
Self-Sizing of Clustered Databases

Christophe Taton1, Sara Bouchenak2, Noël De Palma1, Daniel Hagimont3, Sylvain Sicard2

(1) Institut National Polytechnique de Grenoble, France
(2) Université Joseph Fourier, Grenoble, France
(3) Institut National Polytechnique de Toulouse, France

{Christophe.Taton, Sara.Bouchenak, Noel.Depalma, Sylvain.Sicard}@inria.fr

Abstract

Distributed software environments are increasingly
difficult to manage. This paper presents a middleware
for the development of self-manageable and autonomic
systems. Preliminary experiments for automatically
adapting a cluster of replicated databases according to
QoS requirements are reported.

1. Introduction

Today's computing environments are becoming
increasingly sophisticated. They involve numerous
complex software that cooperate in potentially large
scale distributed environments. These software are
developed with very heterogeneous programming
models and their configuration facilities are generally
proprietary. Therefore, the administration of these
software (installation, configuration, tuning, repair …)
is a much complex task which consumes a lot of
resources:

- human resources as administrators have to react to
events (such as failures) and have to reconfigure
(repair) complex applications,

- hardware resources which are often reserved (and
overbooked) to anticipate load peaks or failures.

A very promising approach to the above issue is to
implement administration as an autonomic software.
Such a software can be used to deploy and configure
applications in a distributed environment. It can also
monitor the environment and react to events such as
failures or overloads and reconfigure applications
accordingly and autonomously. The main advantages
of this approach are:

- Providing a high-level support for deploying and
configuring applications reduces errors and
administrator's efforts.

- Autonomic administration allows the required
reconfigurations to be performed without human
intervention, thus saving administrator's time.

- Autonomic administration is a means to save
hardware resources as resources can be allocated
only when required (dynamically upon failure or
load peak) instead of pre-allocated.

This paper presents Jade, an environment for
developing autonomic administration software. Jade
mainly relies on the following features:

- A component model. Jade models the
administrated environment as a component-based
software architecture which provides means to
configure and reconfigure the environment.

- Control loops which link probes to
reconfiguration services and implement autonomic
behaviors.

We used Jade to implement self-sizing in a cluster
of replicated databases. Here, self-sizing consists in
dynamically increasing or decreasing the number of
database replica in order to accommodate load peaks.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the Jade middleware
for the implementation of autonomic systems. Section
3 describes our experiments with Jade for clustered
databases self-sizing. Finally, Section 4 reviews related
works and Section 5 draws our conclusions.

2. The Jade middleware

Throughout this paper, we illustrate the use of Jade
with the management of a clustered J2EE application
which is composed of several distributed
interconnected components: Apache Web servers,
Tomcat Servlet engines and MySQL database servers.
The experiments described in Section 3 focus on the
database tier of such applications.

2.1. Component-based management

We propose to use a component model as a base for

the design and implementation of autonomic software.

The component model that we use is Fractal [4], which
has the following benefits:

- it defines a hierarchical composition model for
components, allowing complex architectures to be
built;

- it provides a uniform, adaptable control interface
that allows introspection and reconfiguration of
component architectures.

The Fractal component model is used to implement
a management layer for a set of (legacy)
hardware/software elements. An element, or set of
elements, is wrapped in a Fractal component. This
provides a means to:

- Managing legacy entities using a uniform model
(the Fractal control interface), instead of relying
on element-specific, hand-managed, configuration
files.

- Managing complex environments with different
points of view. For instance, using appropriate
composite components, it is possible to represent
the network topology or the configuration of a
clustered J2EE middleware (a distributed software
architecture).

- Adding a control behavior to the modelized legacy
entities (e.g. monitoring, interception and
reconfiguration).

In the management layer, all components provide
the same (uniform) management interface for the
encapsulated elements, and the corresponding
implementation (the wrapper) is specific to each
element (e.g. in the case of J2EE, Apache web server,
Tomcat Servlet server, MySQL database server, etc.).
The interface allows managing the element's attributes,
bindings and lifecycle.
Relying on this management layer, sophisticated
administration programs can be implemented, without
having to deal with complex, proprietary configuration
interfaces, which are hidden in the wrappers. The
management layer provides all the facilities required to
implement such administration programs:

- Introspection. The framework provides an
introspection interface that allows observing the
components. For instance, an administration
program can inspect an Apache web server
component (encapsulating the Apache server) to
discover that this server runs on node1:port 80 and
is bound to a Tomcat Servlet server running on
node2:port 66. It can also inspect the overall J2EE
infrastructure to discover that it is composed of
two Apache servers interconnected with two
Tomcat servers connected to the same MySQL
database server.

- Reconfiguration. The framework provides a
reconfiguration interface that allows control over
the component architecture. In particular, this

control interface allows changing component
attributes or bindings between components. These
configuration changes are reflected onto the
legacy layer. For instance, an administration
program can add or remove an Apache replica in
the J2EE infrastructure to adapt to workload
variations.

As soon as wrappers have been implemented for
legacy elements, any administration program relies on
this uniform component model.

2.2. Control loops

An autonomic software is based on a control loop
with the following components:

- First, sensors that are responsible for the detection
of the occurrence of a particular event, e.g. a
database failure, or a QoS requirement violation.

- Second, analysis/decision components that
represent the actual reconfiguration algorithm,
e.g. replacing a failed database by a new one, or
increasing the number of resources in a cluster of
replicated databases upon high load.

- Finally, actuators that represent the individual
mechanisms necessary to implement
reconfiguration, e.g. allocation of a new node for a

cluster.

Figure 1. Architecture of Jade

The above approach is illustrated in Figure 1 in the
case of a J2EE architecture. In this setting, an L5-
switch balances the requests between two Apache
server replicas. The Apache servers are connected to
two Tomcat server replicas. The Tomcat servers are
both connected to the same MySQL server. The
vertical dashed arrows (between the management and
legacy layers) represent management relationships

between components and the wrapped software
entities. In the legacy layer, the dashed lines represent
relationships (or bindings) between legacy entities,
whose implementations are proprietary. These bindings
are represented in the management layer by (Fractal)
component bindings (full lines in the figure). At the
top, control loops can be implemented, relying on
introspection and reconfiguration interfaces of the
Fractal component model.

3. Experimental evaluation

3.1. Self-Sizeable Databases

A standard pattern for resource allocation in

clustered servers is a load balancer which distributes
incoming requests among a set of replicated servers.
The distribution algorithm is usually Round-robin
(equally distributing the load between servers).
Generally, the number of server replicas is statically
defined.

We used Jade to autonomously adjust the number of
replicated database servers in a clustered J2EE
application when the load varies. The expected benefits
are (i) improving resource utilization; and (ii)
preserving user-perceived performance in the face of
wide variations of the load.

The control loop algorithm is based on two
thresholds related to the CPU load. These thresholds
are tuned so that they trigger reconfigurations when the
resources are effectively overloaded or underloaded.

Database replication relies on C-JDBC [5], a load
balancer dedicated to the replication of database back-
ends. Each replica contains a full copy of the database
(full mirroring). C-JDBC parallelizes read-only
requests among the replicas. Write requests are applied
to all replicas so that each running copy of the database
remains up-to-date. This (read one, write all) strategy
is applied by the C-JDBC load-balancer on a static set
of database back ends.

We wrapped the C-JDBC load-balancer in a Fractal
component to enable it to be managed by the Jade
framework. Notably, this C-JDBC component allows
addition and removal of database back-ends.

To manage a dynamic set of database back ends, a
newly allocated back-end must synchronize its state
with respect to the whole clustered database before it is
activated. To do so, a "recovery log" has been added to
the C-JDBC load-balancer. This recovery log is
implemented as a simple database whose purpose is to
keep trace of all the requests that affect the state of the
back-ends. Basically, all write requests are logged and
indexed as strings in this recovery log. When a new
back-end is inserted in the clustered database, the state

of this back-end is potentially not up-to-date. The
recovery log enables us to know the exact set of write
requests to replay on this back-end to make it be up-to-
date. Once these requests have been processed by the
newly allocated back-end, we can reinsert it in the
clustered database as an active and up-to-date replica.

3.1. Evaluation environment

Initially, the J2EE system is deployed with one

application server (Tomcat) and one database back-end
(MySQL). The deployed application is RUBiS[1], a
J2EE application benchmark based on servlets, which
implements an auction site modelled over eBay. The
following workload has been submitted to our
managed J2EE system: (i) at the beginning of the
experiment, a medium workload is submitted: 80
emulated clients; then (ii) the load increases
progressively up to 500 emulated clients: 21 new
emulated clients every minute; finally (iii) the load
decreases symmetrically down to the initial load (80
clients).
The control loop algorithm is executed every second.
This time interval is short enough to quickly detect
performance variations and to react promptly. In order
to have a consistent load indicator, the CPU usage is
smoothed by a temporal average (moving average).
The strength of this average is experimentally fixed
accordingly to the variability of the CPU usage
observed during benchmarking experiments. For
instance, the average CPU usage is computed over the
last 60 seconds for the application servers and over the
last 90 seconds for the database back-ends. The
experimental evaluation has been performed on a
cluster of x86-compatible machines (Processor Intel
Xeon 1800 Mhz, 1Gb RAM). The nodes are connected
through a 100Mbps Ethernet LAN to form a cluster.
The experiments required up to 9 machines: one node
for the Jade management platform, one node for the
frontal load-balancer (L5-switch), up to two nodes for
the web (Apache) and servlet (Tomcat) servers, one
node for the database load-balancer (C-JDBC), up to
three nodes for the replicated database back-ends
(MySQL), and finally one node for the client emulator
(which emulates up to 500 clients).

3.2. Experimental results

Figure 2 shows the effect of the control loop on the

number of database replica.

Figure 2 Dynamically adjusted number of replicas

This behavior may be explained as follows.
- As the workload progressively increases, the

average resource consumption of the clustered
database also increases, until the CPU threshold is
reached (for about 180 clients), which triggers the
allocation of one new database back-end. The
system now contains two database back-ends.

- The workload continues to grow, and triggers a
second node allocation (for about 320 clients) for
the clustered database. The system is here
composed three database back-ends.

- The workload then increases (up to 500 clients)
without saturating this database configuration, and
then starts decreasing.

- The workload decrease implies a decrease of the
resource consumption of the clustered database,
which triggers (for about 280 clients) the
deallocation of one database back-end.

To quantify the effect of the reconfigurations, this
scenario (the workload) has also been experimented
without Jade, i.e. without any reconfiguration, so that
the managed system is not resized. Figure 3 reports the
results of these experiments and shows the thresholds
used to trigger dynamic reconfigurations (the curve of
Figure 2 is also reported on Figure 3). When the
average CPU usage reaches the maximum threshold set
for the database, the control loop triggers the
deployment of a new database back-end, which implies
a decrease of the average CPU usage. Symmetrically,
when the average CPU usage gets under the minimum
threshold, the control loop triggers the removal of one
back-end. It contrasts with the static configuration case
(without Jade) of a system that is not resized: as the
workload increases, the CPU usage saturates rapidly.
This results in a trashing of the database, which stops
when the load decreases.

Figure 3. Behavior of the database tier

4. Related work

Autonomic computing is an appealing approach that

aims at simplifying the hard task of system
management, thus building self-healing, self-tuning,
and self-configuring systems [7].
Management solutions for legacy systems are usually
proposed as ad-hoc solutions that are tied to particular
legacy system implementations [10, 13]. This
unfortunately reduces reusability of management
policies and requires these policies to be
reimplemented each time a legacy system is taken into
account in a particular context. Moreover, the
architecture of managed systems is often very complex
(e.g. multi-tier architectures), which requires advanced
support for its management. Projects such as Jade or
Rainbow [6], with a component-based approach,
propose a generic way to manage complex system
architectures.

Several projects have addressed the issue of self-
optimization and resource management in a cluster of
machines. Instead of statically allocating resources to
applications managed in the cluster (which would lead
to a waste of resources), they aim at providing dynamic
resource allocation.

In a first category of projects, the software
components required by any application are all
installed and accessible on any machine in the cluster.
Therefore, allocating additional resources to an
application can be implemented at the level of the
protocol that routes requests to the machines
(Neptune [10] and DDSD [14]). Some of them (e.g.
Cluster Reserves [3] or Sharc [11]) assume control

over the CPU allocation on each machine, in order to
provide strong guarantees on resource allocation.

In a second category of projects, the unit of resource
allocation is an individual machine (therefore
applications are isolated, from a security point of
view). A machine may be dynamically allocated to an
application by a hosting center, and the software
components of that application must be dynamically
deployed on the allocated machine. Projects like Jade,
Oceano [2], QuID [9], OnCall [8], Cataclysm [12] or
[13] fall into this category.

5. Conclusion

This paper has presented the design of Jade, an

infrastructure for the autonomic management of legacy
distributed applications. The type of applications that
Jade addresses are those composed of legacy systems
organized within a complex distributed and often
replicated architecture.

In this paper we apply this framework to the self-
optimization of J2EE applications in the face of the
wide load variations observed in Internet applications.
More precisely, we use Jade to implement a control
loop which adjusts the number of database replicas
according to the load on the database tier in a J2EE
application.

As soon as legacy software were wrapped in Fractal
components, the implementation of control loops was
significantly facilitated.

Then, relying on Jade, we showed that dynamic
provisioning of nodes, using a simple threshold-based
control algorithm, helps regulating the load on the
database servers, and thus protects the users again
performance degradation due to overload, while
avoiding static reservation of resources.

References

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, W. Zwaenepoel.
Specification and Implementation of Dynamic Web Site
Benchmarks. IEEE 5th Annual Workshop on Workload
Characterization, Austin, USA, 2002.

[2] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar. Oceano: SLA based management of a

computing utility. 7th IFIP/IEEE International Symposium on
Integrated Network Management, Seattle, USA, 2001.

[3] M. Aron, P. Druschel, W. Zwaenepoel. Cluster Reserves:
a mechanism for resource management in cluster-based
network servers. ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, pages 90-101. ACM Press, 2000.

[4] E. Bruneton, T. Coupaye, J.B. Stefani. Recursive and
Dynamic Software Composition with Sharing. 7th
International Workshop on Component-Oriented
Programming, 2002, Malaga, Spain.
http://fractal.objectweb.org/

[5] E. Cecchet, J. Marguerite, W. Zwaenepoel. C-JDBC:
Flexible Database Clustering Middleware. USENIX Annual
Technical Conference, Freenix track, Boston, USA, 2004.

[6] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl,
P. Steenkiste. Rainbow: Architecture-based self adaptation
with reusable. IEEE Computer, 37(10), 2004.

[7] J. O. Kephart, D. M. Chess. The Vision of Autonomic
Computing. IEEE Computer Magazine, 36(1), 2003.

[8] J. Norris, K. Coleman, A. Fox, G. Candea. OnCall:
Defeating Spikes with a Free-Market Application Cluster. In
1st International Conference on Autonomic Computing, New
York, USA, 2004.

[9] S. Ranjan, J. Rolia, H. Fu, E. Knightly. QoS-Driven
Server Migration for Internet Data Centers. In 10th
International Workshop on Quality of Service, Miami Beach,
USA, 2002.

[10] K. Shen, H. Tang, T. Yang, L. Chu. Integrated resource
management for clusterbased internet services. 5th USENIX
Symposium on Operating System Design and
Implementation, Boston, USA, 2002.

[11] B. Urgaonkar, P. Shenoy. Sharc: Managing CPU and
network bandwidth in shared clusters. IEEE Transactions on
Parallel and Distributed Systems, 15(1), 2004.

[12] B. Urgaonkar, P. Shenoy. Cataclysm: Handling Extreme
Overloads in Internet Services. Technical report, Dept of
Computer Science, University of Massachusetts, USA, 2004.

[13] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal.
Dynamic Provisioning of Multi-Tier Internet Applications.
2nd International Conference on Autonomic Computing,
Seattle, USA, 2005.

[14] H. Zhu, H. Ti, Y. Yang. Demand-driven service
differentiation in cluster-based network servers. 20th Annual
Joint Conference of the IEEE Computer and Communication
Societies, Anchorage, USA, 2001.

