
High Throughput Total Order Broadcast for Cluster Environments

Rachid Guerraoui

IC EPFL, Switzerland

CSAIL MIT, USA

Ron R. Levy

IC EPFL,

Switzerland

Bastian Pochon

IC EPFL,

Switzerland

Vivien Quéma

INRIA, France

Univ. di Roma 1, Italy

Abstract

Total order broadcast is a fundamental communica-

tion primitive that plays a central role in bringing cheap

software-based high availability to a wide array of ser-

vices. This paper studies the practical performance of such

a primitive on a cluster of homogeneous machines.

We present FSR, a (uniform) total order broadcast pro-

tocol that provides high throughput, regardless of message

broadcast patterns. FSR is based on a ring topology, only

relies on point-to-point inter-process communication, and

has a linear latency with respect to the total number of pro-

cesses in the system. Moreover, it is fair in the sense that

each process has an equal opportunity of having its mes-

sages delivered by all processes.

On a cluster of Itanium based machines, FSR achieves a

throughput of 79 Mbit/s on a 100 Mbit/s switched Ethernet

network.

1 Introduction

Motivation. As an ever increasing number of critical

tasks are being delegated to computers, the unforeseen fail-

ure of a computer can have catastrophic consequences. Un-

fortunately, the observed increase of computing speed as

predicted by Moore’s law has not been coupled with a sim-

ilar increase in reliability. However, because of rapidly de-

creasing hardware costs, ensuring fault tolerance through

replication is gaining in popularity. The key to making

replication work is a well designed software layer that hides

all the difficulties behind replication from the application

developer and renders it transparent to the clients [24].

At first glance, the idea is simple. Each process main-

tains a single copy of the object (representing a software ser-

vice) that is to be replicated. All invocations are broadcast

to all processes (i.e., replicas), which perform them on their

copies1. A key underlying ordering mechanism ensures that

all processes perform the same operations on their copies in

1In practice, invocations that do not change the state of the replicated

object do not need to be broadcast and can be performed in parallel.

the same order, even if they subsequently fail. This mecha-

nism is encapsulated by a communication abstraction called

total order broadcast (TO-broadcast) [25]. We consider the

uniform variant that guarantees consistency for processes

that subsequently fail. This abstraction ensures in particular

the following properties for all messages that are broadcast:

(1) Agreement: if a process TO-delivers a message m, then

all correct processes eventually TO-deliver m; (2) Total or-

der: if some process TO-delivers some message m before

message m′, then no process TO-delivers m′ before m.

Clearly, the throughput of a TO-broadcast protocol is

crucial to the throughput of the associated replication mech-

anism. It captures the number of requests that can be han-

dled by the replicas under high load.

The problem addressed in this paper is that of devising

a high-throughput TO-broadcast protocol for a cluster of

homogeneous machines interconnected by a fully switched

LAN. Even though it should also be efficient in arbitrar-

ily large clusters, it has to be optimized for relatively small

clusters (less than 15 machines), because in practice it is not

very useful to replicate the same state on a lot of machines.

Similarly, performance should be measured for fairly static

environments with few failures where only few machines

leave or join the system. These kinds of environments are

common for e-commerce applications such as fault-tolerant

J2EE clusters [37].

Modeling. The first step in reasoning about the through-

put of a communication abstraction is to determine a model

to precisely represent such throughput.

Various models have been proposed to reason about mes-

sage passing complexity. Nevertheless, none of them is ad-

equate for modeling clusters of homogeneous machines in-

terconnected by fully switched LANs. Either they assume

that processes can receive several messages at the same

time [30], or they do not assume the existence of a broadcast

primitive [15, 5].

In this paper, we propose to analyze protocols using a

slightly modified version of the popular round-based mes-

sage passing communication model [30]. The model we

propose assumes that processes can send a message to one

1



or more processes at the start of each round and can receive

a single message sent by other processes at the end of the

round.

Throughput can thus be defined as the average number

of completed TO-broadcasts per round. A complete TO-

broadcast of message m meaning that all processes TO-

delivered m. We consider that a TO-broadcast algorithm is

throughput efficient if its throughput is higher than or equal

to 1. This means that on average all processes TO-deliver

one message per round.

Throughput. Numerous TO-Broadcast protocols have

been published [17]. Protocols relying on communication

history [35, 31, 19, 34, 32] and destination agreement [10,

7, 29, 21, 2] do not have good throughput as they rely on

a quadratic number of messages and an underlying consen-

sus sub-protocol. Protocols relying on a fixed sequencer

also inherently have low throughput [26, 3, 9, 22, 8, 41].

While requiring fewer messages than the previously men-

tioned class of protocols, they still exhibit bad throughput

because the sequencer becomes a bottleneck. Protocols us-

ing moving sequencers [12, 40, 27, 14] have been proposed

to overcome the limitation of fixed sequencer protocols.

While significantly improving the throughput, these pro-

tocols do nevertheless not achieve higher throughput than

1 due to the impossibility of piggy-backing acks in cer-

tain broadcast patterns (e.g. 1-to-n meaning that a single

process TO-broadcasts to all other processes). Finally, a

class of TO-broadcast protocols, called privilege-based pro-

tocols [20, 13, 18, 1, 23], uses a ring topology of processes

and a token passed among processes to grant the privilege of

broadcasting. These protocols provide high throughput in

the 1-to-n and n-to-n case (all processes TO-broadcasting

to all other processes), but not in the k-to-n case (k 6= 1, n).

For instance, when two processes simultaneously want to

broadcast messages, for fairness reasons, the token is con-

stantly passed from one sender to the other, which reduces

the throughput.

Contributions. In this paper we present FSR, a uniform

total order broadcast protocol that relies on point-to-point

communication channels between processes. FSR is hybrid

and uses both a fixed sequencer and a ring topology (hence

the name). Similarly to the train protocol [13], each process

only sends messages to the same single process. Unlike the

train protocol however, messages in FSR are sequenced by

a fixed process in the ring. These two characteristics ensure

throughput efficiency and fairness, regardless of the type of

traffic. In our context, fairness conveys the equal opportu-

nity of processes to have their TO-broadcast messages even-

tually TO-delivered. Moreover, FSR has linear latency with

respect to the number of processes.

We give a careful analysis of FSR fault-tolerance, scal-

ability and fairness, as well as describe the performance of

its implementation.

Roadmap. Section 2 reviews existing TO-broadcast pro-

tocols and compares them to FSR. Section 3 describes the

system model. Section 4 describes FSR in detail. Section 5

provides performance results and analysis. Section 6 con-

cludes the paper.

2 Related Work

The five following classes of TO-broadcast protocols

were identified in [17]: fixed-sequencer, moving sequencer,

privilege, communication history and destination agree-

ment. In this section, we only survey time-free protocols,

for these are comparable to FSR as they do not assume syn-

chronized clocks.

2.1 Fixed Sequencer

p1

p2

p3

p4

m

m, seq(m)

ack stable

Figure 1. Fixed sequencer-based TO-

broadcast.

In a fixed sequencer protocol [26, 3, 9, 22, 8, 41] (Fig-

ure 1), a single process is elected as the sequencer and is

responsible for the ordering of messages. The sequencer

is unique, and a new sequencer is elected only in the case

the previous sequencer fails. Three variants of the fixed se-

quencer protocol exist [4], each using a different commu-

nication pattern. Fixed sequencer protocols exhibit linear

latency with respect to n [16], but poor throughput. The se-

quencer becomes a bottleneck because it must receive the

acknowledgments (acks) from all processes2 and also re-

ceive all messages to be broadcast. Note that this class of

protocols is popular for non-uniform total order broadcast

protocols since these do not require all processes to send

acks back to the sequencer, thus providing much better la-

tency and throughput.



p1

p2

p3

p4

m

seq(m)

Figure 2. Moving sequencer-based TO-
broadcast.

2.2 Moving Sequencer

Moving sequencer protocols [12, 40, 27, 14] (Figure 2)

are based on the same principle as fixed sequencer proto-

cols, but allow the role of the sequencer to be passed from

one process to another, even if no failures occur. This is

achieved through a token that carries a sequence number

and constantly circulates among the processes. The motiva-

tion is to distribute the load among sequencers, thus avoid-

ing the bottleneck caused by a single sequencer. When a

process p wants to broadcast a message m, p sends m to all

other processes. Upon receiving m, the processes store it

into a receive queue. When the current token holder q has

a message in its receive queue, q assigns a sequence num-

ber to the first message in the queue and broadcasts that

message together with the token. For a message to be deliv-

ered, it has to be acknowledged by all processes. Acks are

gathered by the token. Moving sequencer protocols have

a latency that is worse than that of fixed sequencer proto-

cols [17]. On the other hand, they achieve better through-

put, although not higher than 1. Figure 2 shows a 1-to-n

broadcast of one message. It is clear from the figure that

it is impossible for the moving sequencer protocol to de-

liver one message per round. The reason is that the token

must be received at the same time as the broadcast messages

and the protocol thus cannot achieve high throughput. Note

that fixed sequencer protocols are often preferred to mov-

ing sequencer protocols because they are much simpler to

implement [17].

2.3 Privilege

Privilege-based protocols [20, 13, 18, 1, 23] (Figure 3)

rely on the idea that senders can broadcast messages only

when they are granted the privilege to do so. The privi-

lege to broadcast (and order) messages is granted to only

one process at a time, but this privilege circulates from pro-

cess to process in the form of a token. When a process

wants to broadcast a message, it must first wait until it re-

ceives the token. As explained in [14], there is a trade

2Acknowledgments in the fixed sequencer can only be piggy-backed

when all processes broadcast messages all the time [16].

p1

p2

p3

p4

m

seq(m)

token

token

Figure 3. Privilege-based TO-broadcast.

off between privilege-based protocol performance and fair-

ness. To see why, consider the case where two processes

located at opposite sides of the ring simultaneously broad-

cast bursts of messages. Either one of the processes keeps

the token, which is unfair, or the token is constantly passed

from one sender to the other one, which drastically reduces

the throughput.

2.4 Communication History

As in privilege-based protocols, communication history-

based protocols [35, 31, 19, 34, 32] use sender-based or-

dering of messages. They differ however by the fact that

processes can send messages at any time. Messages carry

logical clocks that allow processes to observe the messages

received by the other processes in order to learn when TO-

delivering a message does not violate the total order. Com-

munication history-based protocols have poor throughput

because they rely on a quadratic number of messages ex-

changed for each message to be TO-broadcast.

2.5 Destination Agreement

In destination agreement-based protocols, the delivery

order results from an agreement between destination pro-

cesses. Many such protocols have been proposed [10, 7, 29,

21, 2]. They mainly differ by the subject of the agreement:

message sequence number, message set, or acceptance of

a proposed message order. These protocols have relatively

bad performance because of the high number of messages

that are generated for each broadcast. Indeed, they rely on

consensus that in a way is modular, but which is very ex-

pensive in terms of latency and message complexity.

Note that hybrid protocols, combining two different or-

dering mechanisms have also been proposed [19, 36, 39].

Most of these protocols are optimized for large scale net-

works, using multiple groups or optimistic strategies.

3 Model

We consider a system with n processes which have ac-

cess to a failure detection module, which implements a Per-

fect failure detector P [11]. Using P we implement a virtu-

ally synchronous communications (VSC) [6] layer which



ensures consistent message delivery while allowing pro-

cesses to join and leave during the execution of the protocol.

Processes communicate through point-to-point channels.

Moreover, we assume a fully connected network, where

each pair of processes is connected. The network is full-

duplex, by which we mean that each node can simultane-

ously send and receive messages. There are also separate

collision domains: process p1 can send messages to p2 with-

out interfering with process p3 sending messages to p4.

Evaluating the performance of a communication abstrac-

tion requires a performance model. Some models only ad-

dress point-to-point networks, where no native broadcast

primitive is available [15, 5]. A recent model [38] proposes

to evaluate total order broadcast protocols, assuming that a

process cannot simultaneously send and receive a message.

This does clearly not capture modern network cards, which

provide full duplex connectivity. Round-based models [30]

are in that sense more convenient as they assume that a pro-

cess can send a message to one or more processes at the

start of each round, and can receive the messages sent by

other processes at the end of the round. Whereas this model

is well-suited for proving lower bounds on the latency of

protocols, it is however not well suited for making realis-

tic predictions about the throughput. In particular, it is not

realistic to consider that several messages can be simultane-

ously received by the same process.

In this paper, we propose to analyze protocols using a

slightly modified version of the round-based model. More

specifically, we define rounds as follows: in each round r,

every process pi is supposed to: (1) compute the message

for round r, m(i, r), (2) unicast (or best effort broadcasts)

m(i, r) and (3) receive a single message sent at round r

unless the sending process has crashed.

4 Protocol

Our FSR protocol guarantees uniform total order mes-

sage delivery despite the failure of t processes with t < n,

where n is the total number of processes in the system. The

performance of FSR is optimized for failure free periods.

More specifically, the performance of FSR was designed

for high throughput in various kinds of high-load traffic

scenarios. These scenarios include a single process TO-

broadcasting, several processes TO-broadcasting a steady

stream of messages at the same time, several processes TO-

broadcasting bursts of messages simultaneously and all pro-

cesses TO-broadcasting a steady stream of messages. Not

only does FSR provide the same throughput in all these

cases, it also provides the same reasonable latency to all

processes. Interestingly, fairness is inherently part of the

protocol such that if several processes want to TO-broadcast

messages at the same time, then they will TO-broadcast the

same number of messages during a given time-frame. FSR

p0
p1

pt

pi

m1

pi-1

m3

pt-1

m2

m4

leader process

backup process

standard process

Figure 4. FSR protocol illustration.

does not enforce a trade off between performance and fair-

ness.

4.1 Overview

In short, the idea underlying FSR is to combine a fixed

sequencer for ordering, with a ring topology for dissemi-

nation. The main advantage of the ring topology is that it

is simple to implement and at the same time provides high

throughput. However, the ring is not only used for mes-

sage dissemination but also for sequencing. Contrary to tra-

ditional fixed sequencer protocols, processes do not send

messages directly to the sequencer but only to their direct

successors.

All messages circulate clockwise in the same direction.

Even though there is only a single fixed sequencer, this pro-

cess is not a bottleneck since it only needs to append a small

sequence number to the message and then forward it: the se-

quencer receives and sends the same number of messages as

all other processes. The sequencer is followed in the ring by

t backup processes which have the role of keeping a copy of

all messages and sequence numbers that have not yet been

delivered by all processes.

The FSR protocol is illustrated in Figure 4. Two cases

are interesting to highlight:

1. The case of a standard process broadcasting a mes-

sage illustrated in Figure 4. When a process pi TO-

broadcasts a message m, pi forwards m to its suc-

cessor pi+1 (message m1), which in turn forwards m

to its successor and so on until the message reaches

the leader p0. As in any sequencer based protocol,

the leader assigns monotonically increasing sequence

numbers to messages, therefore imposing a total order

on their delivery. The message and sequence number

pair (m2) is then forwarded by the leader until it has

reached t backup processes (process pt). The leader



and backup processes do not yet TO-deliver the mes-

sage (except for the last backup pt). From process pt

the message with sequence number m3 is forwarded

until process pi−1. Processes pt to pi−1 TO-deliver m

upon receiving m3. Process pi−1 then sends an ac-

knowledgment m4 which is forwarded until process

pt−1. All processes can TO-deliver m upon receiving

m4.

2. When a backup process pb (0 < b ≤ t) TO-broadcasts

a message m, it is forwarded until the leader p0 (this

first message is obviously omitted if the leader initiates

the TO-broadcast). The message and sequence pair is

forwarded until process pb−1. From there on an ack

is circulated until process pt. Contrary to the previous

case, none of the backup processes can yet TO-deliver

m. Only when processes receive the ack sent from pt

can they TO-deliver m.

There are several tricky issues that need to be handled

in order for the protocol to be efficient and fair. Although

in the protocol described above a message goes around the

ring more than once, in order to guarantee high throughput,

the actual message to be TO-broadcast only goes around

once. The rest of the generated messages only contain an

identifier. Since these messages are small they can be piggy-

backed on other messages when the load is high. However

when the load is low these messages are not piggy-backed

in order to keep a low latency. Also, because of the ring

dissemination topology, uniform message size is necessary

in order to avoid that large messages stall the smaller mes-

sages. This can be achieved by segmenting large messages

into several smaller ones.

Ensuring fairness means that if more than one process

TO-broadcasts messages then each process should be able

to broadcast the same number of messages during the same

amount of time. By carefully deciding when a process can

start a new TO-broadcast, it is possible to provide this fair-

ness.

4.2 Protocol Details

Our FSR protocol is built on top of a group communi-

cation system which provides virtually synchronous com-

munications (VSC) [6]. According to the virtual synchrony

programming model, processes are organized into groups.

Processes can join and leave the group using the appropriate

primitives. Faulty processes are excluded from the group af-

ter crashing. Upon a membership change, processes agree

on a new view by using a view change protocol.

4.2.1 Group Membership Changes

When a process joins or leaves the group, a view change

event is generated by the VSC layer and the current view

vr is replaced the new view vr+1. This can happen when a

process crashes or when a process actively wants to leave or

join the group. As soon as a new view is installed it becomes

the basis for the new ring topology. There are several cases

to consider when a view change event occurs. When vr+1

is installed, the processes execute the following procedures

depending on their role in vr+1:

• All processes TO-broadcast any message in view vr+1

that they have TO-broadcast in the view vr but not yet

TO-delivered in vr.

• The new leader (in vr+1) must resend the following

messages: (1) all message and sequence number pairs

that have not yet been TO-delivered, (2) an ack of the

latest TO-delivered message.

4.2.2 Optimizations

The acknowledgment messages sent within FSR are very

small messages that just contain an identifier of the mes-

sage that they acknowledge. Consequently, these messages

can be piggy-backed on normal messages sent by other TO-

broadcasts. When all acks are piggy-backed, each TO-

broadcast effectively only sends each message around the

ring once, thus enabling FSR to achieve high throughput.

4.2.3 Fairness

Fairness captures the very fact that each process has an

equal opportunity of having its messages eventually TO-

delivered by all processes. Intuitively, the notion of fair-

ness means that no single process has priority over other

processes when broadcasting messages. For instance, when

two processes TO-broadcast large numbers of messages,

then each process should have approximately the same

number of messages TO-delivered by all processes.

Fixed sequencer protocols surveyed in Section 2 are in-

herently fair: each process that TO-broadcasts a message

sends it directly to the sequencer which will handle incom-

ing messages on a first come, first served basis. If a lot of

messages arrive at the sequencer at the same time then it

will serve them in a round-robin fashion. In our FSR proto-

col, messages to be TO-broadcast are not sent directly to the

sequencer, but rather forwarded to the successor. If all pro-

cesses want to TO-broadcast messages, then at each round

a process can either start a new TO-broadcast by sending a

message to its successor, or forward messages from its pre-

decessor.

Ensuring fairness in FSR is achieved by having a specific

mechanism to decide whether a process can initiate a new

broadcast or whether it must first forward messages stored

in its incoming buffer. Intuitively, each process maintains

a list forward of the processes for which it has forwarded



m
p2

3

m
p4

2

m
p3

5

m
p3

6

p1

p4

p5

Incoming buffer Forward list

Figure 5. Incoming buffer and forward list of
a process initiating a TO-broadcast.

messages since its last broadcast. When a process initi-

ates a TO-broadcast, it first forwards messages that are in

its incoming buffer and that have been sent by processes

not in the forward list. Figure 5 illustrates the incoming

buffer and forward list of a process pi wishing to initiate a

TO-broadcast. Before sending its own message m, process

pi forwards messages m3
p2 and m5

p3. This simple mecha-

nism ensures that no process will prevent others from TO-

broadcasting their own messages.

4.3 Analytical Performance

4.3.1 Latency

The latency of TO-broadcasting is defined as the largest

number of rounds that are necessary from the initial TO-

broadcast of a single message m until the round where

the last process TO-delivers m. The latency is measured

in a newly initialized system when no other messages are

TO-broadcast: it is obvious that latency increases when a

lot of messages are TO-broadcast simultaneously. The la-

tency of FSR can be expressed as follows for all processes:

L(i) = 2n + t − i − 1, where i is the position of the TO-

broadcasting process in the ring with respect to the leader at

position 0. We can observe the following:

• The latency is linear with respect to the number of pro-

cesses n, implying that FSR scales well.

• The latency is also linear with respect to the number of

tolerated failures t.

• The position of the TO-broadcasting process in the

ring has an influence on the latency. In order to evenly

distribute the latency for all processes, the role of the

leader can be periodically moved to the next process in

the ring. This can be done by periodically executing a

leave followed by a join at the current leader process.

It is also possible to transfer the role of the leader with-

out having the leader leave and join the group, but for

space reasons that discussion is left out of this paper.

4.3.2 Throughput

The throughput of FSR is at least equal to one. This means

that on average at least one TO-broadcast is completed dur-

ing each round (a complete TO-broadcast of message m

meaning that all processes TO-delivered m). In more de-

tail:

• The throughput is independent from the number of

processes that TO-broadcast at the same time. If only

one process continuously TO-broadcasts it is obvious

that it can TO-broadcast a new message every round

since every broadcast message goes round the ring

only once. After an initial latency of 2n + t − i − 1
rounds the first message has been TO-delivered by all

processes and in the consecutive rounds one message

is TO-delivered every round. With multiple senders

the same argument holds. Because of the fairness

described in Section 4.2, each round a message TO-

broadcast by a different process is TO-delivered.

• The throughput of FSR is independent of the number

n of processes in the system.

• The throughput of FSR is independent of the number t

of processes that can crash.

5 Performance

This section describes the various experiments that we

conducted to evaluate the performance of FSR. We im-

plemented FSR using DREAM [28], a Java-based com-

ponent library dedicated to the construction of communi-

cation middleware. Dream enables the development of

various forms of message-oriented middleware (e.g. pub-

lish/subscribe, event/reaction and group communication

protocols) by component assembly. The library contains a

wide array of components, including message queues, chan-

nels (socket wrappers), routers, etc.

5.1 Benchmark Description

We ran benchmarks on a cluster of machines with dual

900MHz Itanium-2 processors, 3GB of RAM and a Fast

Ethernet adapter, running Linux kernel 2.4.21. The raw la-

tency and bandwidth over IP between two machines were

measured with Netperf [33] and displayed in Table 1.

The benchmarks test k-to-n TO-broadcasts, k ranging

from 1 to n. All processes know a priori the number of mes-

sages they expect from other processes (each sender sends

the same number of messages). A barrier is used to syn-

chronize the experiment start-up. Each process takes a local

timestamp and starts sending its messages. When the last

expected message from a sender is received, an acknowl-

edgment is sent back to the sender. This allows stopping the



Protocol Bandwidth

TCP 94 Mb/s

UDP 93 Mb/s

Table 1. Raw network performance measured
using Netperf.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Number of processes

L
a

te
n

c
y

 (
m

s
)

Figure 6. Latency as a function of the number

of processes.

timer at each sender. Then, each sender calculates the time

between the first broadcast message sent and the acknowl-

edgment message received by the last process receiving all

the senders’ messages. For each sender, we calculate the

throughput by using the time between the start message and

the acknowledgment of the last message. We ensure that

the acknowledgment latency is negligible compared to the

overall experience time. We also perform the same experi-

ment but with only one sender and one message. Repeating

this experiment several times gives us the average latency

in the contention-free case.

5.2 Latency Evaluation

Figure 6 plots the latency without contention as a func-

tion of the number of processes. The experiments consisted

in n-to-n TO-broadcasts of 100KB messages. The repre-

sented latency is the average of the latencies observed at

each sender. The graph shows that the latency is linear with

respect to the number of processes, which confirms the the-

oretical analysis.

Figure 7 plots the latency as a function of the through-

put. The experiments consisted in n-to-n TO-broadcasts of

100KB messages between 5 processes. The results were ob-

tained by throttling the senders to a given sending rate and

reporting the corresponding average latency and through-

put. This graph shows that the latency is almost constant un-

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Throughput (Mb/s)

L
a
te

n
c
y
 (

m
s
)

Figure 7. Latency as a function of the
throughput.

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of processes

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

Figure 8. Throughput as a function of the
number of processes.

til the maximum throughput is reached. Then, unprocessed

messages are stored in local queues at each process, which

explains the important increase of the observed latency.

5.3 Throughput Evaluation

Figure 8 plots the maximum throughput as a function of

the number of processes. The experiments consisted in n-

to-n TO-broadcasts of 100KB messages. The graph shows

that FSR achieves a throughput of 79 Mbit/s on a 100 Mbit/s

switched Ethernet network. Moreover, it shows that the

achieved throughput is independent of the number of pro-

cesses in the ring, which confirms our analysis.

The last experiment consisted in varying the number of

senders in the ring. The experiment consisted in k-to-5 TO-

broadcasts (k ranging from 1 to 5) of 100KB messages. The

graph shows that the performance of FSR does not depend

on k. This means that FSR reaches the maximal throughput,

whichever the number of sender is.



40

50

60

70

80

90

100

1 2 3 4 5

Number of senders

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

Figure 9. Throughput as a function of the
number of senders.

6 Summary

This paper presents FSR, a uniform total order broad-

cast protocol that can be used at the main communication

block of a replication scheme to achieve software-based

fault-tolerance.

FSR is the first uniform total order broadcast protocol

that consistently provides high throughput whether one or

several processes continuously TO-broadcast messages. In

short, high throughput captures the ability to deliver the

largest possible number of messages broadcast, regardless

of message broadcast patterns. This notion is precisely de-

fined in a round-based model of computation which cap-

tures message passing interaction patterns over clusters of

homogeneous machines interconnected by fully switched

LANs. We believe that the model is interesting in its own

right and can be used to evaluate the performance of other

protocols.

FSR is based on a ring topology, only relies on point-to-

point inter-process communication, and has linear latency

with respect to the number of processes. FSR is also fair

in the sense that each process has an equal opportunity of

having its messages delivered by all processes.

References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,

and P. Ciarfella. The Totem single-ring ordering and mem-

bership protocol. ACM Transactions on Computer Systems,

13(4):311–342, 1995.

[2] E. Anceaume. A lightweight solution to uniform atomic

broadcast for asynchronous systems. In Proceedings of the

27th International Symposium on Fault-Tolerant Computing

(FTCS ’97), Washington, DC, USA, 1997. IEEE Computer

Society.

[3] S. Armstrong, A. Freier, and K. Marzullo. Multicast trans-

port protocol. RFC 1301, IETF, 1992.

[4] R. Baldoni, S. Cimmino, and C. Marchetti. A Classification

of Total Order Specifications and its Application to Fixed

Sequencer-based Implementations. to appear in Journal of

Parallel and Distributed Computing, June 2006.
[5] A. Bar-Noy and S. Kipnis. Designing broadcasting algo-

rithms in the postal model for message-passing systems.

Mathematical Systems Theory, 27(5):431–452, 1994.
[6] K. Birman and T. Joseph. Exploiting virtual synchrony in

distributed systems. In Proceedings of the eleventh ACM

Symposium on Operating systems principles (SOSP’87),

pages 123–138, New York, NY, USA, 1987. ACM Press.
[7] K. Birman and T. Joseph. Reliable communication in the

presence of failures. ACM Trans. Comput. Syst., 5(1):47–

76, 1987.
[8] K. Birman and R. van Renesse. Reliable Distributed Com-

puting with the Isis Toolkit. IEEE Computer Society Press,

1993.
[9] R. Carr. The tandem global update protocol. Tandem Syst.

Rev. 1, pages 74–85, jun 1985.
[10] T. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. J. ACM, 43(2):225–267, 1996.
[11] T. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM, 43(2):225–

267, 1996.
[12] J.-M. Chang and N. Maxemchuk. Reliable broadcast proto-

cols. ACM Trans. Comput. Syst., 2(3):251–273, 1984.
[13] F. Cristian. Asynchronous atomic broadcast. IBM Technical

Disclosure Bulletin, 33(9):115–116, 1991.
[14] F. Cristian, S. Mishra, and G. Alvarez. High-performance

asynchronous atomic broadcast. Distrib. Syst. Eng. J.,

4(2):109–128, jun 1997.
[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP: To-

wards a realistic model of parallel computation. In Princi-

ples Practice of Parallel Programming, pages 1–12, 1993.
[16] X. Défago, A. Schiper, and P. Urbán. Comparative perfor-

mance analysis of ordering strategies in atomic broadcast

algorithms. IEICE Trans. on Information and Systems, E86-

D(12):2698–2709, 2003.
[17] X. Défago, A. Schiper, and P. Urbán. Total order broad-

cast and multicast algorithms: Taxonomy and survey. ACM

Comput. Surv., 36(4):372–421, 2004.
[18] R. Ekwall, A. Schiper, and P. Urban. Token-based atomic

broadcast using unreliable failure detectors. In Proceedings

of the 23rd IEEE International Symposium on Reliable Dis-

tributed Systems (SRDS’04), pages 52–65, Washington, DC,

USA, 2004. IEEE Computer Society.
[19] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: a

fault-tolerant group communication protocol. In Proceed-

ings of the 15th International Conference on Distributed

Computing Systems (ICDCS’95), Washington, DC, USA,

1995. IEEE Computer Society.
[20] T. Friedman and R. V. Renesse. Packing messages as a tool

for boosting the performance of total ordering protocls. In

Proceedings of the 6th International Symposium on High

Performance Distributed Computing (HPDC ’97), Washing-

ton, DC, USA, 1997. IEEE Computer Society.
[21] U. Fritzke, P. Ingels, A. Mostefaoui, and M. Raynal.

Consensus-based fault-tolerant total order multicast. IEEE

Trans. Parallel Distrib. Syst., 12(2):147–156, 2001.



[22] H. Garcia-Molina and A. Spauster. Ordered and reli-

able multicast communication. ACM Trans. Comput. Syst.,

9(3):242–271, 1991.

[23] A. Gopal and S. Toueg. Reliable broadcast in synchronous

and asynchronous environments (preliminary version). In

Proceedings of the 3rd International Workshop on Dis-

tributed Algorithms, pages 110–123, London, UK, 1989.

Springer-Verlag.

[24] R. Guerraoui and A. Schiper. Software-based replication for

fault tolerance. Computer, 30(4):68–74, 1997.

[25] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and

related problems. Distributed systems (2nd Ed.), pages 97–

145, 1993.

[26] F. Kaashoek and A. Tanenbaum. An evaluation of the

amoeba group communication system. In Proceedings of

the 16th International Conference on Distributed Comput-

ing Systems (ICDCS ’96), Washington, DC, USA, 1996.

IEEE Computer Society.

[27] J. Kim and C. Kim. A total ordering protocol using a dy-

namic token-passing scheme. Distrib. Syst. Eng. J., 4(2):87–

95, jun 1997.

[28] M. Leclercq, V. Quéma, and J.-B. Stefani. DREAM: a Com-

ponent Framework for the Construction of Resource-Aware,

Configurable MOMs. IEEE Distributed Systems Online,

6(9), September 2005.

[29] S. Luan and V. Gligor. A fault-tolerant protocol for atomic

broadcast. IEEE Trans. Parallel Distrib. Syst., 1(3):271–

285, 1990.

[30] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann,

1996.

[31] L. Malhis, W. Sanders, and R. Schlichting. Numerical per-

formability evaluation of a group multicast protocol. Distrib.

Syst. Eng. J., 3(1):39–52, march 1996.

[32] L. Moser, P. Melliar-Smith, and V. Agrawala. Asynchronous

fault-tolerant total ordering algorithms. SIAM J. Comput.,

22(4):727–750, 1993.

[33] Netperf. http://www.netperf.org/.

[34] T. Ng. Ordered broadcasts for large applications. In Pro-

ceedings of the 10th IEEE International Symposium on Re-

liable Distributed Systems (SRDS’91), pages 188–197, Pisa,

Italy, 1991. IEEE Computer Society.

[35] L. Peterson, N. Buchholz, and R. Schlichting. Preserving

and using context information in interprocess communica-

tion. ACM Trans. Comput. Syst., 7(3):217–246, 1989.

[36] L. Rodrigues, H. Fonseca, and P. Verissimo. Totally or-

dered multicast in large-scale systems. In Proceedings of

the 16th International Conference on Distributed Comput-

ing Systems (ICDCS ’96), Washington, DC, USA, 1996.

IEEE Computer Society.

[37] Sun. Java 2 Platform, Enterprise Edition (J2EE).

http://java.sun.com/j2ee/.

[38] P. Urbán, X. Défago, and A. Schiper. Contention-aware

metrics for distributed algorithms: Comparison of atomic

broadcast algorithms. In Proceedings of 9th IEEE Interna-

tional Conference on Computer Communications and Net-

works (IC3N 2000), pages 582–589, 2000.

[39] P. Vicente and L. Rodrigues. An indulgent uniform total

order algorithm with optimistic delivery. In Proceedings of

the 21st IEEE Symposium on Reliable Distributed Systems

(SRDS’02), Washington, DC, USA, 2002. IEEE Computer

Society.

[40] B. Whetten, T. Montgomery, and S. Kaplan. A high perfor-

mance totally ordered multicast protocol. In Selected Papers

from the International Workshop on Theory and Practice

in Distributed Systems, pages 33–57, London, UK, 1994.

Springer-Verlag.

[41] U. Wilhelm and A. Schiper. A hierarchy of totally ordered

multicasts. In Proceedings of the 14TH Symposium on Re-

liable Distributed Systems, Washington, DC, USA, 1995.

IEEE Computer Society.


