
appor t
de r e c he rc he

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
67

30
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

MOKA: A System for Modeling and Capacity
Planning of Multi-Tier Systems

Jean Arnaud — Sara Bouchenak

N° 6730

November 2008

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

http://hal.inria.fr/inria-00340772/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

MoKa: A System for Modeling and Capacity

Planning of Multi-Tier Systems

Jean Arnaud∗, Sara Bouchenak†

Thème COM — Systèmes communicants
Équipe-Projet SARDES

Rapport de recherche n° 6730 — November 2008 — 33 pages

Abstract: Although cluster-based multi-tier data centers provide a means for
supporting scalable web applications, their ad-hoc configuration poses signifi-
cant challenges to the performance and economical costs of multi-tier applica-
tions. This paper presents the design and implementation of MoKa- a utility-
aware framework for modeling multi-tier data centers and planning their capac-
ity and optimal configuration. The contribution of the paper is threefold. First,
we identify two levels of configuration of cluster-based multi-tier data centers,
local configuration that applies at server’s level and architectural configuration
that relates to the clusters of servers in a multi-tier architecture. The com-
bination of these two levels of configuration improves the overall performance
and cost of cluster-based multi-tier data centers. Second, we present a utility
function for characterizing the impact of local and architectural configurations
on the performance and cost of multi-tier systems. Third, we develop a utility-
aware capacity planning algorithm for efficiently calculating the optimal local
and architecural configuration of multi-tier data centers to provide guarantees
on performance while minimizing the cost. Our experiments on a multi-tier
e-commerce auction site show the effectiveness of MoKa. Moreover, the ex-
periments show that the combination of local and architectural configurations
provides a 100% accurate utility for the multi-tier system, while with a single
level of optimization (local or architectural) accuracy is limited between 20%
and 90%.

Key-words: Multi-tier systems, Data centers, Modeling, Capacity planning,
QoS, Optimization.

∗ INRIA
† Univ. Grenoble I – INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

2 Arnaud & Bouchenak

Contents

1 Introduction 3

2 System Model and Background 4
2.1 System model . 4
2.2 Performance and cost . 5
2.3 System configuration . 6

3 Modeling Multi-Tier Applications 6

4 Capacity Planning 9
4.1 Utility function . 9
4.2 Utility-aware capacity planning 9
4.3 Accuracy of the capacity planning 13

5 Implementation Details of MoKa 15
5.1 MoKa prototype . 15
5.2 MoKa organization . 17

6 Evaluation 19
6.1 Evaluation environment . 19
6.2 Accuracy of the the model . 20
6.3 Ad-hoc vs. optimized multi-tier data centers 20
6.4 Local vs. architectural optimization 23
6.5 Accuracy of capacity planning . 26
6.6 Efficiency of capacity planning 28

7 Related Work 30

8 Conclusion 31

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 3

1 Introduction

Data centers host a large variety of Internet services, ranging from web servers
to email servers, streaming media services, enterprise servers, and database
systems [2, 21, 3, 17, 27]. These services are usually based on the client-server
architecture, in which a server provides some online service to concurrent clients,
such as reading web documents, sending emails or buying the content of a shop-
ping cart. To face the increasing load of such applications, servers are organized
in a multi-tier architecture. Figure 1 represents a three-tier web application
which starts with requests from web clients that flow through an HTTP front-
end server and provider of static content, then to an enterprise server to execute
the business logic of the application and generate web pages on-the-fly, and fi-
nally to a database that stores non-ephemeral data. However, the complexity of
multi-tier applications and their low rate for delivering dynamic web documents
– often one or two orders of magnitudes slower than static documents – place a
significant burden on data centers [15]. To face high loads and provide higher
service scalability, a commonly used approach is the clustering and replication
of servers in clusters of machines [25, 28, 7, 23].

Figure 1: Multi-tier applications

The challenge in cluster-based multi-tier data centers stems from the con-
flicting goals of high performance and low cost and resource consumption. In the
limit, high performance can be achieved by using all available resources in a data
center to handle client requests. Symmetrically, it is possible to build a very-
low cost data center by allocating very few resources which induces very bad
performance and data center downtime [18]. Between these two extremes, there
exists a configuration such that cluster-based multi-tier data centers achieve a
desirable level of performance while cost is minimized. This paper precisely
addresses the problem of determining this optimal configuration.

The contributions of the paper are the following:

• We identify and combine two levels of configuration of cluster-based multi-
tier data centers: architectural configuration based on server provisioning
in clusters in multi-tier data centers, and local configuration applied at
server level. As far as we know, existing approaches are limited to a single
level of configuration of multi-tier systems [31, 20, 13, 29]. In this paper

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

4 Arnaud & Bouchenak

we show that unlike existing approaches, a two-level configuration allows
guarantying performance constraints while minimizing the cost of multi-
tier systems.

• We propose a modeling of cluster-based multi-tier systems that predicts
the performance and cost of these systems. Our model is based on a queu-
ing network that extends the MVA (Mean-Value Analysis) algorithm [26].

• We define a utility function for characterizing the impact of local and
architectural configurations on the performance and cost of systems multi-
tier systems.

• We develop a utility-aware capacity planning algorithm for efficiently cal-
culating optimal local and architecural configuration of cluster-based multi-
tier systems.

In addition to the above contributions, the paper presents the design and
implementation of MoKa, a utility-aware framework for modeling cluster-based
multi-tier data centers and planning their capacity and optimal configuration.
Finally, the paper describes the evaluation of the proposed capacity planning
method using a realistic cluster-based multi-tier auction site à-la www.eBay.com,
compares it to standard approaches for capacity planning of multi-tier systems,
and shows that the proposed method significantly improves the performance
metrics and system cost. The results of our experiments show that compared
to standard methods of capacity planning of multi-tier systems where 15% of
data center resources may be wasted and 94% of total client requests may be
rejected because of site overload, a capacity planning method that combines lo-
cal and architectural configuration allows guarantying application performance
and minimizing resource usage.

The remainder of the paper is organized as follows. Section 2 defines the un-
derlying system model and background. Section 3 derives the proposed analytic
model of cluster-based multi-tier data centers. Section 4 describes our capacity
planning method. Section 5 presents the implemented MoKa prototype. Sec-
tion 6 discuss the evaluation results. Section 7 provides an overview of related
work. Section 8 draws our conclusions.

2 System Model and Background

2.1 System model

Multi-tier applications follow the client-server architecture where clients connect
to a multi-tier system. A multi-tier system is composed of a series of tiers
T1, T2, ..., TM . Each tier is tasked with a specific concern. For instance, the
multi-tier system in Figure 1 consists of tier T1 responsible of processing the
application web content, tier T2 responsible of the application business logic,
and tier T3 responsible of the storage of non-ephemeral data of the application.

A client request to a multi-tier system first accesses tier T1 and then may
flow through successive tiers T2, T3, ..., TM . More precisely, when a request is
processed by tier Ti either a response is returned to tier Ti−1 (or to the client if
i = 1), or a subsequent request is sent to tier Ti+1 (if i < M).

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 5

In its basic form, each tier consists of a single server. Multiple clients may
concurrently access the same server. To prevent a server from thrashing when
the number of concurrent clients grows, a classically used technique is admission
control. It consists in fixing a limit for the maximum number of clients allowed
to concurrently access a server – also known as the Multi-Programming Level
(MPL) configuration parameter of servers; above this limit, incoming clients
are abandoned (i.e. rejected). Thus, a client request processed by a multi-
tier system either terminates successfully with a response to the client, or is
abandoned because of a server’s concurrency limit. Furthermore, the number of
clients N (or workload) that try to concurrently access a multi-tier system may
vary over time. This correponds to different client behaviors at different times,
e.g. an e-mail service usually faces a higher workload in the morning than in the
rest of day.

A server in a multi-tier data center is hosted by a resource (i.e. machine,
node), and a resource is exclusively owned by a server. However, for scala-
bility purposes, a tier is usually provisioned with multiple servers in a cluster
built atop replication, partitioning and load balancing techniques; in the follow-
ing, we consider fair load balancing techniques. If not provisioned adequately,
cluster-based multi-tier applications may face a bottleneck on one of the tiers;
but bottleneck does not occur simultaneously on multiple tiers at the same
time as shown in this study [9]. Obviously, the more resources are assigned
to cluster-based multi-tier systems, the more performance is improved. In the
following, a cluster typically consists of tens to hundreds of servers, and servers
inside a cluster are homogeneous in the sense that they have the same hardware
architecture as it is typically the case in computer clusters of that size [8].

2.2 Performance and cost

Among the key metrics of interest for quantifying the Quality-of-Service (QoS)
of multi-tier applications, we can cite:

Client request latency , defined as the necessary time to process a client
request by the multi-tier system. It corresponds to the time duration between
the time where a client sends a request to the system and the time where the
client receives a response to that request. The average client request latency (or
latency, for short) is denoted as �. A low latency is a desirable behavior which
reflects a reactive multi-tier system.

Client request abandon rate, defined as the ratio of requests that are
abandoned compared to the total number of requests received by a multi-tier
system. It is denoted as α. A low client request abandon rate (or abandon
rate, for short) is a desirable behavior which reflects the level of availability of
a multi-tier system.

SLA – Service Level Agreement – is a contract negotiated between clients
and their service provider [19]. It specifies service level objectives (SLOs) for
the performance that the service must guaranty, like the maximum latency
�max and the maximum abandon rate αmax of multi-tier applications. It is
important to notice that the combination of latency and abandon rate SLOs is
important. Otherwise, providing guarantees solely on latency, for instance, may
lead to a situation where the maximum latency objective only holds for 10%
of client requests, while 90% of client requests are rejected due to the absence

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

6 Arnaud & Bouchenak

of guarantee on abandon rate. In this paper, we show how to combine both
performance objectives.

Besides performance levels that multi-tier systems must guaranty, the cost
of the system is another aspect that is taken into account when provisioning
multi-tier data centers.

Cost of multi-tier systems refers to the economical and energetical costs of
these systems. It is directly related to the total number of resources that host a
cluster-based multi-tier application, and is denoted as ω. Obviously, a low cost
of a multi-tier system is a desirable behavior since it minimizes the maintenance
cost of the system.

2.3 System configuration

We define the configuration κ of a cluster-based multi-tier system consisting
of M tiers as a combination of architectural configuration and local configura-
tion: κ < AC, LC >. In this paper, the architectural configuration of a
multi-tier system is conceptualized as an array AC < AC1, AC2, ..., ACM >,
where ACi is the number of resources (i.e. machines) at tier Ti of the multi-
tier system. The local configuration of a multi-tier system is conceptualized
as an array LC < LC1, LC2, ..., LCM >, where LCi is servers MPL (multi-
programmig level) at tier Ti of the multi-tier system. For instance, the architec-
tural configuration of the cluster-based three-tier system represented by Figure 1
is AC < 3, 2, 3 > and the local configuration could be LC < 200, 160, 100 >
though not illustrated in the figure.

3 Modeling Multi-Tier Applications

We propose an analytic model that evaluates the performance and cost of
cluster-based multi-tier systems. The system is modeled as a closed-loop queu-
ing network based on the Mean-time Value Analysis (MVA) algorithm [26], and
builds atop the model proposed in [29]. In addition to the application workload
N (i.e. number of concurrent clients) and the number of tiers M of the multi-
tier system, we extended th inputs of the model with the local and architectural
configuration κ of the multi-tier system. Symmetrically, in addition to latency
�, we extended the original model with new outputs such as abadon rate αand
cost ω of the cluster-based multi-tier system.

Algorithm 1 derives the proposed model. The calculation of average latency
of client requests is mainly based on the Mean-time Value Analysis (MVA)
algorithm [26] and is inspired from [29], see lines 24-34 in Algorithm 1. The
only difference is the integration of the cluster-based dimension where a tier
may consist of multiple servers

Algorithm 1 derives the proposed model. in addition to inputs, the model is
parametrized for a multi-tier application with the following: the number M of
tiers of the multi-tier application, the application client think time Z, the visit
ratios V < V1, V2, ..., VM > and the service times S < S1, S2, ..., SM > [29].
The client think time Z is the average time between the reception of a response
by a client and the sending of the next request by that client. The visit ratios
reflect the effect of client requests on application tiers. When a client request
enters a multi-tier application at tier T1, the request may generate sub-sequent

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 7

Algorithm 1: MO: Modeling of multi-tier systems

Input:
N : #clients (i.e. workload)
κ< AC,LC >: multi − tier system configuration
Output:
�: latency
α: abandon rate
ω: cost (i.e. #resources)
Parameters:
M : #tiers
Z: client think time
V < V1, V2, ..., VM >: visit ratios
S < S1, S2, ..., SM >: service times
Initialization:
R0 = Z; τ = 0; ω= 0;

/* abandon rate */
for m = 1;m ≤ M ;i + + do

if m == 1 then
wam = N ; /* workload trying to access the system */

else
wam = wem−1 · Min(1, Vm

Vm−1
);

wem = Min(wam, LCm · ACm); /*workload entering the system*/

for m = M ;m > 0;m −− do
if m == M then

arm = Max(wam − wem, 0);

else
arm = Max(wam − wem, 0) + wam+1 · arm+1 · Vm

Vm+1
;

arm = arm/wam; /* abandon rate at each tier */

α= ar1; /* global abandon rate */

N ′ = N · (1 − α); /* non-rejectend clients */

/* latency */
for m = 1;m ≤ M ;m + + do

Qlm = 0;
Dm = Vm · Sm/ACm ; /* service demand */

for n = 1;n ≤ N ′;n + + do
for m = 1;m ≤ M ;m + + do

Rm = Dm · (1 + Qlm);
τ = (n

R0+
∑

M
m=1 Rm

); /* throughput */

for m = 1;m < M ;m + + do
Qlm = τ · Rm; /* Little’s law */

�=
∑M

m=1 Rm; /* latency */

/* cost */
for m = 1;m ≤ M ;m + + do

ω=ω+ACm; /* total #resources */

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

8 Arnaud & Bouchenak

Multi-tier system
model

Multi-tier system
model

performance
(latency, abandon rate)

cost

configuration
(local/architectural
configuration)

workload (N)

model inputs model outputs

Figure 2: Modeling of multi-tier applications

requests to tier T2, and then to tier T3, and so on until tier TM . The visit ratio
Vi is the average number of sub-sequent requests at tier Ti generated by a client
request entering the multi-tier application. The service times correspond to
the incompressible amount of time necessary to process requests on application
tiers. Thus, the service time Si corresponds to the average time that is necessary
to process a client request on tier Ti. In summary, these parameters reflect the
behavior of a multi-tier application, and need to be identified for each multi-tier
application through application profiling.

Algorithm 1 calculates latency, abandon rate and cost of a cluster-based
multi-tier application. Latency calculation is mainly inspired from [29], with
an extension from single server multi-tier systems to cluster-based multi-tier
systems (cf. lines 23-33). The proposed algorithm also estimates the abandon
rate of the multi-tier system, by applying admission control techniques based on
MPL-related local configuration of servers in the multi-tier system (cf. lines 8-
22). First, among the workload that tries to access each tier Tm of the multi-tier
system (denoted as wam), the workload that actually enters the tier is calculated
based on admission control (and denoted as wem). Then, the abandon rate
is calculated successively among each tierTm (denoted as arm), until building
the global abandon rate α. Finally, the algorithm calculates the cost of the
cluster-based multi-tier system as total number of resources used by the system
(cf. lines 34-36).

Algorithm cost. The model complexity is O(NM), where N is the number of
clients entering the system, and M the number of tier of the system (N >> M).

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 9

4 Capacity Planning

4.1 Utility function

Given the SLA objectives maximum latency �max and maximum abandon rate
αmax that a multi-tier application must guaranty, we define Performance Pref-
erence as follows:

PP (�, α) = (� ≤ �max) · (α ≤ αmax) (1)

where � and α respectively indicate the actual latency and abandon rate resulting
from a multi-tier application. Note that ∀�, ∀α, PP (�, α) ∈ {0, 1}, depending on
whether Eq. 1 holds or not.

Based on performance preference and cost of multi-tier applications, we now
define a utility function that combines both criteria as follows:

Θ(�, α, ω) =
M · PP (�, α)

ω
(2)

where ω is the actual cost (i.e. #resources) of the multi-tier application, and
M is the number of tiers of the multi-tier application. M is used in Eq. 2 for
normalization purposes. Here, ∀�, ∀α, ∀ω, Θ(�, α, ω) ∈ [0, 1], since ω ≥ M (at
least one server per tier) and PP (�, α) ∈ 0, 1.

A high value of the utility function reflects the fact that, on the one hand,
the performance of a multi-tier application guaranties service level objectives
as specified by SLA, and on the other hand, the cost underlying the multi-tier
application is low.

In order to illustrate the behavior of the utility function, a set of synthetic
data for a three-tier application is given in Table 1 and Figure 3. Three work-
loads are considered, respectively 10 clients, 100 clients and 1000 clients. In
Table 1 for each workload, different configurations κi of the multi-tier appli-
cation are considered, varying at both architectural and local levels. Figure 3
gives for each configuration the corresponding value of utility function. For in-
stance, with a workload of 1000 clients, the highest value of utility function is
obtained with configuration κ16 which guaraties performance preference with a
total cost of 9 resources. With the same workload, if the multi-tier application
has a lower architectural configuration (i.e. less resources) as κ13, or if it has
a lower local configuration (i.e. lower MPL) as κ14, performance preference for
latency and abandon rate is no more guarantied. Symmetrically, if a higher
architectural configuration is used as in κ17 an κ18, this would increase the cost
of the multi-tier application without any improvement on performance, with an
overall decrease of utility. In case of a higher local configuration as in κ15, the
application faces higher concurrency which invalidates latency performance pref-
erence and thus decreases utility to 0. Similarly, with a workload of 100 clients
and 10 clients, configurations that gauranty application performance preference
with minimal cost are the ones that maximize the utility function, respectively
κ10 and κ2.

4.2 Utility-aware capacity planning

We propose a utility-aware capacity planning method that is based on the above
utility function in order to calculate the optimal architectural and local config-

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

10 Arnaud & Bouchenak

Workload Configuration description
10 clients κ1 : AC < 1, 1, 1 >, LC < 50, 50, 50 >

κ2 : AC < 1, 1, 1 >, LC < 100, 100, 50 >
κ3 : AC < 1, 2, 1 >, LC < 100, 50, 100 >
κ4 : AC < 1, 2, 2 >, LC < 200, 100, 150 >
κ5 :< AC < 2, 2, 3 >, LC < 200, 200, 100 >
κ6 :< AC < 2, 3, 4 >, LC < 300, 200, 200 >

100 clients κ7 :< AC < 1, 1, 1 >, LC < 50, 50, 50 >
κ8 :< AC < 1, 2, 2 >, LC < 50, 50, 50 >
κ9 :< AC < 2, 2, 2 >, LC < 20, 50, 50 >
κ10 :< AC < 1, 2, 2 >, LC < 100, 50, 50 >
κ11 :< AC < 2, 2, 2 >, LC < 100, 100, 50 >
κ12 :< AC < 2, 4, 4 >, LC < 200, 100, 200 >

1000 clients κ13 :< AC < 2, 2, 4 >, LC < 100, 200, 100 >
κ14 :< AC < 2, 3, 4 >, LC < 200, 200, 200 >
κ15 :< AC < 2, 3, 4 >, LC < 500, 400, 400 >
κ16 :< AC < 2, 3, 4 >, LC < 300, 200, 200 >
κ17 :< AC < 2, 4, 4 >, LC < 300, 200, 200 >
κ18 :< AC < 4, 3, 4 >, LC < 300, 200, 200 >

Table 1: Configuration examples

0,00

0,20

0,40

0,60

0,80

1,00

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18

configuration

u
ti
lit

y

10 clients 100 clients 1000 clients

Figure 3: Utility function

uration of a cluster-based multi-tier application in such a way that the appli-
cation performance preference for latency and abandon rate is guarantied while
the cost of the application is minimized. Calculating the optimal configuration
of a multi-tier application is thus equivalent to calculating the configuration for
which the utility function value is maximal, (i.e. optimal, Θ∗).

Algorithm 2 describes our capacity planning algorithm for cluster-based
multi-tier applications. The overall behavior of the algorithm is presented in
Figure 4. Roughly speaking, given an application workload and a target perfor-
mance preference in terms of maximum latency and abandon rate, a capacity
planning algorithm produces an intial minimal configuration of the multi-tier
application, then calculates the performance of this configuration based on the
multi-tier application model, and tests the produced performance against per-
formance preference. If performance preference is verified, the capacity planning
algorithm returns that configuration and terminates; otherwise, it iterates on

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 11

Algorithm 2: KA: Capacity planning of multi-tier systems - Tree-based search

Input:
N : #clients (i.e. workload)
Output:
κ∗ < AC, LC >: multi − tier system configuration
Parameters:
�max : maximum latency
αmax : maximum abandon rate
M : #tiers
MPLmax < MPLmax−1, ..., MPLmax−M >: maximum MPL at each tier
V < V1, V2, ..., VM >: visit ratios
MO : model of the multi − tier system
Initialization:
/* ignore αmax incoming clients */
N ′ = N ∗ (1− αmax);
α′

max = 0;
/* initial architectural and local configuration */
for m = 1;m ≤ M ;m + + do

ACm = 1;
LCm = N ′ · Vm;

o∗ = 0;
κ∗ =< ∅, ∅ >;

/* AC and LC that verify �max and α′
max conditions */

while � > �max ∨ α > α′
max do

for m = 1;m ≤ M ;m + + do
ACm = ACm + 1;
LCm = MIN(N′·Vm

ACm
, MPLmax−m);

< �,α,ω> = MO(N ′,κ< AC,LC >);

/* AC cost minimization */
for m = 1;m ≤ M ;m + + do

/*dichotomic search of AC∗
m in [1 . . . ACm] */

AC′
m = ACm

2
;

LC′
m = MIN(N′·Vm

AC′
m

, MPLmax−m) AC′ =< AC1, ..., AC′
m, ..., ACM >;

LC′ =< LC1, ..., LC′
m, ..., LCM >;

< �,α,ω>= MO(N ′,κ< AC′, LC′ >);
if � > �max ∨ α > α′

max then

pursue dichotomic search of AC∗
m in]ACm

2
. . . ACm]

else
pursue dichotomic search of AC∗

m in [1 . . . ACm
2

]

/*at the end : AC < AC∗
1 , ..., AC∗

m, ..., AC∗
M >*/

/* LC improvement */
for m = 1;m ≤ M ;m + + do

/* dichotomic search of LC∗
min [LCm . . . MPLmax−m] */

LC′
m =

MPLmax−m−LCm

2
+ LCm LC′ =< LC1, ..., LC′

m, ..., LCM >
< �,α,ω> = MO(N ,κ< AC, LC′ >)
if � > �max then

pursue dichotomic search of LC∗
m in [LCm . . . LC′

m[

else
pursue dichotomic search of LC∗

m in [LC′
m . . . MPLmax−m]

/*at the end : LC < LC∗
1 , ..., LC∗

m, ..., LC∗
M >*/

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

12 Arnaud & Bouchenak

a new augmented configuration of the multi-tier application and repeats the
process.

performance preference
(maximum latency lmax,
maximum abandon rate max)

* (optimal
local/architectural
configuration)

workload (N)

Multi-tier
system
model

Multi-tier
system
model

l
Is performance

preference
guarantied?

Is performance
preference

guarantied?

Produce a new
configuration

Produce a new
configuration

yesno

Return current
configuration

Return current
configuration

Figure 4: Capacity planning algorithm

Tree-based search. We propose a capacity planning algorithm for multi-tier
applications in Algorithm 2. This algorithm is composed of three parts: first,
it keep only a certain amount of entering workload, depending on the allowed
abandon rate, then it process ACmax, the upper bound for the replication level
at each tier, second it perform a dichotomic search into architectural configu-
ration spaces, then in a third part it improves LC configuration. To determine
ACmax, we process the utility function with an AC equal to 1 on each tier, then
we add one resource on each tier until performance constraints are matched.
Resulting ACmax will be the upper bound for the architectural configurations.
The dichotomic search is used to find the optimal architectural configuration,
i.e. the one that minimizes resources consumption while matching QoS con-
straints. The local configuration is adapted on each step to match the amount
of admitted clients and allocated resources.

The third part aims to make our algorithm more robust to load variations.
We perform a search, on each tier, for the highest value of the local configuration
that still match QoS constraints. Using this algorithm, system reconfiguration
can be avoided in case of small workload amount variations.

Algorithm cost. Our capacity planning algorithm complexity is

O(N.M.ACmax + N.M2.(log2(ACmax) + log2(LCmax))) (3)

where N is the number of clients entering the system, M the number of tier of the
system (N >> M), ACmax the maximum replication level (on the bottleneck
tier), and LCmax the maximum local configuration value.

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 13

Exhaustive search. A capacity planning algorithm based on an exhaustive
search on all possible architectural and local configurations of a multi-tier ap-
plication is described in Algorithm 3.

The principle is to build the set ΦAC of all possible architectural configura-
tions and the set ΦLC of all possible local configurations. All the combinations
of ΦAC and ΦLC are possible system configuration. We test them exhaustively
to find the one that maximize our objective function, while minimizing resources
consumption. In order to build the ΦAC and ΦLC sets, we have to limit the
local and architectural configuration spaces. For the local configurations, we
chosed the maximum possible value of the MPL, which depends on the under-
lying software used at each tier. Then to determine the maximum value of AC,
we process the utility function with an AC equal to 1 on each tier, then we add
one resource on each tier until performance constraints are matched. Resulting
ACmax will be the upper bound for the architectural configurations.

Algorithm cost. The exhaustive search capacity planning algorithm com-
plexity is

O(N.M.ACmax + N.M.(LCM
max ∗ ACM

max)) (4)

where N is the number of clients entering the system, M the number of
tier of the system (N >> M), ACmax the maximum replication level (on the
bottleneck tier), and LCmax the maximum local configuration value.

4.3 Accuracy of the capacity planning

In this section, we prove the accuracy of our tree-based search capacity planning
algorithm. To make the text easier to read, we use k to represent a configuration
produced by our capacity planning planning algorithm, and Θ(k) to represent
this configuration utility. (instead of Θ(�, α, ω), see 4.1).

Let k∗ be the optimal configuration for a given set of constraints. We define
the accuracy of a configuration k as follow:

acc(k) =
Θ(k)
Θ(k∗)

(5)

There are three properties underlying this proof:

Property 1: There is only one bottleneck tier (or none) at a given moment.

Property 2: Adding more resources never degrades performance (and often
improve performance)

Property 3: Constraints on latency and abandon rate must be realistic: they
must be reachable by adding a certain amount of resources. As an exemple, you
cannot specify a latency constraint inferior to request service times.

So we have to prove that all the configurations processed by our algorithm
have an accuracy equal to 1, which is the maximum value. We will prove
it by contradiction, assuming that there exists another configuration k′ with
Θ(k′) > Θ(k).

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

14 Arnaud & Bouchenak

Algorithm 3: Capacity planning of multi-tier systems - Exhaustive search

Input:
N : #clients (i.e. workload)
Output:
κ∗ < AC, LC >: multi − tier system configuration
Parameters:
�max : maximum latency
αmax : maximum abandon rate
M : #tiers
MPLmax < MPLmax−1, ..., MPLmax−M >: maximum MPL at each tier
MO : model of the multi − tier system
Initialization:
/* initial architectural and local configuration */
for m = 1;m ≤ M ;m + + do

ACm = 1;
LCm = MPLmax−m;

o∗ = 0;
κ∗ =< ∅, ∅ >;

/* determine ACmax as MAX {ACi} */
< �,α,ω> = MO(N ,κ< AC,LC >);
while � > �max ∨ α > αmax do

for m = 1;m ≤ M ;m + + do
ACm = ACm + 1;

< �,α,ω> = MO(N ,κ< AC,LC >);

ACmax = AC1;

/*ΦAC : all possible architectural configurations*/
ΦAC = {AC < 1, ..., 1 >, ..., AC < ACmax, ..., ACmax >}
/* |ΦAC | = (ACmax)M */

/*ΦLC : all possible local configurations*/
ΦLC = {LC < 1, ..., 1 >, ..., AC < MPLmax−1, ..., MPLmax−M >}
/* |ΦLC | =

∏M
m=1 MPLmax−m */

foreach AC ∈ ΦAC do
foreach LC ∈ ΦLC do

< �,α,ω> = MO(N ,κ< AC, LC >)
if Θ(�,α,ω) > o∗ then

o∗ = Θ(�,α,ω);
κ∗ =κ;

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 15

∃k′, Θ(k′) > Θ(k) (6)

⇔ ∃k′,
M · PPk′(�, α)

ωk′
>

M · PPk(�, α)
ωk

(7)

Assuming that constraints can always be matched (Property 3), PPk(�, α) =
1 and PPk′(�, α) = 1. Then:

∃k′,
1

ωk′
>

1
ωk

(8)

⇔ ∃k′, ωk′ < ωk (9)
⇔ ∃k′, ∃i ∈ 1; M, AC′

i < ACi (10)

where AC and AC′ are the architectural configurations of k and k′, respec-
tively. Since the total cost of k′ is lower than k cost, there is at least on tier with
a lower replication level in k′ than in k. We define kmax and k′

max the maximum
replication level of k and k′ respectively. kmax and k′

max are processed at the
beginning of our algorithm to bound architectural configuration space.

First case. In this first case, we assume that k′
max > kmax, i.e. there is at

least a tier i where AC′
i < ACi and a tier j where AC′

j > ACj .
The first part of our algorithm, which set kmax, stop when QoS constraints

are matched with an architectural configuration of < kmax . . . kmax >. If our
algorithm stop with a given kmax value, performances constraints are matched
with this configuration, and there is no need to add more resources on any tier
(Property 1). Thus this case can’t happen, and we fall back on the second case.

Second case. Now, we assume that kmax = k′
max, then k and k′ have the

same maximum replication level. There exists a tier i where AC′
i < ACi, but due

to property 2 and the dichotomic search construction, at least ACi resources are
required on tier i to match QoS constraints. (∀AC′

i, AC′
i < ACi =⇒ PP (AC′

i) =
0). Since we assumed that performance constraints are matched with k′, k′ can
not exist and k has an accuracy value of 1, whatever the context.

5 Implementation Details of MoKa

5.1 MoKa prototype

We designed and implemented the MoKa framework for modeling and capac-
ity planning of multi-tier applications. The MoKa prototype integrates the
implementation of the proposed analytical model (cf. Section 3), and capacity
planning algorithm (cf. section 4). Furthermore, MoKa is an open framework
that is able to integrate and compare different performance models and capac-
ity planning algorithms In particular, it is able to evaluate the accuracy and
efficiency of performance models and capacity planning algorithms.

The accuracy of a performance model is the ratio between the performance as
predicted by the model and the actual performance of the real system (i.e. ac-
curacy of latency and accuracy ofabandon rate).

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

16 Arnaud & Bouchenak

The efficiency of a performance model is the necessary time for the model to
predict the performance of the multi-tier system.

The accuracy of a capacity planning algorithm is the ratio between the result
of the objective function when applying this capacity planning algorithm and
the result of the objective function when applying the optimal capacity planning
algorithm (based on an exhaustive search).

The efficiency of a capacity planning algorithm is the necessary time for the
algorithm to calculate the configuration of the multi-tier system.

User interface. Moreover, we developed a user web interface for MoKa to
allow users and administrators to remotely run MoKa on a web browser and
calculate architectural and local configurations of multi-tier applications 1. This
is a useful tool for system administrators: they can enter their system param-
eters, workload informations, and MoKa will plot the evolution of the optimal
(then suggested) local and architectural configurations when load increase.

Figure 5 shows the user interface of MoKa.

Figure 5: Screenshot of MoKa online

1http://sardes.inrialpes.fr/research/moka/

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 17

5.2 MoKa organization

The MoKa framework is designed to be as modular as possible. Thus it is made
of 5 different packages, which are summarized in figure 6 :

• The emodeling package contains all the models of the underlying system

• The kplanning package contains all the capacity planning algorithms. Since
capacity planning algorithms use models of the system, this package de-
pends on the previous one

• The gui package contains classes for user interface, i.e. applet and servlet

• The test package contains a batch of automated tests to compare algorithm
and model behavior and performance. Then it depends on emodeling and
kplanning packages

• Then the util package embeds few utility classes common to emodeling or
kplanning packages

Figure 6: MoKa packages organization

Now we have described the general structure of the MoKa framework, let’s
go into details about the two main packages, respectively emodeling and kplan-
ning. First, the emodeling package is in charge of processing some performance
characteristics (InternetServicePerformance) in fonction of system configura-
tion (GlobalConfiguration) and workload class (WorkloadClass) applied to the
system. Since we can use different system models, we abstracted the perfor-
mance calculation method into an interface (InternetServiceModel) which is im-
plemented by the different models (MVAModel, . . .).

The InternetServiceModel interface is given on figure 7. Each model of
the framework has only to implements one method to be integrated to the
framework.

Second, the kplanning package, which structure is given in figure 8, uses
Internet service models to calculate an optimized configuration.

The structure of the CapacityPlanningSearch interface is given in Figure 7.
After having set the model to use with setInternetServiceModel, we can specify
workload properties and QoS constraints using setWorkloadProperties. Then

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

18 Arnaud & Bouchenak

Figure 7: Javadoc for InternetServiceModel and CapacityPlanningSearch inter-
faces

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 19

Figure 8: MoKa kplanning package structure

we can use the calculate method to get a GlobalConfiguration optimized for the
specified workload amount.

6 Evaluation

6.1 Evaluation environment

Hardware environment. The experiments were conducted on a cluster of
x86-compatible machines with bi-2.2GHz AMD Opteron CPUs and 4 GB RAM,
connected via a 10 Gb/s Ethernet LAN.

Software environment. Our experiments run on the Linux 2.6.18 kernel and
on the following middleware implementations: Apache Tomcat 5.5.23 Web and
enterprise server [28], MySQL 5.0.37 database server [27], PLB 0.3 as the web
server clustering solution [24], and Sequoia 2.10.6 load balancer [11].

Applications. We used two web applications as a basis of our experiments
on MoKa, an auction site and the 1998 Soccer World Cup web site.

The auction site is based on Rubis, a J2EE multi-tier application bench-
mark [1]. Rubis defines several web interactions (e.g registering new users,
browsing, buying or selling items). It provides a benchmarking tool that em-
ulates web client behavior and generates a tunable workload; this allows us
to vary the workload during the experiments. The benchmarking tool gathers
statistics about the application such as average client request latency. We used
an improved version of Rubis 1.4.2 with the browsing mix, where we added new
statistics such as client request abandon rate. In our experiments, the auction
site was deployed as a cluster-based replicated multi-tier system, consisting of
a cluster of replicated Web/enterprise servers as a front-end and a cluster of
replicated database servers as a backend.

The 1998 World Cup Web site workload was characterized in [5]. Measure-
ments and real traces from this site were collected over a three month period,
during which 1.35 billion client requests were received [4]. In our experiments,
the World Cup Web site was deployed as a cluster-based replicated mono-tier

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

20 Arnaud & Bouchenak

system, consisting of a cluster of replicated Web servers. Althrough this mono-
tier application is a particular case of multi-tier systems, it has the advantage
of representing real traces with a high and varying workload, which motivates
the usefulness of calculating the best architectural and local configuration of the
application.

Model and capacity planning calibration. The proposed performance
model and capacity planning algorithm were calibrated with appropriate pa-
rameters through offline profiling of the auction site. The applied parameters
of Algorithms 1, 2 and 3 are given in Table 2.

Modeling Capacity planning
Auction site M = 2 �max = 1 s

Z = 4 s αmax = 10%
V < 1, 4.32 > V < 1, 4.32 >
S < 7.92 ms, 19 ms > MPLmax < 1000, 1000 >

World Cup Web site M = 1 �max = 1 s
Z = 4 s αmax = 5%
V < 1 > V < 1 >
S < 5 ms > MPLmax < 1000 >

Table 2: Calibration parameters

6.2 Accuracy of the the model

The aim of this experiment is to validate model accuracy, by comparing the
model predictions with measures performed when running the auction site bench-
mark. The architectural configuration is AC =< 1; 1 >, and the load amount
grows on each measurement point. Figure 9 shows the predicted and measured
latency in function of workload amount. The average error between measures
and prediction is below 12%.

6.3 Ad-hoc vs. optimized multi-tier data centers

In the following experiments, we first compare the behavior of multi-tier sys-
tems configured in an ad-hoc way with a fixed architectural and a fixed local
configuration, with the behavior of optimized systems based on the proposed
utility-aware capacity planning method. Here, capacity planning aims at deter-
mining the best architectural and local configuration of a cluster-based multi-tier
system in such a way that 90% of client requests are handled in less than 1 s
(see Table 2), and the total cost of the system is minimized.

Table 3 first describes the two ad-hoc configurations that we consider, namely
AA − AL1 and AA − AL2, with an Ad-hoc Architectural configuration and an
Ad-hoc Local configuration (the other configurations of the table are introduced
in Section 6.4). AA−AL1 and AA−AL2 were chosen to represent respectively a
small configuration (with few machines and limited concurrency on servers), and
a large configuration. Moreover, in AA−AL1 the local configuration is set with
the default MPL values that come with the Tomcat front-end server software
and the MySQL back-end server software, namely 200 and 100. OA − OL rep-
resents the multi-tier system where both architectural and local configurations
are optimized using our capacity planning method.

Figures 10 and 11 respectively present the variation of latency and abandon
rate of the cluster-based multi-tier auction site when the workload varies. Here,

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 21

Figure 9: Model accuracy - Auction site

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

22 Arnaud & Bouchenak

Auction site
Configuration AC LC
AA-AL1 Ad-hoc AC < 1, 2 > Ad-hoc LC < 200, 100 >
AA-AL2 Ad-hoc AC < 6, 15 > Ad-hoc LC < 300, 200 >

OA-OL Optimized Optimized
AA-OL1 Ad-hoc AC < 1, 2 > Optimized
AA-OL2 Ad-hoc AC < 6, 15 > Optimized
OA-AL1 Optimized Ad-hoc LC < 200, 100 >
OA-AL2 Optimized Ad-hoc LC < 300, 200 >

World Cup site
Configuration AC LC
AA-AL1 Ad-hoc AC < 10 > Ad-hoc LC < 150 >
AA-AL2 Ad-hoc AC < 30 > Ad-hoc LC < 300 >

OA-OL Optimized Optimized
AA-OL1 Ad-hoc AC < 10 > Optimized
AA-OL2 Ad-hoc AC < 30 > Optimized
OA-AL1 Optimized Ad-hoc LC < 150 >
OA-AL2 Optimized Ad-hoc LC < 300 >

Table 3: System configurations

AA − AL1 is not able to guaranty the αmax abandon rate performance prefer-
ence when the workload increases since it represents a small configuration (few
machines and limited concurrency on servers). As a consequence of the limited
concurrency, AA − AL1 provides a low latency 2 that respects the �max pref-
erence. On the other hand, AA − AL2 represents a large configuration (many
machines and higher concurrency on servers). Thus, no requests are abandoned
and all requests are concurrently executed on servers, with a direct impact on
latency which dramatically grows and does not respect the �max latency pref-
erence when the workload increases. In contrast, the OA − OL fully optimized
multi-tier system obviously guaranties both αmax and �max performance pref-
erences.

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

La
te

nc
y

(m
s)

clients

AA-AL1
AA-AL2
OA-OL

AA-OL1
AA-OL2
OA-AL1
OA-AL2

max latency

Figure 10: Auction site – Latency

2Latency of sucessfully terminated requests.

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 23

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ba

nd
on

 r
at

e
(%

)

clients

AA-AL1
AA-AL2
OA-OL

AA-OL1
AA-OL2
OA-AL1
OA-AL2
max AR

Figure 11: Auction site – Abandon rate

6.4 Local vs. architectural optimization

Previous works on capacity planning of multi-tier systems usually restrict their
application to one level of configuration, either local configuration [13, 20, 31],
or architectural configuration [29]. We argue that combining both levels of
configuration improves the global behavior of the system and provides combined
guarantees on multiple performance preferences while economizing resources.
In the following, we compare multi-tier systems uniquely optimized with regard
to their local configuration, systems uniquely optimized with regard to their
architectural configuration, with systems where optimization applies at both
levels of configuration.

In addition to the previously presented configurations, Table 3 describes
four additional configurations 3 , namely AA − OL1, AA − OL2, OA − AL1

and OA − AL2. AA − OL1, AA − OL2 represent two configurations with an
ad-hoc architectural configuration and an optimized local configuration based
on classical admission control similar to the one presented in [20]. OA − AL1

and OA − AL2 represent two configurations where the local configuration is
set in an ad-hoc way and the architecture is optimized following an approach
similar to [29]. Figure 10 shows that AA−OL1 and AA−OL2 verify the �max

latency performance preference because they are able to optimize their local
configuration by limiting concurrency on servers. However, this has a direct
impact on the abandon rate which grows when the workload increases; and thus
does not respect the αmax preference as shown in Figure 11. The abandon rate
grows later for AA − OL2 than for AA − OL1 because the former represents a
larger configuration with more resources that temporarily absorb the workload.
In contrast, OA−OL is an architecturally and locally optimized configuration of
a multi-tier system which is able to guaranty both αmax and �max performance

3Or more precisely, methods to build configurations, i.e. capacity planning methods.

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

24 Arnaud & Bouchenak

preferences. The OA − AL1 and OA − AL2 configurations with an optimized
architectural configuration and an ad-hoc local configuration are also able to
guaranty latency and abandon rate preferences as shown in Figures 10 and 11;
but this is obtained at the expense of multi-tier system cost as we will see below.

Besides performance comparison, we also evaluate and compare the cost
(i.e. number of resources) of all the configurations as described in Figure 12.
Obviously, AA − AL1, AA − AL2, AA − OL1 and AA − OL2 have a constant
cost since their architectural configuration is fixed in an ad-hoc way, with a
cost of 3 for AA − AL1 and AA − OL1, and a cost of 21 for AA − AL2 and
AA − OL2. Whereas the cost of OA − AL1, OA − AL2 and OA − OL grows
when the workload increases, since their architectural configuration is optimized
accordingly. OA − AL1 has a higher cost than OA − AL2. This is due to the
fact that OA−AL1 has a lower ad-hoc local configuration than OA−AL2 and
thus, a lower client concurrency on servers is allowed with OA−AL1. Thus, in
order for OA−AL1 to guaranty the αmax abandon rate performance preference,
it needs to acquire more resources in order to increase its global concurrency.
OA − OL presents a lower cost than OA − AL1 and OA − AL2 since, unlike
the latters, OA−OL is able to optimize the local configuration of the multi-tier
system and thus, to maximize the usage of servers whenever it is possible before
acquiring new resources

In summary, our experiments show that compared to approaches with a
single level of local configuration where up to 94% of client requests are rejected,
and compared to approaches with a single level of architectural configuration
where up to 15% of resources are wasted, an approach that combines both levels
of configuration allows guarantying performance preference while minimizing the
cost of data centers.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

re

so
ur

ce
s

(#
m

ac
hi

ne
s)

clients

AA-AL1
AA-AL2
OA-OL

AA-OL1
AA-OL2
OA-AL1
OA-AL2

Figure 12: Local/architectural configuration – Cost

Finally, Table 4 summarizes the results of the evaluation presented in Fig-
ures 10, 11 and 12. This table provides, for each configuration, the average value

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 25

of the objective function for all considered workloads. Indeed, among all config-
urations that either do not consider any optimization of the multi-tier system
or apply an optimization on a unique level (architectural or local), OA − OL
which combines the two levels of configuration provides the highest value of the
objective function.

Configuration Objective function Accuracy (%)
AA − AL1 0.04 22
AA − AL2 0.04 22
AA − OL1 0.04 22
AA − OL2 0.05 28
OA − AL1 0.15 83
OA − AL2 0.17 94
OA − OL 0.18 100

Table 4: Auction site – Objective function

World Cup web site. To validate our approach, we also used the logs of
the ’98 Soccer World Cup website. We runned a 600 hour interval of these
logs. Load evolution during this period of time is represented on figure 13.
For clarity reasons, there is one point each 12 hours, representing the average
workload amount during this period. Like with the auction site, we compare
in the following 7 system configurations (AA − AL1, AA − AL2, AA − OL1,
AA − OL2, OA − AL1, OA − AL2, OA − OL) of which characteristics are
summarized in table 3.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600

cl

ie
nt

s

Time (h)

Multi level validation - WCup site - Load

clients

Figure 13: WCup site – Load

As we can see on figure 14, AA − AL2 is the only system configuration
to exceed maximum latency value. This is due to the local configuration of

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

26 Arnaud & Bouchenak

300, which admits too much client to respect latency constraints. With a local
configuration of 150, AA−AL1 limit the amount of clients entering the system,
and thus limit the overall latency. Nevertheless, lowering the local configuration
without adding more resources leads to increase the abandon rate, as we can
see on figure 15. The local optimization done in AA − OL1 reduces abandon
rate, while maintaining latency under the limit.

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

La
te

nc
y

(m
s)

Time (h)

Multi level validation - WCup site - Latency

AA-AL1
AA-AL2
OA-AL1
OA-AL2
AA-OL1
AA-OL2
OA-OL

max latency

Figure 14: WCup site – Latency

However, when the amount of client grows, local optimization is insufficient
and resource allocation became unavoidable. In order to match both QoS con-
straints (maximum latency and abandon rate), we have to perform a local and
architectural optimization. Performing both local and architectural optimiza-
tion improves resource consumption, as we can see on figure 16. OA − AL1,
OA − AL2 and OA − OL are all matching QoS requirement, but is the best
configuration, since it uses less resources OA − OL than the others.

6.5 Accuracy of capacity planning

Auction site. In the following, we will validate the accuracy of our algorithm,
i.e. the ratio between the configuration returned by the exhaustive search algo-
rithm and our algorithm.

Figure 17 compares the accuracy of the different capacity planning methods
given in Table 3, namely the ratio between, on the one hand, the utility function
value of the configuration returned by a capacity planning method, and on
the other hand, the utility function value of the optimal configuration. The

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 27

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

A
ba

nd
on

 r
at

e
(%

)

Time (h)

Multi level validation - WCup site - Abort rates

AA-AL1
AA-AL2
OA-AL1
OA-AL2
AA-OL1
AA-OL2
OA-OL

max AR

Figure 15: WCup site – Abandon rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

re

so
ur

ce
s

(#
m

ac
hi

ne
s)

cl

ie
nt

s

Time (h)

Multi level validation - WCup site - Resources

AA-AL1
AA-AL2
OA-AL1
OA-AL2
AA-OL1
AA-OL2
OA-OL

Figure 16: WCup site – Cost

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

28 Arnaud & Bouchenak

numbers of Figure 17 are mean values ensued from the experiments described
in Figures 10, 11 and 12.

These numbers show that our method that combines local and architectural
configuration provides a 100% accurate utility with an optimal configuration of
the multi-tier application.

Whereas in these experiments, a single level of architectural configuration
limits accuracy between 83% and 90%, a single level of local configuration lim-
its accuracy between 22% and 28%, and an ad-hoc configuration accuracy is
measured to 22%.

However, it is important to notice that capacity planning methods based on
single local configuration or on ad-hoc approaches may induce a 0% accuracy in
case of a high workload and a very low authorized maximum request abandon
rate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AA-AL 1 AA-AL 2 AA-OL 1 AA-OL 2 OA-AL 1 OA-AL 2 OA-OL

configurations

a
c
c
u

ra
c
y

Figure 17: Accuracy of capacity planning

World Cup web site. The accuracy of our algorithm is also 100% for the
World Cup Web site, as we can see on figure 18. These results are conform to
the proof we made in section 4.3.

6.6 Efficiency of capacity planning

Auction site. Finally, Figure 20 compares the average processing time of the
different capacity planning methods; these results ensued from the experiments
presented in Figures 10, 11 and 12. Overall, the results obviously show that
the more levels are considered by capacity planning methods, the more time
is necessary for calculating the configuration. Nevertheless, it is important to

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 29

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
rc

hi
te

ct
ur

al
 c

on
fig

ur
at

io
n

clients

Accuracy of architectural configuration capacity planning - WCup site

AC ExS
AC InS

AC TbS

Figure 18: Accuracy of architectural capacity planning - WCup site

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
ca

l c
on

fig
ur

at
io

n
of

 ti
er

 1

clients

Accuracy of local configuration capacity planning - Auction site

LC tier 1 ExS
LC tier 1 TbS
LC tier 2 ExS
LC tier 2 TbS

Figure 19: Accuracy of local capacity planning - Auction site

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

30 Arnaud & Bouchenak

notice that compared to methods restricting their capacity planning to architec-
tural level, a method combining local and architectural configuration does not
induce an overhead. On the contrary, the latter method slightly improves the
efficiency of the capacity planning algorithm since it produces smaller architec-
tural configurations and thus, reduces the steps of the algorithm. Furthermore,
for comparison purposes, we consider the case of the exhaustive search-based
capacity planning algorithm (which produces an optimal local and architectural
configuration). This algorithm takes 11 minutes to calculate the optimal config-
uration of the cluster-based two-tier auction site with a workload of 200 clients,
and more than 2 hours for a workload of 600 clients.

0

1

2

3

4

5

AA-AL 1 AA-AL 2 AA-OL 1 AA-OL 2 OA-AL 1 OA-AL 2 OA-OL

configurations

p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Figure 20: Efficiency of capacity planning

World Cup web site. Figure 21 present the processing times required to find
the optimal configuration of the world cup web site. The tree-based search is
always more efficient than the exhaustive search by several orders of magnitude.

7 Related Work

Capacity planning is a critical issue for the availability and quality of service
of data centers [12]. While most of existing projects apply their techniques on
a single tier [13, 20, 31, 16, 30, 14], our work differs from these projects in the
fact that it tackles multi-tier data centers.

Moreover, the techniques applied to perform capacity planning may differ.
On the one hand, some projects consider applying capacity planning at local
level, for instance, using admission control techniques [13, 20, 31, 16, 22, 14].

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ce
ss

in
g

tim
e

(m
s)

clients

Efficiency - WCup site

ExS
TbS

Figure 21: Efficiency of capacity planning - WCup web site

On the other hand, other projects apply capacity planning at architectural level
using server provisioning techniques on cluster-based systems [29, 6, 30]. Our
present work differs from other projects in the fact that it applies capacity
planning of cluster-based multi-tier data centers at both local and architectural
levels, with a significant gain on QoS guarantees and cost minimization.

Furthermore, in contrast to heuristics-based approaches for capacity plan-
ning of data centers that do not provide strict guarantees on QoS [6, 10, 14],
the present work is based, on the one hand, on an analytic model for predicting
system performance and, on the other hand, on an efficient capacity planning
algorithm that controls the optimal configuration of the multi-tier data center
with strict guarantees on QoS and resource usage.

The proposed model extends the Mean-Value Analysis (MVA) queuing net-
work model [26]. It first integrates architectural configuration (i.e. server clus-
tering) and local configuration (i.e. admission control) to multi-tier systems. It
then calculates the impact of local and architectural configurations on the per-
formance and cost of the system. Moreover, the extended model calculates new
performance and cost metrics, such as client request abandon rate (one of SLA’s
objectives) and the cost of the cluster-based multi-tier data center in terms of
numbers of machines running the data center.

8 Conclusion

In this paper, we present the design and implementation a method for utility-
aware capacity planning of cluster-based multi-tier data centers. The proposed

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

32 Arnaud & Bouchenak

method includes four novel features: (i) The combination of two levels of configu-
ration of cluster-based multi-tier data centers namely architectural configuration
and local configuration, this saves up to 15% of resources in a data center with
a 100% accurate utility for the data center; (ii) An analytic model for cluster-
based multi-tier applications that calculates application performance and cost;
(iii) A utility function that characterizes the impact of local/architectural con-
figuration of cluster-based multi-tier data centers on application performance
and cost; (iv) A utility-aware capacity planning algorithm for efficiently cal-
culating optimal configuration of multi-tier applications. These features are
implemented in the MoKa modeling and capacity planning prototype. Our
experiments on a cluster-based multi-tier auction site show the effectiveness of
the approach.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, an initiative from the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https://www.grid5000.fr).

References

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel. Specification and Implementation of Dy-
namic Web Site Benchmarks. In The IEEE 5th Annual Workshop on Workload
Characterization (WWC(5), Austin, TX, Nov. 2002.

[2] Apache. Apache HTTP Server. http://httpd.apache.org/.
[3] Apple. QuickTime Broadcaster. http://www.apple.com/quicktime/broadcaster/.
[4] T. I. T. Archive. Worldcup98, 2008.
[5] M. Arlitt and T. Jin. Workload characterization of the 1998 world cup web site.

Technical Report HPL-1999-35R1, HP Labs, Sept. 1999.
[6] S. Bouchenak, N. D. Palma, D. Hagimont, and C. Taton. Autonomic Manage-

ment of Clustered Applications. In IEEE International Conference on Cluster
Computing (Cluster 2006), Barcelona, Spain, Sept. 2006.

[7] B. Burke and S. Labourey. Clustering With JBoss 3.0. Oct. 2002.
http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html.

[8] R. Buyya. High Performance Cluster Computing - Volume 1. Prentice Hall, 1999.
[9] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel. Per-

formance Comparison of Middleware Architectures for Generating Dynamic Web
Content. In ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 2003.

[10] J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend
databases in dynamic content web servers. In The 3rd IEEE International Con-
ference on Autonomic Computing (ICAC 2006), Dublin, Ireland, June 2006.

[11] Continuent. Sequoia. http://sequoia.continuent.org/.
[12] D. A. Menascé and V. A. F. Almeida. Capacity Planning for Web Services:

Metrics, Models, and Methods. Prentice Hall, 2001.
[13] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra. Controlling

Quality of Service in Multi-Tier Web Applications. In 26th International Confer-
ence on Distributed Computing Systems (ICDCS 2006), Lisbon, Portugal, July
2006.

INRIA

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Modeling and Capacity Planning of Multi-Tier Systems 33

[14] S. Elnikety, J. Tracey, E. Nahum, and W. Zwaenepoel. A method for transparent
admission control and request scheduling in e-commerce web sites. In The 13th
international conference on World Wide Web, 2004.

[15] X. He and O. Yang. Performance Evaluation of Distributed Web Servers under
Commercial Workload. In Embedded Internet Conference 2000, San Jose, CA,
Sept. 2000.

[16] H.-U. Heiss and R. Wagner. Adaptive load control in transaction processing
systems. In VLDB, 1991.

[17] IBM. WebSphere Server. http://www.ibm.com/.
[18] Iron Mountain. The Business Case for Disaster Recovery Planning: Calculating

the Cost of Downtime, 2001. Iron Mountain.
[19] J. Lee and R. Ben-Natan. Integrating Service Level Agreements. Wiley, 2002.
[20] D. A. Menasc, D. Barbara, and R. Dodge. Preserving QoS of E-Commerce Sites

Through Self-Tuning: A Performance Model Approach. In ACM Conference on
Electronic Commerce (EC’01), Tampa, FL, Oct. 2001.

[21] Microsoft. Microsoft Exchange Server. http://www.microsoft.com/exchange/.
[22] J. Milan-Franco, R. Jimnez-Peris, M. Patino-Martinez, and B. Kemme. Adap-

tive middleware for data replication. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 175–194,
New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[23] M. Patino-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Middle-r:
Consistent database replication at the middleware level. ACM Transactions on
Computer Systems (TOCS), 23(4), 2005.

[24] PLB. PLB - A free high-performance load balancer for Unix.
http://plb.sunsite.dk/.

[25] M. Rabinovich and O. Spatscheck. Web Caching and Replication. 2001.
[26] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain queuing

networks. J. ACM, 27(2), 1980.
[27] Sun Microsystems. MySQL. http://www.mysql.com/.
[28] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.
[29] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. Analytic

modeling of multitier internet applications. ACM Transactions on the Web (ACM
TWEB), 1(1):2, 2007.

[30] D. Villela, P. Pradhan, and D. Rubenstein. Provisioning servers in the application
tier for e-commerce systems. ACM Trans. Interet Technol., 7(1):7, 2007.

[31] Q. Zhang, L. Cherkasova, and N. Mi. A Regression-Based Analytic Model for
Capacity Planning of Multi-Tier Applications. Journal of Cluster Computing,
11(3), 2008.

RR n° 6730

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

in
ria

-0
03

40
77

2,
 v

er
si

on
 1

 -
25

 N
ov

 2
00

8

	Introduction
	System Model and Background
	System model
	Performance and cost
	System configuration

	Modeling Multi-Tier Applications
	Capacity Planning
	Utility function
	Utility-aware capacity planning
	Accuracy of the capacity planning

	Implementation Details of MoKa
	MoKa prototype
	MoKa organization

	Evaluation
	Evaluation environment
	Accuracy of the the model
	Ad-hoc vs. optimized multi-tier data centers
	Local vs. architectural optimization
	Accuracy of capacity planning
	Efficiency of capacity planning

	Related Work
	Conclusion

