, in order to prevent oscillations, a reconfiguration

started by one of the control loops inhibits any new recon-

figuration for a short period (one minute).

The control loop execution is realized every second. This

time interval is short to quickly detect performance vari-

ations and to react promptly to them. In order to have a

consistent load indicator, the CPU usage is smoothed by a

temporal average (moving average). The strength of this av-

erage is experimentally fixed accordingly to the variability

of the CPU usage observed during benchmarking experi-

ments. For instance, the average CPU usage is computed

over the last 60 seconds for the application servers and over

the last 90 seconds for the database servers.

Finally the thresholds used to trigger the reconfigurations

have also been determined experimentally through specific

benchmarks. They have been adjusted so that the reconfigu-

rations are triggered at appropriate moments. For instance,

the maximum thresholds have been determined so that the

response time for clients’ requests remains acceptable when

the reconfigurations start.

Autonomic Reconfiguration

Figure 5 shows the effect of the control loop on the

number of replicas, for both the application and database

servers. This behavior may be explained as follows. As

the workload progressively increases (180 clients), the av-

erage resource consumption of the clustered database also

increases, which triggers the allocation of one new database

server. The system now contains two database servers. The

workload continues to grow (320 clients), and triggers a sec-

ond node allocation for the clustered database. Thus the

system is here composed of one Tomcat server and three

MySQL database servers. The workload increases further

(420 clients). Now the resource consumption of the Tomcat

servers reaches a threshold, which triggers the allocation

of one new Tomcat server. The system is now composed

of two Tomcat servers and three MySQL databases. The

workload then increases (500 clients) without saturating this

configuration, and then starts decreasing. The workload de-

crease (400 clients) implies a decrease of the resource con-

sumption of the Tomcat servers, which triggers the deallo-

cation of one Tomcat server. The workload decrease con-

tinues (280 clients) and implies this time a low resource

consumption of the clustered database, which triggers the

deallocation of one database server.
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Figure 5. Dynamically adjusted number of
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CPU Usage

To quantify the effect of the reconfigurations, this sce-

nario (the workload) has also been experimented without

Jade, i.e. without any reconfiguration, so that the managed

system is not resized. Figure 6 and Figure 7 present the re-

sults of these experiments and show the thresholds used to
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trigger dynamic reconfigurations.
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Figure 6. Behavior of the database tier

One of the control loops is dedicated to the performance

optimization of the clustered database. When the aver-

age CPU usage reaches the maximum threshold set for the

database, the control loop triggers the deployment of a new

database server, which implies a decrease of the average

CPU usage. Symmetrically, when the average CPU usage

gets under the minimum threshold, the control loop triggers

the removal of one server. This behavior is quite visible in

Figure 6. The contrast with the static case of a system that is

not resized is obvious: as the workload increases, the CPU

usage eventually saturates. This results in a thrashing of the

database, which stops when the load decreases.

The second control loop is dedicated to the performance

optimization of the clustered application server. The behav-

ior of the control loop is identical to that described above.

However the comparison with a system that is not dynami-

cally resized must be correlated with the thrashing that af-

fects the database. In Figure 7, since the database is al-

ready saturated, the application servers spend most of the

time waiting for the database. This explains why the CPU

usage measured during high loads remains moderate.

Response time

We now consider the impact on performance in terms of

client request response times. Figure 8 and Figure 9 show

the client response time in Rubis, comparing the results of

the evaluation of the J2EE system when it is not managed

by Jade with the same system when self-optimized with

Jade. In both cases, the workload was increased by a fac-

tor of 5, and then decreased by a factor of 5. Here, Jade

was able to maintain the web client perceived response time

stable (around 590 ms in average), while the same experi-

ment run without Jade results in a continuously increasing

client response time (10.42 s in average) when the workload

increases.
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Intrusivity

We also evaluated the intrusivity induced by the Jade

management system. The intrusivity has been measured by

comparing two executions of the J2EE application: when
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it is run and managed by Jade and when it is run by hand,

without Jade. During this evaluation, the J2EE application

has been submitted to a medium workload so that its exe-

cution under the control of Jade didn’t induce any dynamic

reconfiguration. This intrusivity is quantified in terms of

average throughput, response time, processor and memory

usage of the J2EE application in Table 1.

with Jade without Jade

Throughput (req./s) 12 12

Resp.time (ms) 89 87

CPU usage (%) 12.74 12.42

Memory usage (%) 20.1 17.5

Table 1. Performance overhead

The processor and memory usage are computed as av-

erage values over all cluster nodes involved in this exper-

iment. These results show no significant overhead as far

as performance is concerned. We can notice a slight mem-

ory overhead (20.1% vs. 17.5%) that can be linked with

the management components which are deployed on every

node when Jade is active. However, Jade does not induce

a perceptible overhead on CPU usage. This is due to the

fact that Jade does not intercept communications at the ap-

plication level. The wrappers only interface administration

procedures.

6 Related Work

Autonomic computing is an appealing approach that

aims at simplifying the hard task of system management,

thus building self-healing, self-tuning, and self-configuring

systems [12].

Management solutions for legacy systems are usually

proposed as ad-hoc solutions that are tied to particular

legacy system implementations [18, 25]. This unfortu-

nately reduces reusability of management policies and re-

quires these policies to be reimplemented each time a legacy

system is taken into account in a particular context. More-

over, the architecture of managed systems is often very

complex (e.g. multi-tier architectures), which requires ad-

vanced support for its management. Projects such as Jade

or Rainbow [9], with a component-based approach, propose

a generic way to manage complex system architectures.

Several projects have addressed the issue of self-

optimization and resource management in a cluster of ma-

chines. Instead of statically allocating resources to applica-

tions managed in the cluster (which would lead to a waste

of resources), they aim at providing dynamic resource allo-

cation.

In a first category of projects, the software components

required by any application are all installed and accessible

on any machine in the cluster. Therefore, allocating addi-

tional resources to an application can be implemented at the

level of the protocol that routes requests to the machines

(Neptune [18] and DDSD [26]). Some of them (e.g. Clus-

ter Reserves [3] or Sharc [24]) assume control over the CPU

allocation on each machine, in order to provide strong guar-

antees on resource allocation.

In a second category of projects, the unit of resource al-

location is an individual machine (therefore applications are

isolated, from a security point of view). A machine may be

dynamically allocated to an application by a hosting center,

and the software components of that application must be dy-

namically deployed on the allocated machine. Projects like

Jade, Oceano [2], QuID [16], OnCall [14], Cataclysm [23]

or [25] fall into this category.

7 Conclusion

Multi-tier platforms are now widely used to build Inter-

net application servers. These platforms are usually repli-

cated on clusters of machines to achieve scalability and

availability. Managing such systems is an increasingly com-

plex task, which autonomic computing is believed to allevi-

ate. Many real applications include legacy systems, with

limited ability for fine-grained control, which adds to the

difficulty of the task.

We have designed and implemented Jade, an environ-

ment for autonomic management of legacy systems. The

main contribution of this paper is the definition of an ar-

chitectural framework for constructing flexible and efficient

autonomic management facilities for such systems. To

prove the validity of our approach, we have applied this

framework to the self-optimization of J2EE applications in

the face of the wide load variations observed in Internet ap-

plications

Jade mainly relies on two features. First, a component

model is used to implement a management layer in which

the administrated software are wrapped. This management

layer provides the administered software with a uniform

management interface, allowing autonomic programs to be

built on. Second, Jade provides a framework for building

autonomic managers, which allows regulating a set of man-

aged software for a specific management aspect.

The uniform management interface of Jade greatly sim-

plifies the development of autonomic managers as it hides

the complexity of heterogeneous configuration files. At the

component level, adding or removing a servlet server com-

ponent is done in the same way as adding or removing a

database.

As a testbed for Jade, we have implemented a simple

instance of a self-optimizing version of an emulated elec-

tronic auction site [1] deployed on a clustered J2EE plat-
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form. We have used a dynamic capacity provisioning tech-

nique in which each replicated tier of the middleware layer

is able to dynamically acquire or release servers to react

to load variations. Specifically, we showed that dynamic

provisioning of nodes, using a very simple threshold-based

control algorithm, helps regulating the load on the servers

at different tiers, and thus protects the users again perfor-

mance degradation due to overload, while avoiding static

reservation of resources in the cluster. This is only a first

step, whose main intent was to demonstrate the ability of

Jade to implement specific autonomic components for vari-

ous aspects.

Part of our future work will focus on improving the self-

optimizing algorithm by setting incrementally and dynam-

ically its parameters. Furthermore we intend to work on

the problem of conflicting autonomic policies. Managers

have their own goal and control loops and therefore require

a way to arbitrate potential conflicts. The component-based

approach gives us a way to build an infrastructure as a set

of hierarchical and interconnected components, which may

help implementing policy arbitration managers. We also in-

tend to apply our self-optimization techniques on other use

cases to show the genericity of our approach.
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