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Abstract 
 

Failure detection is a basic service for building 

dependable systems. The large-scale distribution of 

computing systems naturally makes failure detectors 

much harder to build. Moreover, providing QoS (qua-

lity of service) guarantees in this context is a challen-

ging task. The objective of this paper is twofold: (i) 

proposing a complete set of classification criteria to 

compare different failure detection mechanisms, and 

based on these criteria (ii) surveying the main failure 

detection solutions for large-scale distributed systems. 

 

1. Introduction 
 

Automatic failure detection is a basic service for 

building dependable systems. In large scale systems, 

maintaining QoS (quality of service) guarantees for 

failure detection [4] is not straightforward due size and 

geographical scalability. Automatic failure detection is 

usually proposed as ad-hoc solution, and commercial 

tools are often relatively static and slow. Implementa-

tions typically address only a small number of QoS 

guarantees and have reduced usability.  

Large scale failure detection is subject to active 

research but still has some lacks. [9, and 14] do not 

provide flexibility (i.e. support different types of 

applications) and propose a generic way to detect faulty 

nodes. [4, 9 and 12] use limited environments. [5 and 

6] do not treat size scalability, and [9, 14 and 16] are 

not adaptable. The state of the art of failure detection is 

discussed briefly in [5 and 10]. [16] compares mathe-

matically and experimentally algorithms across 

detection time, mistake rate, network band-width, and 

message loss rate. [6] presents an experimental 

evaluation of different estimations and safety margins 

of a distributed push failure detector. [10] presents a 

survey about failure detection for grids but it uses a 

limited set of properties. Moreover, properties as 

message explosion and scalability are put together at 

the same level. [6] focus on implementation choices. 

In this context, this paper proposes a complete set 

of classification criteria to compare different failure 

detection mechanisms and, based on these criteria, 

surveys the main failure detection solutions for large 

scale distributed systems. 

 

2. Background on failure detection 
 

Failure detectors [3 and 4] are process which collect 

information about faulty nodes. They maintain a list of 

suspects and a list of monitored nodes, which can be 

static or dynamic. A dynamic list maintains a variable 

number of nodes and is a more realistic model due to 

the ability to deal with network dynamism. 

Failure detector finds faulty nodes using two types 

of keep-alive messages: heartbeat and ping. Heartbeat 

is a message periodically sent from a monitored 

process to the failure detector to inform that it is still 

alive [7]. If the heartbeat does not arrive before a 

timeout expires, the failure detector suspects the node 

is faulty. Ping is a message continuously sent from a 

failure detector to a monitored process. The failure 

detector expects to receive as answer an ack. If a keep-

alive message fails, then a probe (i.e. a series of 

messages separated by a time interval) can be used to 

verify if a process is really faulty. In practice, it is 

difficult to distinguish faulty from healthy processes in 

asynchronous environments because message delays 

are unpredicted. So, processes which do not answer the 

failure detector question are addressed as suspect. 

 

3. Classification for large scale failure 

detectors  
 

In this section, we propose a set of classification 

criteria to compare different large scale failure 

detectors. These criteria are summarized in table 1. 

 

Centralized versus distributed. A centralized failure 

detector is a single and monolithic module able to 

monitor different processes. They are easy to maintain, 

but represent single points-of-failure and are potential 

bottlenecks. Distributed failure detectors [2, 9 and 14] 

avoid these drawbacks and can be viewed as a set of 

failure detection modules, each one attached to a 



different process in the system. Upon request, each 

module provides its own list of suspect nodes.  

 

Push versus pull. There are two types of failure detec-

tors with regard to keep-alive messages [7]: push and 

pull approach. The push approach uses heartbeats and 

the direction of both control and information flow is 

the same. In pull failure detectors, the direction of the 

flows is opposite. Ping messages are used in pull 

failure detectors. Authors [1 and 6] claim that heartbeat 

approaches have advantages over ping approaches. 

Heartbeats require half as many messages as ping 

failure detectors and estimation of timeout delay 

considers one-way trip messages. One advantage of 

ping failure detectors is that time control is executed 

only in the failure detector process. 

 

Table 1 – Classification criteria for large scale failure 

detectors 
Criteria Classification 

Architectural organization Centralized or distributed 

Keep-alive message Push or pull 

Application awareness Active or passive 

Liveness information Baseline or sharing 

Time values frequencies Adaptive or constant 

Application of time values Global or local 

Monitoring patterns All-to-all, randomized or 

neighborhood-based 

Propagation patterns One-to-all, randomized, 

circular or hierarchical 

  

Active versus passive. [7] classifies failure detectors 

with regard to application awareness. Active protocols 

continuously send or receive keep-alive messages. Lazy 

or passive protocols [8] take advantage of applica-

tion’s messages and, if data traffic is frequent, it can be 

sufficient for failure detection. However, [16] describes 

situations in which passive protocols are inadequate. In 

these situations, active protocols are required. 
 

Baseline versus sharing. [16] classifies failure detec-

tors with regard to share or not liveness information. In 

the sharing approach, a failure detector shares liveness 

information of monitored nodes with other modules. 

Adjacent nodes are typically used to take advantage of 

the network topology. Sharing algorithms differ in the 

type of information exchanged, and in the amount of 

keep-alive state they maintain. In the baseline 

approach, each module independently makes a 

decision about a suspect node. 
 

Adaptive versus constant. Keep-alive frequency, time-

outs and other time values can be adaptive or constant. 

Constant rate is easy to be applied because it is compu-

ted one single time for each node, for example, when 

the node joins the system but has limited efficiency in 

presence of network dynamism. Adaptive failure detec-

tors were proposed by [2, 4, 5 and 11]. In [11], the idea 

is to use the time of later timeouts to forecast the time 

of arrive of the new heartbeats. Computing rates and 

timeouts is not a trivial task, and can include some 

network information. Adaptive and constant rates can 

be computed by mathematical formulas [4, 6 and 15] 

or, alternatively using heuristics. 

 

Global versus local. Other issue with regard to time 

values is about the application of time values indivi-

dually or globally. A simple approach is use a global 

keep-alive message rate for all nodes. This approach 

makes sense if nodes are homogeneous and when all 

nodes exhibit the same session duration. Alternatively, 

if nodes are heterogeneous, individual nodes can com-

pute their own rates.  

 

Before introducing other criteria, we will describe the 

operation phases of a large scale failure detector: nor-

mal, propagation and reconfiguration. Failure detec-

tors modules send keep-alive messages to monitored 

nodes in normal phase. When a failure is detected, 

propagation phase starts and failure information is sent 

to other modules. Reconfiguration starts after propaga-

tion, and comprises local and global ones. Local 

reconfiguration occurs when the current module repairs 

the failure. For example, the failure detector can 

remove a node from a group. Global reconfiguration 

happens when information about faulty components is 

propagated to the other failure detection modules, 

which will be able to repair them system view. Two 

performance issues in large scale failure detection are 

monitoring and propagation patterns. Efficient moni-

toring allows fast detection time whilst fast propagation 

helps to maintain system consistency. 

 

Monitoring patterns. Monitoring patterns are related 

with communication between failure detection modules 

and monitored nodes during normal phase. Monitoring 

patterns can be all-to-all, randomized, and neighbor-

hood-based. In all-to-all failure detection, each module 

sends keep-alive messages to all monitored processes. 

Indeed, for small groups this approach could run 

efficiently but the scalability is limited if the number of 

processes grows up due massive network traffic.  

In a randomized failure detector [9 and 13], each 

node maintains a list for each member its address and a 

time value used for failure detection. Each node in a 

group randomly selects other k nodes to send a keep-

alive message. Gossiping protocol [13] is a special kind 

of randomized failure detector based on heartbeats. The 



gossiping is very efficient for small groups and has a 

multi-level version for large groups. Randomized 

failure detectors can improve scalability and reduce 

detection time via random and periodic commu-

nication among monitored nodes. Detection time 

depends on the probability of being randomly selected.  

In the neighborhood-based approach, each 

process sends keep-alive messages to adjacent nodes. 

Performance is improved by restricting communication 

and taking advantage of the locality. Neighbors are 

selected statically and do not change over the time 

unless a failure had been detected. In this case, a 

reconfiguration is required to remove the faulty node 

and select a new neighbor, and network information 

must be taken in account. 

 

Failure propagation. When a node is addressed as 

faulty, this information must be propagated to other 

modules. Failure propagation is time consuming in 

large scale systems, and different approaches were 

proposed to improve propagation time: one-to-all, 

randomized, (ring or) circular space, and hierarchical. 

With one-to-all propagation pattern, failures are 

immediately propagated to all failure detection 

modules. Network traffic can be intense if failures and 

churn are frequent. The implementation could take 

advantage of IP-multicast for performance reasons.  

In the randomized propagation pattern, a module 

or a group of modules is chosen to receive information 

about a failure from the current failure detection 

module. Communication is cheaper than one-to-all 

propagation pattern but propagation time depends on 

the possibility of being selected by another node.  

Circular failure detectors [12] arrange nodes in a 

virtual ring. Communication is achieved only between 

adjacent nodes. Therefore, when a new node joins or 

leaves the ring, adjacent nodes must be rearranged. 

Another drawback is mapping the virtual ring to the 

network topology which cannot be trivial Failure 

propagation can be time consuming for large rings. 

Hierarchical failure detectors [2, 12 and 13] 

arrange nodes into a multi-level hierarchy and partition 

monitoring in small groups. Failures are reported along 

a tree to improve scalability. Hierarchical failure detec-

tors take into account the network infrastructure to be 

efficient and are commonly used in large-scale systems 

to connect small groups running the other approaches. 

 

4. Discussion 
 

Based on classification formerly presented, in this 

section we survey the main failure detection solutions 

for large scale distributed systems.  

 

Sharing liveness information to improve detection 

time. Detection time could be beneficiated by sharing 

liveness information with neighborhood: the node 

which first detects the failure announce to the others. In 

[16], experiments were conducted in a network with 

2,000 nodes and detection time was almost constant, 

even if the number of neighbors grows up. In addition, 

the same authors claim that sharing information helps 

to tolerate high churn rates.  

 

Adaptive solutions. In large scale networks, adaptive 

algorithms [1, 8 and 15] are proved to be more efficient 

than algorithms with constant timeout. These 

approaches support different application requirements 

and network changes. Adaptive approaches have some 

open drawbacks: how to find an appropriate 

mechanism to tuning the timeout in the failure 

detector? How to choose a frequency in which keep-

alive messages must be issued? [15] proposes using a 

router and, based on the current network traffic, 

dynamically adapting heartbeats in a large scale 

system. The authors claim that this solution offers short 

response time, good stability and fine robustness. 

However, the router can be a bottleneck. A more 

interesting solution is the accrual failure detector [11] 

which provides suspicious information about faulty 

nodes. Currently, there is no experimentation in large-

scale systems but it should be a very promissory 

solution because it is application targeted to decide 

about the QoS level of the provided information. 

 

Global or local timeout values. Maintaining, calcu-

lating, and tuning a timeout for each process in a large 

scale system could be unacceptable. On the other side, 

applying the same timeout for local and remote process 

could be unacceptable too. If this situation is unac-

ceptable in large scale systems, where failure detectors 

could monitor several nodes simultaneously, a hybrid 

approach classifies monitored processes in small 

groups and addresses for each group a keep-alive rate. 

 

Faulty versus busy nodes. Typically failure detectors 

are implemented at the process-level, with one process 

per machine and following the crash failure model. 

Faulty processes are simulated by the crash of an entire 

node. The effect is that a busy node cannot be 

differentiated from a faulty node because both are not 

able to answer the failure detector before the timeout 

expires. [5] applies failure detection at the application-

level. In this approach, a node supports a set of 

different applications monitored by one local failure 



detector, which satisfies a given level of QoS 

previously informed for each application. 

 

Gossiping protocols. Gossiping protocols are less 

network bandwidth consuming than all-to-all protocols. 

Second [16], multi-level gossiping avoids message 

explosion and treats message loss. Gossip protocol also 

is efficient because it does not take into account the 

network structure. However, authors [5 and 16] report 

some drawbacks of this protocol. For example, when a 

lot of nodes crashed, the detection time could be very 

long in the basic (flat) protocol. In addition, developers 

must pay attention when they choose the randomized 

function. A non-equitable function could make some 

nodes more randomly selected than others and it allows 

that some non-popular nodes could undesirably 

maintain out-of-date information about other nodes. 

 

Hierarchical protocols. Hierarchical protocols are 

proved to be efficient in large scale groups. They could 

be applied to circular space failure detectors, all-to-all 

failure detectors and randomized protocols. For 

example, failure propagation for all nodes in a circular 

space is time consuming in large rings and because 

messages follow the ring. To allow fast failure 

propagation, the ring could be divided in small groups 

with a leader per group. If a failure is detected by a 

node in a group, its group leader informs all other 

group leaders about the failure. Each group leader, in a 

high hierarchic, will inform its group members about 

the faulty node. [14] connects local groups in a 

hierarchical structure avoiding new leader election. The 

IP address is used to divide nodes in small groups. 

Most monitoring messages are sent by the basic 

monitoring protocol (i.e., a randomized protocol) 

within small groups while few monitoring messages are 

sent between groups. Using the IP address allows the 

hierarchical structure remains unaware of the network 

topology because the division of the network in small 

groups is done dynamically. 

 

5. Conclusions 
 

In the last years, experimental research in failure 

detection has been conducted taking into account large-

scale systems. However, (practical) monitoring or 

failure detection tools are still required. It remains a 

challenge providing QoS guarantees. The solution must 

be as little intrusive as possible and must consider 

issues as network dynamism, scalability, performance, 

consistency, heterogeneity, and application flexibility. 

Determinate a suitable timeout value for monitored 

nodes in large scale systems still remains a difficult 

task. Current solutions usually divide the system in 

small groups and use neighborhood information to 

improve the consistency in the process of failure 

detection. Future works are investigating failure 

detection in multi-application environments. 
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