
Failure Detection in Large-Scale Systems: a Survey

Marcia Pasin

UFSM – Brazil

marcia@inf.ufsm.br

Stéphane Fontaine

INPG – LI, France

Stephane.Fontaine@inria.fr

Sara Bouchenak

Univ. of Grenoble I – France

Sara.Bouchenak@inria.fr

Abstract

Failure detection is a basic service for building

dependable systems. The large-scale distribution of

computing systems naturally makes failure detectors

much harder to build. Moreover, providing QoS (qua-

lity of service) guarantees in this context is a challen-

ging task. The objective of this paper is twofold: (i)

proposing a complete set of classification criteria to

compare different failure detection mechanisms, and

based on these criteria (ii) surveying the main failure

detection solutions for large-scale distributed systems.

1. Introduction

Automatic failure detection is a basic service for

building dependable systems. In large scale systems,

maintaining QoS (quality of service) guarantees for

failure detection [4] is not straightforward due size and

geographical scalability. Automatic failure detection is

usually proposed as ad-hoc solution, and commercial

tools are often relatively static and slow. Implementa-

tions typically address only a small number of QoS

guarantees and have reduced usability.

Large scale failure detection is subject to active

research but still has some lacks. [9, and 14] do not

provide flexibility (i.e. support different types of

applications) and propose a generic way to detect faulty

nodes. [4, 9 and 12] use limited environments. [5 and

6] do not treat size scalability, and [9, 14 and 16] are

not adaptable. The state of the art of failure detection is

discussed briefly in [5 and 10]. [16] compares mathe-

matically and experimentally algorithms across

detection time, mistake rate, network band-width, and

message loss rate. [6] presents an experimental

evaluation of different estimations and safety margins

of a distributed push failure detector. [10] presents a

survey about failure detection for grids but it uses a

limited set of properties. Moreover, properties as

message explosion and scalability are put together at

the same level. [6] focus on implementation choices.

In this context, this paper proposes a complete set

of classification criteria to compare different failure

detection mechanisms and, based on these criteria,

surveys the main failure detection solutions for large

scale distributed systems.

2. Background on failure detection

Failure detectors [3 and 4] are process which collect

information about faulty nodes. They maintain a list of

suspects and a list of monitored nodes, which can be

static or dynamic. A dynamic list maintains a variable

number of nodes and is a more realistic model due to

the ability to deal with network dynamism.

Failure detector finds faulty nodes using two types

of keep-alive messages: heartbeat and ping. Heartbeat

is a message periodically sent from a monitored

process to the failure detector to inform that it is still

alive [7]. If the heartbeat does not arrive before a

timeout expires, the failure detector suspects the node

is faulty. Ping is a message continuously sent from a

failure detector to a monitored process. The failure

detector expects to receive as answer an ack. If a keep-

alive message fails, then a probe (i.e. a series of

messages separated by a time interval) can be used to

verify if a process is really faulty. In practice, it is

difficult to distinguish faulty from healthy processes in

asynchronous environments because message delays

are unpredicted. So, processes which do not answer the

failure detector question are addressed as suspect.

3. Classification for large scale failure

detectors

In this section, we propose a set of classification

criteria to compare different large scale failure

detectors. These criteria are summarized in table 1.

Centralized versus distributed. A centralized failure

detector is a single and monolithic module able to

monitor different processes. They are easy to maintain,

but represent single points-of-failure and are potential

bottlenecks. Distributed failure detectors [2, 9 and 14]

avoid these drawbacks and can be viewed as a set of

failure detection modules, each one attached to a

different process in the system. Upon request, each

module provides its own list of suspect nodes.

Push versus pull. There are two types of failure detec-

tors with regard to keep-alive messages [7]: push and

pull approach. The push approach uses heartbeats and

the direction of both control and information flow is

the same. In pull failure detectors, the direction of the

flows is opposite. Ping messages are used in pull

failure detectors. Authors [1 and 6] claim that heartbeat

approaches have advantages over ping approaches.

Heartbeats require half as many messages as ping

failure detectors and estimation of timeout delay

considers one-way trip messages. One advantage of

ping failure detectors is that time control is executed

only in the failure detector process.

Table 1 – Classification criteria for large scale failure

detectors
Criteria Classification

Architectural organization Centralized or distributed

Keep-alive message Push or pull

Application awareness Active or passive

Liveness information Baseline or sharing

Time values frequencies Adaptive or constant

Application of time values Global or local

Monitoring patterns All-to-all, randomized or

neighborhood-based

Propagation patterns One-to-all, randomized,

circular or hierarchical

Active versus passive. [7] classifies failure detectors

with regard to application awareness. Active protocols

continuously send or receive keep-alive messages. Lazy

or passive protocols [8] take advantage of applica-

tion’s messages and, if data traffic is frequent, it can be

sufficient for failure detection. However, [16] describes

situations in which passive protocols are inadequate. In

these situations, active protocols are required.

Baseline versus sharing. [16] classifies failure detec-

tors with regard to share or not liveness information. In

the sharing approach, a failure detector shares liveness

information of monitored nodes with other modules.

Adjacent nodes are typically used to take advantage of

the network topology. Sharing algorithms differ in the

type of information exchanged, and in the amount of

keep-alive state they maintain. In the baseline

approach, each module independently makes a

decision about a suspect node.

Adaptive versus constant. Keep-alive frequency, time-

outs and other time values can be adaptive or constant.

Constant rate is easy to be applied because it is compu-

ted one single time for each node, for example, when

the node joins the system but has limited efficiency in

presence of network dynamism. Adaptive failure detec-

tors were proposed by [2, 4, 5 and 11]. In [11], the idea

is to use the time of later timeouts to forecast the time

of arrive of the new heartbeats. Computing rates and

timeouts is not a trivial task, and can include some

network information. Adaptive and constant rates can

be computed by mathematical formulas [4, 6 and 15]

or, alternatively using heuristics.

Global versus local. Other issue with regard to time

values is about the application of time values indivi-

dually or globally. A simple approach is use a global

keep-alive message rate for all nodes. This approach

makes sense if nodes are homogeneous and when all

nodes exhibit the same session duration. Alternatively,

if nodes are heterogeneous, individual nodes can com-

pute their own rates.

Before introducing other criteria, we will describe the

operation phases of a large scale failure detector: nor-

mal, propagation and reconfiguration. Failure detec-

tors modules send keep-alive messages to monitored

nodes in normal phase. When a failure is detected,

propagation phase starts and failure information is sent

to other modules. Reconfiguration starts after propaga-

tion, and comprises local and global ones. Local

reconfiguration occurs when the current module repairs

the failure. For example, the failure detector can

remove a node from a group. Global reconfiguration

happens when information about faulty components is

propagated to the other failure detection modules,

which will be able to repair them system view. Two

performance issues in large scale failure detection are

monitoring and propagation patterns. Efficient moni-

toring allows fast detection time whilst fast propagation

helps to maintain system consistency.

Monitoring patterns. Monitoring patterns are related

with communication between failure detection modules

and monitored nodes during normal phase. Monitoring

patterns can be all-to-all, randomized, and neighbor-

hood-based. In all-to-all failure detection, each module

sends keep-alive messages to all monitored processes.

Indeed, for small groups this approach could run

efficiently but the scalability is limited if the number of

processes grows up due massive network traffic.

In a randomized failure detector [9 and 13], each

node maintains a list for each member its address and a

time value used for failure detection. Each node in a

group randomly selects other k nodes to send a keep-

alive message. Gossiping protocol [13] is a special kind

of randomized failure detector based on heartbeats. The

gossiping is very efficient for small groups and has a

multi-level version for large groups. Randomized

failure detectors can improve scalability and reduce

detection time via random and periodic commu-

nication among monitored nodes. Detection time

depends on the probability of being randomly selected.

In the neighborhood-based approach, each

process sends keep-alive messages to adjacent nodes.

Performance is improved by restricting communication

and taking advantage of the locality. Neighbors are

selected statically and do not change over the time

unless a failure had been detected. In this case, a

reconfiguration is required to remove the faulty node

and select a new neighbor, and network information

must be taken in account.

Failure propagation. When a node is addressed as

faulty, this information must be propagated to other

modules. Failure propagation is time consuming in

large scale systems, and different approaches were

proposed to improve propagation time: one-to-all,

randomized, (ring or) circular space, and hierarchical.

With one-to-all propagation pattern, failures are

immediately propagated to all failure detection

modules. Network traffic can be intense if failures and

churn are frequent. The implementation could take

advantage of IP-multicast for performance reasons.

In the randomized propagation pattern, a module

or a group of modules is chosen to receive information

about a failure from the current failure detection

module. Communication is cheaper than one-to-all

propagation pattern but propagation time depends on

the possibility of being selected by another node.

Circular failure detectors [12] arrange nodes in a

virtual ring. Communication is achieved only between

adjacent nodes. Therefore, when a new node joins or

leaves the ring, adjacent nodes must be rearranged.

Another drawback is mapping the virtual ring to the

network topology which cannot be trivial Failure

propagation can be time consuming for large rings.

Hierarchical failure detectors [2, 12 and 13]

arrange nodes into a multi-level hierarchy and partition

monitoring in small groups. Failures are reported along

a tree to improve scalability. Hierarchical failure detec-

tors take into account the network infrastructure to be

efficient and are commonly used in large-scale systems

to connect small groups running the other approaches.

4. Discussion

Based on classification formerly presented, in this

section we survey the main failure detection solutions

for large scale distributed systems.

Sharing liveness information to improve detection

time. Detection time could be beneficiated by sharing

liveness information with neighborhood: the node

which first detects the failure announce to the others. In

[16], experiments were conducted in a network with

2,000 nodes and detection time was almost constant,

even if the number of neighbors grows up. In addition,

the same authors claim that sharing information helps

to tolerate high churn rates.

Adaptive solutions. In large scale networks, adaptive

algorithms [1, 8 and 15] are proved to be more efficient

than algorithms with constant timeout. These

approaches support different application requirements

and network changes. Adaptive approaches have some

open drawbacks: how to find an appropriate

mechanism to tuning the timeout in the failure

detector? How to choose a frequency in which keep-

alive messages must be issued? [15] proposes using a

router and, based on the current network traffic,

dynamically adapting heartbeats in a large scale

system. The authors claim that this solution offers short

response time, good stability and fine robustness.

However, the router can be a bottleneck. A more

interesting solution is the accrual failure detector [11]

which provides suspicious information about faulty

nodes. Currently, there is no experimentation in large-

scale systems but it should be a very promissory

solution because it is application targeted to decide

about the QoS level of the provided information.

Global or local timeout values. Maintaining, calcu-

lating, and tuning a timeout for each process in a large

scale system could be unacceptable. On the other side,

applying the same timeout for local and remote process

could be unacceptable too. If this situation is unac-

ceptable in large scale systems, where failure detectors

could monitor several nodes simultaneously, a hybrid

approach classifies monitored processes in small

groups and addresses for each group a keep-alive rate.

Faulty versus busy nodes. Typically failure detectors

are implemented at the process-level, with one process

per machine and following the crash failure model.

Faulty processes are simulated by the crash of an entire

node. The effect is that a busy node cannot be

differentiated from a faulty node because both are not

able to answer the failure detector before the timeout

expires. [5] applies failure detection at the application-

level. In this approach, a node supports a set of

different applications monitored by one local failure

detector, which satisfies a given level of QoS

previously informed for each application.

Gossiping protocols. Gossiping protocols are less

network bandwidth consuming than all-to-all protocols.

Second [16], multi-level gossiping avoids message

explosion and treats message loss. Gossip protocol also

is efficient because it does not take into account the

network structure. However, authors [5 and 16] report

some drawbacks of this protocol. For example, when a

lot of nodes crashed, the detection time could be very

long in the basic (flat) protocol. In addition, developers

must pay attention when they choose the randomized

function. A non-equitable function could make some

nodes more randomly selected than others and it allows

that some non-popular nodes could undesirably

maintain out-of-date information about other nodes.

Hierarchical protocols. Hierarchical protocols are

proved to be efficient in large scale groups. They could

be applied to circular space failure detectors, all-to-all

failure detectors and randomized protocols. For

example, failure propagation for all nodes in a circular

space is time consuming in large rings and because

messages follow the ring. To allow fast failure

propagation, the ring could be divided in small groups

with a leader per group. If a failure is detected by a

node in a group, its group leader informs all other

group leaders about the failure. Each group leader, in a

high hierarchic, will inform its group members about

the faulty node. [14] connects local groups in a

hierarchical structure avoiding new leader election. The

IP address is used to divide nodes in small groups.

Most monitoring messages are sent by the basic

monitoring protocol (i.e., a randomized protocol)

within small groups while few monitoring messages are

sent between groups. Using the IP address allows the

hierarchical structure remains unaware of the network

topology because the division of the network in small

groups is done dynamically.

5. Conclusions

In the last years, experimental research in failure

detection has been conducted taking into account large-

scale systems. However, (practical) monitoring or

failure detection tools are still required. It remains a

challenge providing QoS guarantees. The solution must

be as little intrusive as possible and must consider

issues as network dynamism, scalability, performance,

consistency, heterogeneity, and application flexibility.

Determinate a suitable timeout value for monitored

nodes in large scale systems still remains a difficult

task. Current solutions usually divide the system in

small groups and use neighborhood information to

improve the consistency in the process of failure

detection. Future works are investigating failure

detection in multi-application environments.

Bibliography

[1] M. Bertier, O. Marin, and P. Sens. Implementation and

Performance Evaluation of an Adaptable Failure Detector.

Proc. DSN 2002.

[2] M. Bertier, O. Marin, and P. Sens. Performance Analysis

of Hierarchical Failure Detector. Proc. DSN 2003.

[3] T. D. Chandra and S. Toueg. Unreliable Failure Detectors

for Reliable Distributed Systems. J. ACM, 43(2), 1996.

[4] W. Chen, S. Toueg, and M. K. Aguilera. On the Quality

of Service of Failure Detectors. IEEE Transactions on

Computers. V.51, N.5. May 2002.

[5] X. Defago et al. On the Design of a Failure Detection

Service for Large Scale Distr. Systems. Proc. PBit 2003.

[6] L. Falai and A. Bondavalli. Experimental Evaluation of

the QoS of Failure Detectors on WAN. Proc. DSN 2005.

[7] P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure

Detectors as First Class Objects. Proc. DOA 1999.

[8] C. Fetzer, M. Raynal, and F. Tronel. An Adaptive Failure

Detection Protocol. Proc. 8th IEEE PRDC 2001.

[9] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On

Scalable and Efficient Distributed Failure Detectors. Proc.

ACM Symp. PODC. Aug. 2001.

[10] N. Hayashibara, A. Cherif, and T. Katayama. Failure

Detectors for Large Scale Systems. Proc. SRDS 2002.

[11] N. Hayashibara, X. Defago, R. Yared, and T. Katayama,

The Accrual Failure Detector. Proc. SRDS 2004. pp.66-78.

[12] A. Mislove and P. Druschel. Providing Administrative

Control and Autonomy in Structured Peer-to-Peer Overlays.

Proc. IPTPS 2004.

[13] R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-

Style Failure Detection Service. Proc. Middleware 1998.

[14] K. C. W. So, and E. G. Sirer. Latency and Bandwidth-

Minimizing Failure Detector. Proc.EuroSys 2007.

[15] N. Xiong, Y. Yang, J. Chen, and Y. He. On the Quality

of Service of Failure Detectors Based on Control Theory.

Proc. AINA 2006. pp.75-80.

[16] S. Zhuang et al. On Failure Detection Algorithms in

Overlay Networks. Proc. IEEE INFOCOM Conference 2005.

