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Un calcul d’ordre supérieur pour composantsreépartis

Résumé: Cerapport de recherche présente un nouveau calcul de processusréparti d’ ordre supérieur,
le Calcul de Cellules. Ce nouveau calcul peut étre compris comme une extension directe du 7-calcul
d’ordre supérieur avec des localités programmables. Le rapport illustre le pouvoir expressif du
Calcul de Cellules par le codage de plusieurs calcul de processus avec localités explicites tels que
Mobile Ambients, le Join calcul réparti et le M-calcul. Le codage de ce dernier montre que |’ on peut
conserver le pouvoir expressif du M-calcul dans un cadre beaucoup plus simple.

Mots-clés: calcul de processus, modéle de programmation, programmation répartie, processus
mobiles, 7-calcul, ambients, objets concurrents.
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A Calculus of Higher-Order Distributed Components 1

1 Introduction

Several distributed process calculi have been proposed in the last decade. We can roughly classify
them in three classes:

e Ambient calculi, such as the origina Mobile Ambients calculus [7, 6] and the subsegquent
variants such as Safe Ambients [17], Safe Ambients with Passwords [20], Boxed Ambients
[5], Controlled Ambients [26].

e Higher-order process calculi such as as Facile/CHOCS [16, 27] and Dz A [30], that model
process mobility via higher-order communication and remote process execution.

e Variants of the first-order asynchronous w-calculus with explicit localities such as the Dis-
tributed Join calculus [11, 10, 9], Nomadic Pict [29], DiTyCo [18], or the 7 1;-calculus [2],
that feature process migration primitives (go in the Distributed Join calculus, spawn in the
my-calculus, m gr at e in Nomadic Pict).

These different calculi suffer from various limitations, which we discuss below. A recent pro-
posal, the M-calculus[25], combines features from calculi in these different groups, but also suffers
from several infelicities.

1.1 Limitationsof ambient calculi

Ambient calculi provide a simple model of hierarchical locations with fine-grained control over
location moves and communications. Thisis expecialy true in the variants with co-capabilities (e.g.
Safe Ambients, Safe Ambients with passwords and Boxed Ambients). Unfortunately, these calculi
suffer from two broad limitations: (1) a difficult implementation in a distributed setting, and (2) no
support for different location semantics.

Difficult distributed implementation. The basic mobility primitives of Ambient calculi (thei n
and out capabilities) require an atomic rendez-vous between at least 2 ambients. Consider the rule
that governsthei n primitive, for instance:

ali nb.P [ Q][ b[R] = D[R | a[P | Q]]

Thisrulerequires, in one atomic step, to move ambient a to ambient b and to rel ease the continuation
P inambient a. Even if one disregards the atomicity requirement on the continuation, such atomic
transitions are costly to implement in a distributed setting, where ambients may be located on differ-
ent machines. Indeed, moving ambient a to ambient b requiresthat ambient b be located and locked
in place for the duration of the move from a to . The high cost incurred by the implementation of
such atomic transitions is clearly demonstrated by the implementation of Mobile Ambients in the
Distributed Join calculus[12]. Thisimplementation suggests that taking Mobile Ambients as abasis
for distributed computation would be inefficient, since a large number of useful applications only
reguire simple non-transactional asynchronous communication.

Recent work on the PAN distributed abstract machine for Safe Ambients [23], reinforces this
point. The distributed implementation of ambients proposed there does away with the problem by
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2 Jean-Bernard Stefani

implementingthei n and out capabilitieslocally (relying on co-capabilitiesand single-threadedness),
and interpreting the open capability as amoveto the implicit location of the parent ambient. In this
interpretation, ambients do not correspond to a physical distribution of a computation, but merely to
alogical one. Furthermore, work on Boxed Ambients successfully argues against the open capa-
bility, which means that the PAN distributed interpretation of ambientsis questionable.

Actually the only meaningful distributed interpretation of ambients we can think of (i.e. where
ambients can be mapped to different machines in a computer network), would consist in applying a
sorting that would distinguish between site ambients, i.e. ambients that correspond to physical sites,
and movableambients, i.e. ambientsthat can be sent between sites. The Mobile Ambients primitives
thus would apply between two movable ambients or between a movable ambient and a site ambient,
but not between two site ambients (or at an understood higher cost than movable ambients). In
this interpretation, we recover asynchrony since communication between sites now corresponds to
the following sequence: an out to get out of the source site ambient, followed by an i n to get
into the destination site ambient (the root ambient plays the role of the network that connects the
sites). Thisinterpretationisstrikingly similar to theinterpretation of localitiesin the Distributed Join
calculus implementation: top-level localities are mapped onto sites (machines) which communicate
asynchronously. If one follows this interpretation, it becomes clear that movable ambients should
be interpreted as higher-order messages that can be exchanged between site ambients and, locally
within a site, between other movable ambients. One would thus be led to amodel of localities where
such possibility would be taken as primitive, since it corresponds directly to the basic capabilities of
asynchronous networks and systems. Thisis actually the path that the M-calculus took and which
we follow again with the Kell calculus.

No support for different location semantics. Another limitation of Ambient calculi is their re-
liance on a fixed semantics for ambients, which changes from calculus to calculus, depending on
the particular phenomenawhich each calculus intends to capture. This, in our view, partly explains
the recent multiplication of Ambient calculi. One should instead consider means, within a single
calculus, to express the different interaction protocols which may characterize different forms of
locations. These protocols could be quite complex. Consider for instance interaction protocols con-
cerned with access control. There are several mechanisms that can be used for controlling access
to given resources, and an even wider range of policies for governing the use of these mechanisms.
Furthermore, in an open environment, it seems clear that one cannot avoid the recourse to run-time
checks and dynamic structures, if only to take into account the need for dynamic modifications of
access control policies. It istherefore difficult to envisage determining once and for al a precise set
of primitives for enforcing access control to distributed locations. Instead, one should expect from a
distributed calculus the ability to define the required access control behavior, much as any other type
of distributed behavior.

1.2 Limitationsof higher-order process calculi

Distributed higher-order process calculi have asynchronous higher-order communication as a primi-
tive, but they have two broad limitations: (1) they lack an explicit notion of location, and (2) they do
not allow arunning process to be interrupted.
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A Calculus of Higher-Order Distributed Components 3

No explicit notion of location. The lack of an explicit notion of location prevents these calculi to
account for potential failures or to provide a basis for access control. Such aspects can be taken into
account at a semantical level, when trying to account for the operational semantics of a distributed
implementation, as is the case e.g. in the CHAM semantics of Facile described in [16]. However,
as with the Distributed Join calculus discussed below, there is a need to support different locality
semantics, corresponding to different failure modes or different access capabilities. The lack of
an explicit concept of locality in such calculi hampers such developments. One could think of
encoding such conceptsin these calculi: for instance, access control could be put in place by means
of wrappers around protected processes, and failures could be modelled by means of interruptible
processes. However, this begs the question of knowing what primitives are required to emulate in
these encodings. Notice, in particular, that the definition of interruptible processes is not trivial to
definein an asynchronous concurrency model. Thisin turn suggests that enhancing such calculi with
appropriate constructs for processinterruption would be the easiest path to follow 2.

No interruptible processes. The second broad limitation of such calculi liesin the fact that they
do not alow for interrutible process. Not only does that hamper the development of failure seman-
tics, but it prevents a running process to be migrated to a different locality, unless the process has
been explicitly defined to allow for such a migration. Thisis a severe limitation for modelling or
programming reconfigurable systems, i.e. component-based systems where components can be in-
stalled, moved or replaced dynamically. While dynamic reconfiguration capabilities can certainly be
programmed in these calculi, such modelling can become quite intricate, and in any caseit still begs
the question of knowing exactly what primitive constructs are required to support reconfiguration.
Inthis case, it seemsthat the ability to identify and manipulate processes as data elements would be
acrucia requirement.

1.3 Limitationsof the DJoin calculus

Variants of the first-order asynchronous 7-calculus with localities suffer in turn from several limi-
tations, typically insufficient control over process mobility and communication, and lack of support
for different location semantics. Asan illustration, let us discuss in more detail the limitations of the
Distributed Join calculus?.

The Distributed Join (DJoin) calculus constitutes an important milestone towards the definition
of an effective programing model for distributed and mobile computation. Itsasynchronouscharacter
and itsresourcelocality property (receptorsare uniquely defined and located), reflect the basic struc-
ture of communication in today’s poi nt-to-point asynchronousinternetworks, and make a distributed
implementation of the calculus effective. Hierarchical locations in the DJoin calculus allows strong
mobility of DJoin processes, and can model (fail-stop) failures - a crucia requirement for practical
distributed programming. The DJoin calculus, however, has several limitations: (1) it offers insuf-

1In a different context, one can note that the disruption operator in the specification language LOTOS was introduced
precisely to allow the modelling of interruptions and failures in an otherwise asynchronous concurrency setting.

2Not all the calculi in this group suffer from the exact same limitations as the DJoin calculus. For instance, Nomadic Pict
and the 7r1; calculus do support a form a dynamic binding, even if they lack programmable locations and offer insufficient
control over mobility and communication. However, we think the DJoin calculus is one of the most interesting calculi in this
class, and certainly apractical distributed programming model ought to be at least as efficiently implementable as the DJoin.
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4 Jean-Bernard Stefani

ficient control over process mobility; (2) if offers insufficient control over communications; (3) it
does not support dynamic binding; (4) it does not support the definition of locations with different
semantics.

Insufficient control over process mobility. In the DJoin calculus, it is not possible to to pre-
vent alocation from migrating to another location. Thus, except in presence of failures, the DJoin
command go(a, x()) which instructs the current location to move to location a, aways succeeds
and cannot be blocked by the receiving location a. This means that it is always possible to move
a running process to a specified location, potentially raising security concerns since this prevents,
for instance, access control checks to occur prior to migrating an active agent (implemented as a
DJoin location). As a minimum, one would require the functional equivalent of Safe Ambients
co-capabilities[17], to effect migration only when the receiving location allowsiit.

Insufficient control over communications. Once aresource (a DJoin cal culus definition) has been
activated, and its channels have been communicated, it is difficult to prevent access to that resource
and to erect the equivalent of a firewall as can be done e.g. in Mobile Ambients [7]. To enforce
more control over communications, one could think of making use of forwarders not dissimilar to
the relay processes employed in [9] for ensuring a fully abstract simulation of the w-calculus in
the Join calculus. However this use would be cumbersome and should be systematically enforced
(e.g. through the use of appropriate syntactic extensionsto the cal culus), which begs the question of
defining a proper control construct in thefirst place.

No support for dynamic binding. By dynamic binding, we refer to the possibility of binding,
a run-time, a channel name in a process to a particular resource, depending on the location of said
process. This featureis important for an effective distributed programming model. In a distributed
setting, one can expect for instance to have multiple copies (or variants) of the same service at
different sites, if only for cost or security reasons (sending a remote message can be more expensive
or less secure than alocal one). A mobile agent should thus be able to access the loca copy of a
service without necessarily having to learn about the local names of the service. Of course, onecould
think of using a name service and asociated name translation mechanisms (which can be encoded
in the DJoin calculus) to implement the necessary indirection between service names and actual
channel names delivering the service, but note that this begs the question of how one can bind to
the local copy of the naming service to begin with, unless one assumes a unique centralized server.
Also, one could argue that dynamic binding appears to be more primitive than this encoding in the
DJoin calculus would imply. Bootstrapping, for instance, usually relies, not on a central repository,
but on well-known names, which are dynamically bound to the (local) objects of interest (memory
locations, name services, etc).

No support for different location semantics. Locations in the DJoin calculus are defined to be
fail-stop. It would be possible to modify the RCHAM semantics of the calculus to accomodate
different failure models (e.g. omission failures, Byzantine failures). However a more satisfactory
answer would provide the means, within the cal culusitself, to define the expected or needed location
behaviour. Thisreinforcesthe first two points above: it should be possible, in the calculus, to define
the exact behavior one expects from a location, whether for modelling particular failure modes, or
for supporting different forms of access control.
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A Calculus of Higher-Order Distributed Components 5

1.4 Limitationsof the M-calculus

A first attempt to remedy the shortcomings of the DJoin calculus while preserving its key properties
(hierarchical locations, transparent routing, implementability) is the M-calculus [25]. In the M-
calculus, programmable locations provide a means to retain the transparent routing of the DJoin,
while offering a high degree of control over communicationsin and out of alocation. The key idea
behind programmable locations is that each location can be endowed with a controller process that
actsasafilter of messages. Since the calculusis higher-order, migrationis merely communication of
messages that carry thunks, i.e. frozen processes. Therefore controlling migration in the M-cal culus
is the same as controlling communications.

While the M-calculus manages to remedy the above shortcomings of the DJoin calculus, it is
plagued by afew infelicities: (1) multiple routing rules, (2) complex passivation construct, and (3)
complex combination of functional, concurrent and distributed constructs.

Multiple routing rules. Because of the structure of programmable locations, the operational
semantics of the cal culus contains several routing rulesthat take care of the different ways a message
can be handled when entering or leaving a location. These rules are variants of one another, and
involve the use of specia channelsfor the interception of messages by controllers. Also, the form of
therules clearly make apparent that routing in the M-cal culus deal with multiple boundary crossings:
between environment and controller (both ways), and between controller and content of alocation
(both ways). Clearly, one would like to find a simpler, more abstract scheme to account for these
different rules and situations.

Complex passivation construct. The M-calculus contains a location passivation primitive whose
semanticsisabit involved and which would probably benefit from being split into simpler constructs.
In particular, passivation plays two roles: to interrupt a running location, and to reify the contents of
alocation in thunks for further handling.

Complex combination of functional, concurrent and distributed constructs. The M-calculus in-
volves acombination of Join calculus and A-cal culus constructs which adds to the cal culus compl ex-
ity. The A-cal culus application and abstraction were added to the M-cal culus to all ow a continuation-
free style similar to the Blue calculus[4], and to form the passivation primitive. While this combina-
tion provides a taste of what the hybridation of afunctional programming language with distributed
programming features would look like, it may obscure the fundamental primitives for distributed
computation.

1.5 Introducingthe Kell calculus

Weintroduce in this paper anew process calculus, called the Kell calculus. The calculusisintended
to overcome the limitations of the previous calculi discussed above.

The basic constructs of the Kell calculus are similar to those of the 7-calculus [22]. It contains
the null process (0), names (a), variables (x), restriction on names (va.), paralel composition of
processes (P | @), and receivers, which we also call triggers (¢ > P). To these constructs, we add a
single notion, that of kell, which takes two forms, a passive one (a o P), and an active one (a e P).

Triggers are close to w-calculus receivers and to Join calculus definitions. In trigger £ P, &
is caled the trigger pattern and corresponds to the join pattern in a Join calculus definition. The
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6 Jean-Bernard Stefani

Kell calculus is actually parameterized by the language used to define trigger patterns, i.e. the Kell
calculus can be understood as a family of calculi that share a common core (described in Section 2
below), but vary on the language of patterns used. In contrast to Join calculus definitions, a trigger
disappears after it has been triggered. Because the Kell calculus is higher-order, receptive triggers,
similar to Join calculus definitions, can in fact be defined. We note £ ¢ P receptive triggers.

Active kells are named processes of the form a e P. Passive kells are named processes of the
forma o P. Operatorso and e are control operatorsin their ownright. A construct of theforma o P
freezes the execution of process P, which can be released though the ¢ handle. In other wordsa o -
is aform of box3 that prevents the execution of processes inside it, and that can be opened through
thea handle. Likewise, a e - isabox that allowsthe execution of processesinsideit, and that can be
manipul ated through the a handle. Coupled with communications, these two operators can be used,
for instance, to implement control operations on processes.

Kells play the role of both locations and messages in the Kell calculus. A kell ao P or a e P
can be interpreted as a message whose destination is ¢ and whose payload is P. A construct like
ao(layoP; | ... | ayoP,) can be seen as a message whose destination in a and which has n
argumentsnamed a4, ... ,a,. Such aconstruct is aso just like a (hamed) record. A kell a e P can
be interpreted as an active location of name a: process P can evolve fregly inside a e P and receive
messages (i.e. other kells) from the environment of a e P.

In contrast to the Join cal culus, we do not impose syntactic conditions on the unicity of receivers,
i.e. severd triggers that match the same set of messages may occur in different kells in the same
execution context. Thisis essential to model dynamic binding features. For this reason, we avoid
the static scoping of the DJoin and use the w-calculus restriction. Ensuring the determinacy of
communication and message routing can be done as in the M-calculus by means of a type system
once the pattern language s fixed.

The intuition behind the notion of kell is that akell corresponds to a component, with data and
behavior parts held by subordinate kells and triggers, that can serve as awrapper or firewall for other
(subordinate) components. Thus, kells of the form ae(a; 0P, | ... | apo P, | &Q1 | ... |
&> Qy), resemble objects, with name a, private data elements a; o P;, and methods ¢ > P;.

Kells can move in and out of other kells, possibly carrying active elements and thus, active
processes. A kell M = a e () can only enter another kell b if thereis atrigger £ > P inside the kell
whose pattern matches a o P (the term P8 below isthe result of the trigger reaction to the receipt of
message M ):

M|be((>P|...) > be(PO]...)

Likewise, akell M canonly leave akell b if thereis atrigger outside the kell whose pattern matches

the message:
EbP|be(M]|...)—> PO|be(...)

A kell thus has full control over its communications with its environment and communication
proceedsin alocal manner, by crossing one kell boundary b e( - ) at atime. In this respect, the Kell
calculus resembles the Seal calculus [28] and Boxed Ambients [5]. Indeed, one way to understand
the Kell calculus is as an asynchronous form of Boxed Ambients where mobility primitives have

30ne can draw an analogy here with the box operator of the PIC action calculus [21].

INRIA



A Calculus of Higher-Order Distributed Components 7

P = 0| a | x| &P | vaP | (P|P) | axP

Figure 1. Syntax of the Kell Calculus

been replaced by higher-order communications. Thus, akell can communicate only with its enclos-
ing parent (the super-kell) and the kells it encloses (sub-kells). Any form of communication with
remote kells, i.e. kells not immediately above or below the current kell in the kell forest, must be
mediated by the super-kell or sub-kells.

To preserve the benefits of transparent routing as in the DJoin, we retain the solution adopted in
the M-calculus, namely to provide for an easy encoding of transparent message routers. Thisin turn
relies on the definition of pattern languagesthat are able to introspect the contents of agiven kell, in
order for akell to decide whether a given trigger patternislocal to the kell or not. Aswill be shown
below, this allows us to encode the M-calculus in the Kell calculus, thus retaining the full expressive
power of the former, but in amuch simpler setting.

1.6 Organization of the paper

The paper is organized as follows. Section 2 defines the syntax and operational semantics of the
Kell calculus. The operational semanticsis given in two forms: areduction semantics and alabelled
transition system semantics, which are shown to coincide. Section 3 presents various examples
in the Kell calculus equipped with a simple pattern language, together with encodings of different
calculi such as the A-calculus, the w-calculus, Mobile Ambients, and a concurrent object-based
calculus. Section 4 introduces a more sophisticated pattern language and presents the encoding of
the Distributed Join cal culus and of the M-calculusin the resulting Kell calculus. Section 5 contains
additional discussion of the Kell calculus and its subcalculi. Section 6 concludes the paper with
some discussion of future research directions.

2 TheKédl Calculus

2.1 Syntax

The syntax of the Kell calculusisgivenin Figure 1. It is parameterized by the pattern language used
to define patterns & intriggers & > P. We assume an infinite set of names, noted N, and an infinite set
of variables, noted V, suchthat N NV = (). Welet a, b, ¢, d and their decorated variants range over
N, and welet z,y, p, g range over V. The set of identifiers, L, isdefinedasL = NU V.

Terms in the Kell calculus grammar are called processes. We note K the set of Kell calculus
processes. Welet P, @), R, and their decorated variants range over processes. We call kell a process
of theformax P. Thenamea inakell ax P iscalled the name of the kell. Kellsof theforma e P are
called active kells. Kells of theform a o P are called passive kells. We call message aKell calculus
process that is a process that is either a name or akell. We let M, N and their decorated variants
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8 Jean-Bernard Stefani

C == - | P | ¢C | vaC | (P|C) | axC
E == - | aeE | vaE | P|E

Figure 2: Syntax of Contexts

range over messages and parallel composition of messages. Parallel composition of messages are
therefore defined by the following syntax:

M,N:=0 | a | axP | (M|N)

Inakell of theformae(... |a; % P;|...| Qx| ...) wecall subkellsthe processesa; * P;.

In aterm vn.P, the scope extends as far to the right as possible. We use P to denote finite
vectorsof terms (P4, . .. , P;). We use standard abbreviationsfrom the the r-calculus: va; .. .a4.P
forva;....va,.P,orva.Pif a = (ay...a,). By convention, if the name vector @ is null, then
va.P = P. We abbreviate a(P,,... ,P,) akel of theformao(lo P, | ... | noP,), where
we consider that 1,... ,n,... belong to N. We aso note Hje, P;, J ={1,...,n} the parellel
composition (P | (... (Pp—1| P)-..)). By convention, if 7 = 0, then [[,_, P; = 0.

A Kell calculus context is aterm C built according to the same grammar than for standard Kell
calculus terms, plus a constant -, the hole. Filling the hole in C[ -] with a Kell calculus term @
results in a Kell calculus term noted C[Q]. We let C and its decorated variants range over Kell
calculus contexts. We make use of a specific form of contexts, called execution contexts (noted E),
which are used to specify the operational semantics of the calculus. The syntax of contextsis given
in Figure 2.

A pattern acts as a binder in the calculus. A pattern can bind name markers, of the form (a),
wherea € N, and process markers, of theform (z), wherez € V. All markersappearing in apattern
¢ are bound by the pattern. Name markers can only match names. Process markers can match any
process, including processes reduced to aname. In aslight abuse of notation, we frequently dispense
with the parenthesis (.) around markers (especially process markers) whenit is clear from the context
which names act as markers®.

A process P matches a pattern ¢ if there is a substitution (i.e. a function from names to Kell
calculustermsthat istheidentity except on afinite set of names), 8, that mapsidentifiersu appearing
asmarkersin¢ (i.e.u € bv(£)) on Kell calculusterms, such that €8 = P (i.e. such that the image of
pattern £ under substitution 6 is the process P). In the Kell calculus, we also make use of context-
dependent patterns. Such patterns typically include a side condition or a guard that depends on the
current evaluation context. Matching for these patternsis defined as for standard patterns, but using
the notion of a context-dependent substitution. A context-dependent substitution 8 is a function that
maps pairs (C, u) of Kell calculus contexts and identifiers onto Kell calculus terms. We note P6 ¢
theimage of theterm P under substitution 6, given a context C.

4Pattern languages used in this paper do not make use of free variables in trigger patterns. As a consequence, this
convention can be employed systematically for process markers since there is no risk of confusing a process marker with a
free variable.
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A Calculus of Higher-Order Distributed Components 9

fn0)=10 fv(0)=0

fn(a) = {a} fv(a) =10

fnz)="0 fv(z) = {z}

fn(va.P)=1n(P)\ {a} fv(va.P)=fv(P)

fn(a* P)=fn(P)U{a} fv(a* P)="fv(P)

fn(P| Q) =fn(P)Utn(Q) V(P | Q) = fv(P)UTv(Q)
fn(esP) =fn(€) U(fn(P)\bn(€)) fv(€sP)=FV()U(fV(P)\bv(e))

Figure 3: Free names and free variables

The other binder in the calculusis the v. operator, which corresponds to the restriction operator
of the w-calculus. Notions of free names (f n) and free variables (f v) are classical and are definedin
Figure3. Wenotel n(P) the set of namesthat occur in process P, and bn(P) the set of bound names
of P (I n(P) =fn(P)Ubn(P)). Wenote P =, @ whentwo terms P and () are a-convertible.

We make the following assumptions on pattern languages:

¢ One can decidewhether apattern matches agiven term and the result of applying asubstitution
on markersto apattern ¢ isaKell calculus process. Generaly, given a context C, we say that
a pattern ¢ matches a kell calculusterm P in context C, if there exists a context-dependent
substitution # which maps names u appearing as markersin ¢ to Kell calculus processes, such
that é0c = P.

e A pattern language is compatible with the structural congruence defined below, i.e. if P = @
then there is no Kell calculus context that can distinguish between P and ().

e Patterns can be sorted in at least two sorts S and H. The sort H corresponds to the sort of all
patterns. The sort S correspondsto a subset of patternsthat can match termsin contexts of the
form (- | P). Wenote¢ : T to indicate that pattern £ is of sort T.

2.2 Reduction Semantics

The operational semantics of the Kell calculus is defined in the CHAM style [3], via a structural
equivalence (actually, a congruence) and a reduction relation. The structural congruence = is the
smallest equivalencerelation that verifiesthe rulesin Figure4 and the rules that state that the parallel
operator | is associative (rule S.PAR.AssOC), commutative (rule S.PAR.CoMM), and that 0 is a
neutral element for the parallel operator (rule S.PAR.NIL). Notethat, inrule S.TRIG, werely on the
existence of a structural equivalence relation on patterns, also noted =.

The reduction relation — is the smallest relation satisfying the rules given in Figure 5. Notice
that we allow pattern matching on active or passive elements within the same kell, and only on
messages external to the kell, or within a subkell. This means that only messages are allowed to
cross the boundary of akell.

Thebasic reduction rules of the calculus R.RED.S and R.RED.H in Figure 5 ook rather involved
but their nature can be easily revealed by considering thederived rulesIN and OUT in Figure6. These
rules correspond, respectively, to the case of messages entering a kell, and to the case of messages
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10 Jean-Bernard Stefani

a ¢ n(Q) a#b
(va.P)|Q=va.P|Q [S:NU.PAR] va.vb.P = vb.va.P [S:-Nu.Comm]
il £=¢
beva.P =va.beP [S:NU.KELL] va.0 = 0 [S.NIL] EoP=(oP [S.Trig]
P=.Q P=Q
P=Q (S.a] m [S.CONTEXT]
Figure 4: Structural congruence
£:S
C=|IN[Q Q=[[aje(N;1Q) @ =[laie@ c=N|I]]N
1 e 1€ [R.RED.§|

EpP|N|Q— Phc|Q

£:H C=M|ae(- |Q|R)
Q=[Jae@;1Q) Q=][ajeQ €c=M|N|][][N

jeJ jeJ jeJ

ae((>P|[N|Q|R)| M —ae(Pfc|Q |R) [R.RED.H]
P P=P P =qQ -
W%Q] [R.CONTEXT] . : g Q=Q [R.EQUIV]

Figure 5: Reduction Relation

leaving a kell. These rules are themselves just extensions of the standard rule of (3) reduction
with filtering: rule BETA in Figure 6. Rule IN and OuT indicate that messages can cross kell
boundaries, and that crossing a kell boundary requires the presence of atrigger on the other side of
the boundary. Note that rules IN, OUT, and BETA deal only with context-independent substitutions,
i.e. they involve patterns that are not dependent on context. Note also that rules R.RED.S and
R.RED.H take into account the possibility for patterns to match parallel composition of messages
occurring at different levels (outside the receiving kell and within subkells of the receiving kell).
The rules R.RED.S and R.RED.H identify the form of contexts that can be used for pattern
matching. This is another assumption we make on pattern languages. patterns of the sort S can
only match terms in contexts that are of the form E[- | M | @], and patterns of the sort H, i.e.
arbitrary patterns, can only match terms in contexts that are of theform E[M | ae(- | N | Q)],
where () is a Kell calculus process, and M, N are paralel compositions of messages. Intuitively,
this means that context-dependent patterns can only introspect locally, i.e. on the contents of the
immediate surrounding kell. More precisely, if £ : S, then {0 ¢ is only defined for C = E[C;]
and £0c = &0c,, where C;, = - | M | Q. Likewise, if £ : H, then £6¢ is only defined for
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=M
ae((>bP | Q)| M —ae(PO|Q)

=M
E>bPlae(M|Q)— Ph|lae@

[IN] [OuT]
=M

goP [0 > pg lBFA

Figure 6: Derived reduction rules|

C =E[C,] and&b¢c = £bc,, whereC, = M |aeo(- | N | Q). We make afurther assumption on
pattern matching, which is consistent with the previous assumption that a pattern language should
be consistent with structural congruence, namely: for all C,C’,¢,¢',6,if C = C' and € = ¢/, then
f@c = 51001 .

2.3 Labelled transition system semantics

We define in this section a labelled transition system for Kell calculus processes. Labels appearing
in transitions take the form K : A, where K is an action context and A is an action. Actions are
defined by the following grammar, where P € K, and where r,e ¢ L :

A = e | 7| a| B | 7aAd | (A4 | AJA
a = axP
B = (6700)

Action contexts are defined by the following grammar, where P € K:
K == - | P | vaK | aeK | K|K

Weuse A, B, C andtheir decorated variantsto range over actions. We use the following conventions
and definitions:

e Forno¢, 0, Cdowehaveéfc = 7, 0r € = e.

e If @ is an empty vector of names, then 7a.A = Aandva. K = K. Ifa = a;...a,, we
identify @ with the set {ay,... ,a,}.

o Let A be asubstitution mapping identifiers to Kell calculus terms. The support of 4, 6.supp,
is{u € L | u8 # u}. The co-support of 4, 8.cosupp, is{uf | u € §.supp}. The names of
f,0.n,is{a € N|a€fbsuppUfn(f.cosupp)}. If §isacontext-dependent substitution
and C isaKell calculus context, note that 8 is aso a substitution; therefore we can likewise
definedc.supp and c.cosupp.

e We consider actions of theform (£, 6 ¢) only with the constraint that bn(¢)ubv (£) = 6.supp,
i.e. the substitution § operates only on bound identifiersin .
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12 Jean-Bernard Stefani

e By definition, e is considered a neutral element for the parallel composition of actions, i.e. for
Al A, A|e=€| A= A. Also, wesetva.c =€ va.T = 7, va.(A) = (va.A), (1) = T,
() =e.

e Fordl A, [A] isdefined by induction as:

[e] =€ [r]=71 [@] =
(8] = B (A=A [A]B]=[A]|[B]
[Pa.A] = va.[A]

e Foral A, |A| isdefined by induction as:

lef =0 Ir|=0 laf =0
18] =0 (A =]A]+1 |A|B| = max(|4],|B])
[7a.A| = |A|

e Foral A, [A] isdefined by induction as:
[e] =€ [T] =7 [a] =«

7]
31 =8 [(A)
[7a.A] = [A]

e Foral A, the set of free namesof A, f n(A), is defined by induction as:

fnie)=0 fn(r)=10

fnlaxP)=fn(P)Uu{a} fn((£0c))=7Fn(¢)Ufn(bc.cosupp)
fn((A4)) =fn(4) fn(A|B)=fn(4)Ufn(B)
fn(@a.A) =fn(A)\ {a}

e Fordl A, the set of free output names of A, f on(A), is defined by induction as:

fon(e) =0 fon(r) =10
fon(axP)=fn(P)U{a} fon((¢6c)) =10

fon((4)) =fon(4) fon(A|B)=fon(A)Ufon(B)
fon(wa.A) =fon(A4)\ {a}

bn(e) =0 bn(r) =0

bn(a) =0 bn(pB) =0

bn({A)) = bn(A) bn(A | B) = bn(4) Ubn(B)
(
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e For dl action contexts K, [K] is defined by induction as:

[1=" [P]=P
[ae K] =0ae[K] [K;|K:]=[Ki]|[K:]
7aK] = [K]

e For al action contexts K, the set of free names of K, f n(K), is defined by induction as:

fn(-)=0 fnK)=fnP) ifK=P
fnlaeK)=fn(K)U{a} fnK|K')=FfnE)Ufn(K")
fn@a.K) =fn(K)\ {a}

¢ We extend the structural congruence = on K to actions and action contexts in the following
way:

If A= B,then A = B.

If A=, B,thenA=B.IfK =, K, thenK = K'.

The parallel operator is associative and commutative.

If ¢ = ¢ and C' = E[C], then (&,0¢) = (¢/,0¢).

If A= B,then(A) = (B). f K=K',thenae K = a e K’
IfA=B,thenA|C=B|C.If K=K’ ,thenK | Ky = K’ | K.

Ifa & fn(B), thenva.A | B = (va.A) | B. Ifa ¢ fn(K'), thenvaK | K' =
(va.K) | K'.

— Ifa ¢ fon(B)andif bn(va.A) Nnbn(B) =, then (va.A) | B=7va.A | B.

—IfA = B, thenva.A = va.B. If K = K/, thenva K = vaK'. Foral A4, K,
va.A =va.Aandva.K = va.K.

— If P =Q, thenK[P] = K[Q].

With these conventions and definitions, note that if A # €, 7, |[A| = 0 and if no action § occurs
in A, then [ A] isaKell calculusprocess. Likewise, if A # €, 7, |A| < 1andif noaction 8 occursin
A, then [[A]] isaKéll calculus process. Also, if K is an action context, then [K isaKaell caculus
context.

The labelled transition system associated with Kell calculus processes is defined as the labelled
transition system whose transition relation is the small est rel ation satisfying the rules givenin Figure

7, upto a-conversion (i.e. if P =, P' and Q' =, Qand P’ K4, o thenp K14, ().
We can now consider the correspondence between the reduction semantics and the labelled tran-

sition system semantics of the Kell calculus. We first have that the structural congruence = respects

the transition relation. More precisely:

Theorem1 1f P K4, prand P = Q, then there exist ', K, and B such that @ K5,

Q.,.P =Q"'K'=K,and A = B.
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14 Jean-Bernard Stefani

P:e

P P[L.NULL] aeP:aeP

ae P O[L.ACT] aoP :a0P

aoP ——— 0 [L.Pass

K:A
P—— P adfn(A)

va.K: A
C [L.TRiG] va.P —— va.P'

[L.NU.NF]

K:A , K:A ,

P—— P P—— P a € fon(A)
ae K : (A) , va.K :Va. A

a8P —— qeP vg.P ——— P

[L.Nu.F

!

P Bl i—01 A=t = Aj—c it
bn(A;)Nbn(Az) =0 - occursat most oncein K; | Ko bn(A;)Nfn(P;) =0 i#j

KI‘KQ:A1|A2 , ,
Pr| P Pp | Py

[L.PAR]

K:A
P —— P [A]=A1](§00) | A2

£:S C= |—K-| ‘Al| <1l1i=1,2 E0c = [Al |A2] c= bn(A) [L.RED.S

P:T _
P —— veP

K:A
P —— P JAl=A3 (A1 ] (&0c) | A2) |As €:H  C=[K]

Al <1 ¢=1,2 Al = j = 3,4 =A ALl A A c= A
|4 <1 i=1, |Aj| =0 j=3, 0c=As|[A1|A2]] A4 © bn()[L.RED.H}

P:T _
P —— veP

Figure 7: Transition rules

Proof: See Appendix. |

The exact correspondence between the reduction relation and the transition relation is given by the
following theorem:

Theorem 2 Forall P,P', P X7, — prifandonlyif P — P'.

Proof: See Appendix. m|

3 Discussion
We begin this discussion by considering a simple pattern language for the Kell calculus. The syntax

of simple patternsis given in Figure 8. Any name or process variable appearing in a simple pattern
¢ is assumed to have a unique occurrence in . Note that such patterns essentially correspond to
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3 Pl &l¢

p = a | axu | axp | ax(p|p)

u a | (a) | (z)

Figure 8: Syntax of simple patterns

fn(a) = {a} fv(a)=10 bn(a) =0 bv(a) =0
fn(a=b) = {a,b} fv(axb) =10 bn(axb) =0 bv(a*b) =0
fnax () ={a} fv(ax(b)=0 bn(a = (b)) ={b} bv(ax () =0
fn(ax(z)) = fv(ax*(z))=0 bn(a = (z)) =0 bv(a x (z)) = {z}
fnlax&)=fnE)U{a} fv(ax&)=Ffv(€) bn(axg&) =bn(&) bv(ax)=Dbv(f)

Figure 9: Free names and bound markers for simple patterns

(parallel compositions of) polyadic messages. The resulting version of the Kell calculus is thus
among the least expressive of the Kell calculusfamily. Nevertheless, aswill be shown in this section,
the higher-order kell operators yield considerable expressive power.

Free names (f n), free variables (f v), bound names (bn) and bound variables (bv) for smple
patterns are defined in Figure 9. Matching for simple patterns is defined by extending standard
substitutions # on identifiers to context-dependent substitutions thus: VC £6 ¢ = £6. The structural
congruencerelation on simple patternsis easily defined by the following rules: the parallel operator,
|, is associative and commutative; if two patterns £ and ¢ are equivalent, £ = ¢, thenso area * £ and
a x (; if two patterns differ only by a-conversion of their bound names or bound variables, then they
are equivaent. Finally, all simple patterns are of sort S.

In this section, we consider, among other things: the definition of receptivetriggers; the ability to
define various forms of mobility and control, including Mobile Ambients-like constructs; encodings
of the w-calculus and of the A-calculus; the definition of concurrent objects.

3.1 Messagesand reductions

As discussed in the introduction, kells in the Kell calculus can serve both as locations and as mes-
sages. For example, the configuration C' below has two reductions:

C=aebezr>0)|be(aexz>0)

C —>ael C —>be0

In the first reduction, kell a is the locus of computation, and kell b plays the role of a message,
received by the trigger in a. In the second reduction, the roles of a and b are reversed.
Note that processes reduced to a simple name can also be received by triggers. Thus, we have
the following reduction: a | (a>a) — a. (Alternatively, one can think of the process a as being an
abbreviation for the process a e 0).
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Simple patterns do not distinguish between the position of messagesin an execution context. For
instance, if pattern £ matches message M, i.e. there is a subgtitution 6 such that £6 = M, then we
have the following reductions:

ae(>P|Qn) | M — ae(PO|Qhn)
EbP|M|Q — PH|Q
§l>P|ao(M|Q1) — P9|aOQ1

It is however possible to obtain the effect of a pattern |anguage that distinguishes between the above
three situations by using kells which act as wrappers. If £ isasimple pattern, define ¢ by:

ax(b)=axb GFT =ax*x
axf=axf &l&=&|&

We can obtain a distinction between the different situations above with the following high and low
Wrappers:

vhi.he(HR| Qs | ae(hi gh(€)>P |1 ow(&)>P |¢6P | Q| 1e(LR|be@Q))))

where HR and LR are simple routers defined by:

HR = ¢ > hi gh(¢) LR=¢>1 ow(¢)

The two routers ssimply transfer messages on specia channelshi gh and | ow, which help indicate
to the actual receiver the origin of messages (from the outside of the kell or from a subkell).

3.2 Receptivetriggers

Ascanbeseeninrule R.RED.S, atrigger disappearsafter it has been triggered. Because the calculus
is higher-order, however, it is possible to define receptive triggers, i.e. triggers that are preserved
during a reduction (similar to Join calculus definitions). Receptive triggers are important because
they provide a way to define recursive processes (receptive triggers correspond to Join calculus
definitionsand to replicated output in the r-cal culus). 1t isknown from the work on CHOCS [27] that
recursion can be defined, in a higher-order setting, by means of process passing and communication.
We show below how to define receptive triggers in the Kell calculus. Let ¢, £ and P be such that
tZfn(§)ufn(P),anddefineY (P,¢&,t) by:

Y(P ¢ t)=E|toy > Ply|toy

Let A(P,&) = vt.Y(P,&,t) | toY(P,§,t). LetC, Q, Q', R, M, N and 6 be as in the premises
of rule R.ReD.H. By rule S.q, it is always possible to choose ¢ suchthat ¢t ¢ f n(N) Ufn(M) U
fn(@Q)ufn(R)Ufn(Pfc). Then, by rules S.NU.KELL and S.NU.PAR, we have:

ae(A(PE) | N|Q|R)| M=vtae(Y(PE,t)|toY (P 1) | N[Q|R)|M

By construction and by rule R.RED.H we have: vt.ao(Y (P, £, t) | toY (P&, 1)) | N | Q| R) |
M — vt.ae(POc | Y(P,&,t) | toY (P&, t)) | Q| R). Sincet & f n(P)uUf n(Q)Uf n(Péc), we
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£:S
C=-IN[Q Q=][aeV;1Q) Q=][aseQ €c=N|]][N

EAS JjEJ ies
EoP|N|Q—=€oP | Phc | Q [R.REC.G

£:H C=M]|ae(- |Q|R)
Q=[JaieV;1Q) Q@ =]]ajeQ; &c=M|N|]]N;

JjeJ JjeEJ JjeEJ
Te€PIN[QR) M > asEoP | Pl @ | R) [R-Rec.H]

Figure 10: Derived reduction rules ||

havevi.ae(POc | Y (P,&,t) | toY (P&, t) | Q' | R) = ae(Plc | vt.Y (P, t) | toY (P&, t) |
Q' | R) = ae(POc | A(P,¢) | Q' | R) by rules SINU.KELL and S.Nu.PaR. Thus, by rules
R.CONTEXT and R.EQuIv,

ae(A(P.§) [N |QIR)| M — ae(A(P¢) | Pbc | Q| R)

We can reason similarly with rule R.RED.S. We have just shown that the construct A(P, ) acts
exactly as a receptive trigger. More precisely, let us note £ ¢ P the construct A(P, £): we have just
shown that the reduction rules R.REC.S and R.REC.H in Figure 10 are derived rules of the Kell
calculus.

3.3 Encoding the 7-calculus and the A-calculus

The 7-cal culus and the \-cal culus constitute standards of expressive power. They can be simply and
directly encoded in the Kell calculus. This is obviousin the case of the asynchronous 7-calculus,
but, because of its higher-order character, the Kell cal culus can also encode directly the synchronous
m-calculus. The synchronous (polyadic) 7r-cal culus with positive name matching and input guarded
sums (cf [24] for adefinition) isindeed adirect sub-calculusof the Kell calculus. A simple encoding
is given below, where we assume that the names 1, ... , n, ..., and ok do not appear freein P, P;,

Q.andwhereb = by ...b,, bl =b] ...b], ,j € J.

[ab.P] = a{[P],b1,...,bn)
[~.Pl = vkk |(ke[P])
[a=bP] = wvi(loa>[P])|lob
[va.P] = valP]
P1Q1 = [P1|IQ]
['P] = vkk |(k o [P]]k)
[Y a;®).P1 = wvkk | [k [ajz;,®l),...,0%)) > [P] ]2
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An encoding of the A-calculusin the Kell calculus can be obtained indirectly through the encoding
of the w-calculus, however a simpler and more direct one is given below, where we assume that the
names A, f un, ar g, and abs, do not appear freein P, Q:

[z] = =
[Ax.P] = abso(Aoz>[P])
[PQ] = wvfunarg.App|fune[P]|argo[Q]
App = fune(absop)|argog > p|Aog

We have the following reductions:

[(Az.P)Q] = vfunarg.App|fune(abso(loz>[P]))]|argo[Q]
vfunarg.doz>[P] | Ao [Q]
vfunarg.[PI{[Q]/z}
= [PI{[Ql/=}
It is easy to prove by induction on the structure of P that [P{Q/z}] = [PI{[Q1/z}, hence

we have: [(\z.P)Q] —2= [P{Q/x}]. Note that the above encoding enforces as call-by-name
evaluation strategy.

—
—

3.4 Defining objects

With the kell construct as a generalized (named) record construct, one can obtain various forms

of objects directly. To illustrate, we show here how one can simulate concurrent objects directly

inspired by the concurrent object calculus of Gordon and Hankin [14], itself inspired by the object

calculi introduced by Abadi and Cardelli in [1]. Thissimulation is quite close to the encoding of the

Gordon and Hankin concurrent object calculusin the Blue cal culus with records proposed in [31].
We consider objectsto consist of named records of the followingform (I,, = {1,... ,n}):

a— [l = C(a) fi€)]

where a is the reference of the object, and [; are the methods of the object. There are three basic

operationswhich are available on objects: invoking amethod a.l ;, updatingamethod a.l; < () f,
and cloning an object cl one(a). The informal operational semantics of these three constructs is
given by the following rules, inspired by the operational rules in [14] (for simplicity, we omit the
continuations returned as part of the different operations). Letd = [I; = ¢(x;)fi€]andd’ = [I; =
C(@)f,1i = (i) ;<" 17] , we have:

(a—d)|al;y = (a—d)| fi{a/z;} [INVOKE]
(awd) | (alj < C(x)f) = (a > d) | (a — d') [UPDATE]

(a—d)|clone(a) = (a+—d) | vb.(b— d) [CLONE]

Such behavior can befaithfully mimicked in the Kell calculuswith simple patterns, using the follow-
ing definitions, where we recall that m(V7, ... ,V,,) isan abbreviationfor mo(1oVy | ... | noV},),

INRIA



A Calculus of Higher-Order Distributed Components 19

and where we assumethat thenames1,... ,n,..., minv,upd, cl one,r and make do not occur
freeinany of the f, f;, 1, I;:
[a—d] = Env|Qject(a,l;,Meth(a,l;, b, fi)) "
[a.ll = ma,inv,l)
[a.l<((z)f1T = ma,upd,l,(ro(loz)>[f]] a))
[cl one(a)] = ma,clone)
with the definitions:
Qoj ect (a,1i,¢i)"“" = ae(Cone(a)|al| [] I nvokei(a)|Updatei(a) |Liog;
i€l
I nvoke;(a) = ma,inv,l;)|liog)| aor{lica)|q|li|liog
Updat e;(a) = ma,upd,l;,p)|liog| a o liop| a
Clone(a) = ma,clone)| a | []liog o

i€l
[[toa | a| vb. make(d,li,q:)<"™
1€1y
Meth(a,l,b,f) = r(lo(b) > [f1] a

and where the environment process Env for routing messages between objects and activating cloned
objects, is defined thus:

Env. = Router |Factory
Router = (moz o mozx)
Factory = make((b),(l),q) ™ o Object (b,1;,q;)' €™

The process Rout er just helps forward messages between objects. The process Fact ory is
responsible for creating new objects upon request.

3.5 Process control

Notice that the context (a e -) is an execution context. Processes in this context can freely execute.
Asrule IN reveals, they can also receive messages from their environment. Combining trigger and
kell constructs provides different degrees of control over the execution of a process:

e Within a o P, process P is passivated, but it remains available for reactivation by its environ-
ment. Reactivation can take place, for instance, in a context of theform - | (a oz > x), where
the following reduction is valid:

aoP | (aczx>z)—> P

e Within a e P, process P is active, and can communicate with its environment. In a context of
theformaex>aox | -, process P can be passivated through the following reduction:

(aex>aocz)|aeP — aoP
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a e P isalso amessagethat allows process P to movefromkell to kell while remaining active.
Thus, a ¢ P can model a mobile agent that can interact with its environment (if P contains at
least one trigger) while roaming a network of kells.

e Withinbe(a e P), process P isactive but it cannot communicate with its environment. Thisis
another exampleof amobile agent, however in this case the agent is prevented from interacting
with its environment while moving.

e With simple patterns, within va b.be(a e P), with a,b ¢ f nP, process P is active but it is
totally isolated from its environment: it can no longer communicate with it and can no longer
be manipulated by it.

e With simple patterns, within va b.b e(a o P), process P isinactive, and can no longer be ma-
nipulated by its environment.

Note that, with simple patterns, there are several forms of processes, apart fromva b.b e(a o P),
that can be intuitively equated with 0. Thisis the case, for instance, of vab.be({ | ae x> P). Even
though pattern ¢ may match external messages, the whole pattern expects a message of the form
a ¢ () which can never be present. Thus, thereis no Kell calculus context with simple patterns that
can distinguish between va b.b e(¢ | a ez > P) and 0.

Each kell in the Kell calculus can be endowed with its own control behavior (with respect to
the processes it contains) through the use of the box operators. Consider akell of the forma e(P |
c e ()). Through the c handle, process P can control the execution of @). For instance, if P =
Kil'l {(a)|ceq > 0,thenwe have:

Kill{a)|ae(P|CceQ)—ae0

Message ki | | e a can be seen as an explicit termination command or as modelling the occurrence
of afailure of kell a. Along the same lines, with

P = (suspend(a)|ceg) o coq R=(resunmef(a)|Coq) o Cegq
we have the following reductions:
suspend(a) |ae(P|R|ceQ) > ae(P|R|CoQ)

resume(a) |ae(P|R|co@) —>ae(P|R|CeQ)

which mean that (P | R) can suspend or resume the execution of (), depending on whether @) is
active or suspended.

Notice that it is impossible for a kell a o P to “commit suicide”, i.e. to become 0 by means of
purely internal reductions of process P, as the kill example above suggests. Indeed, if P — @
then we haveae P — a e (), sO the best that can be achieved is a reduction to a e 0, which, as a
message, can still be handled by the environment. However, akell can signa its willingness to be
garbage collected, e.g. by emitting amessage of theformcol | ect (...). A processsuch as process
Col | ect or below can be used for that purpose. Notethat it relies on the cooperation of the kell to

INRIA



A Calculus of Higher-Order Distributed Components 21

be collected and on an authentication scheme using a password k (there could be several kells named
a in agiven context).

Collector = collect{(a),(k),p) ©(aex >
vrb.F(a,k,r) | be(aex | query(a,k,r) | r{a,k, (b)) >r{a,k,b)))
(r{a,k,yes) > (bey > p))
| (r{a,k,no) > (bey > col | ect{a,k) | aez))

Fla,k,r)

3.6 Encoding Mobile Ambients

The combination of box operators and higher-order communication provides for various forms of
mobility. For instance, the Kell calculus can emulate the different mobility primitives of Maobile
Ambients [7]. The encoding given below illustrates this. The encoding is deadlock-free, but it
relies on a simple locking scheme that reduces the parallelism inherent in ambient reductions, and
it exhibits divergence (potentially infinite idle reduction loops). An encoding that does not suffer
from these latter two limitationsis certainly possible (e.g. one could mimick the protocol employed
in the Join calculus implementation of ambients described in [12]) but it would be more complex.
The encoding uses the process Col | ect or defined above to garbage collect kells that have been
opened, and A-cal culus constructs (A abstraction and application) as defined in Section 3.3. Since, in
M obile Ambients, there can be several ambients bearing the same namein parallel, authentication by
Col | ect or isrequired prior to collecting a given ambient. In order to simplify the presentation of
the encoding, we will present it using an extension of simple patterns, namely simple patterns with
direction. This pattern language allows trigger patterns to discriminate between messages coming
from the outside of the receiving kell, and from messages originating from a subkell of the receiving
kell. We have seen in Section 3.1 how such a discrimination could be realized with simple patterns.
Using similar constructs, we can thus obtain an encoding of Mobile Ambientsinto the Kell calculus
with simple patterns. However, the encoding below is more readable. Simple patternswith direction
are defined by the following grammar:

Tl op | €€

where p refersto the p productionsin the grammar of simple patternsin Figure 8. Simple patterns
with direction are a subset of advanced patterns defined, together with the associated semantics of
matching, in Section 4.1.

The encoding of Mobile Ambients in the Kell calculus with simple patterns (with direction) is
defined as follows.

£ == p | op

[ol =0 [i na.P] =i n{a, [P])
[vn.P] = vn.[P] [out a.P] = out {a, [P])
[P|Ql=[r]|IQ] [opena.P] = open(a, [P])

['P]=va.a | (a > [P]]a)
[a[P]] = ae(A(a) | amb e [P]) | AmbEnv
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Ala) = wvt.t |S(a,t)]|T(a,t)|F(a,t)]|NQYa,t)
S(a,t) = (t |in{,p), >
anbez > vk.col | ect {(a,k,t o(a,i n,m,p, 2)) | YQa,k))
|t ] out (b,p), >
anbez > vk.col | ect {(a,k,upo{a,out ,m,p, z)) | YQa,k))
T(a,t) = (t |anbez|open(a,p)’ >
vk.col | ect (a,k, (2 | p)) | YQa, k))
| (t |[to(n,in,a,p,z)' |ambez o
(vk.meke(n,p | 2, k) | (k(y)" > ¢ |ambe(z|y)))
| (t |up(n,out,a,p,z), ©
amb ez > (vk.make(n,p | z,k) | (k(y)" >t |anbez)))

YQa,k) = query(a,k,(r)) > r{a,k,yes)
NQa,t) = t |query({a,(k),(r)) ot |r{a,k,nO)
F(a,t) = (t | to(n,in,m,p,x), ©
anbez

(vk.make(n,in(m,p) | z,k) | (k(y)' >t |anbe(z | y)))
| (t | Up(n,OUt 7m7p71'>l 4

ambez >
(vk.make(n,out (m,p) | k) | (k(y)" >t |anbe(z|y)))
AmbEnv = wt.(Ct C)|Col | ector
C = At f.Factory(t) |t (f)
Factory(t) = t{(f)|mke(n,p,k), ©

k(va.(fa f)| Col | ector | ne(A(n) | anb ep))

A few comments on this encoding are in order. The encoding of the ambient construct, a[P], is
typical of encoding of calculi with explicit locations. The process A(a) in the encoding can be
understood as implementing the interaction protocol that is characteristics of Mobile Ambients. En-
coding of other forms of ambient calculi would involve defining different variants of this process.
Process AnbEnv is a helper process that characterizes the environment required by Mobile Ambi-
ents, and that provides garbage collection and factory facilities. The auxiliary processes A(a) and
AmbEnv are defined below. We use alock t per ambient to avoid conflicts between concurrent
moves. Process S(a,t ) starts the execution of i n and out moves at the source ambient. Process
T(a,t) implements the open primitive and terminates the execution of i n and out moves orig-
inated at a source ambient within process S. Notice that all the ambient primitives lead to the the
destruction of the source ambient, which islater recreated at the end of execution of thei n and out
primitives. Process F(a, t ) non-deterministically aborts transactionsimplementing thei n and out
moves to avoid unduly blocking an ambient (and thus preserving the mobile ambient semantics).
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This process is the source of divergence in the encoding. Such divergence can be removed at the
expense of a slightly more complex encoding, e.g. where each controller process A(a) maintains a
list of names of current sub-ambients.

3.7 Distributed interpretation

At this point, some comments are in order to justify our belief that the Kell calculus constitutes a
distributed processcalculus. The mainissue hasto do with theimplementability of thereductionrule
R.RED.H in adistributed setting and the existence of potentia conflict situations. Rule R.RED.H is
locdl in that it involves asingle receiver located at a single kell, but consider the following instance
of derived rule IN:

ae(bexdz|Q)|beP —»ae(P|Q)

In this reduction, one must first decide that the receiving kell isthe a kell and that b playsthe role of
amessage (process P may containtriggersready to receive messages of its own). However, notethat
the decision to consider b asamessageisapurely local one. It involvesdeciding at b that b should be
sent to the trigger at a and not considered for the reception of messages of its own. Thislooks like
a standard execution or scheduling decision, which does not require a distributed consensus to take
place, and which requires only the knowledge of the fact that thereis a receiver ready for b located at
adifferent kell at thislevel of the system. Such knowledgeisin turn not dissimilar to the one that a
given referencein adistributed system isin fact a reference to a server, which can receive messages.
More problematic is the following situation, where it is possible to apply both derived rule BETA
(with the trigger on a) and derived rule OuT (with the trigger on b):

aez>z | ae(b(P)| Q) | boy>y

Here again, however, notice that to choose between the BETA reduction and the OuT reduction, all
that isinvolvedisalocal choiceat kell a, namely to send kell a to thetrigger on a, or to send message
b (which is clearly a message, in this case, since it corresponds to a passive kell) to the trigger on
b. Provided a and b are identified as potential receivers, then only local actions are required to
implement the possible reductions (a scheduling choice at kell a, and a reception at trigger a or at
trigger b). A yet more problematic case occursin the following situation:

ce(aex>z) | ae(beydy | Q) | be P

In this case, there are two possible reductions, both relying on derived rule IN (the b kell received
a kell a onthe b trigger, and the a kell received at kell ¢ onthe a trigger). Thereis still the need of
alocal choiceto make at kell a, either to send it to trigger a, or to make it available for the receipt
of messages on trigger b. But the situation here is similar to the situation with the IN rule of Mobile
Ambients, or, for that matter, with the go primitive of the Distributed Join calculus: moving kell b
to kell « would require locking kell a in place in order to make the move atomic. Thisis made more
evident in the following situation:

ce(aoz>z) | ae(coex>x)

If both scheduling decisions at kell ¢ and kell a are to consider the kells as messages, then the
configuration is deadlocked whereas one would expect at least one of the two possible reductions
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(using rule IN) to take place. We thus see the need to implement kell mobility in the general kell
calculus by means of a distributed transaction mechanism with deadlock detection or prevention.

Fortunately, the potential cost of general kell maobility need not be paid for every communication
asin Mobile Ambients, and we can have atruly distributed interpretation of the calculus. First, notice
that passive kells a o P should always be interpreted as standard asynchronous messages. No such
conflict situations arise when communication between kells relies on passive kells. Thus, systems
that do not require communication of active kells do not pay the cost of a distributed transaction for
each communication. Obviously, routing an asynchronous message in presence of kell mobility isa
non-trivial business, but in amodel as general asthe Kell calculus (or in an actua distributed system,
for that matter), that is only to be expected. We can formalize this restriction of using passive kells
only as messages crossing kell boundaries as a subcalculus of the Kell calculus, which we call dK.
Messages that cross kell boundariesin dK take the form given by the following grammar:

M,N:=0 | a | aoP | (M|N)

The operational semantics of dK is given by the same structural congruence and reduction rules as
the full Kell calculus, except that rules R.RED.S and R.RED.H are modified thus:

£:S
C=-INIQ Q=J[aie™|Q) @Q=[[weq; ¢c=N|[][N
JjEJ JjEJ JjEJ
GPIN|Q Pl | Q [DK-ReD-S)
_ &:H  C=Mlae(-|Q|R) o
Q=[[ae™N;1Q) Q=]]aieQ ¢c=M|N|[][N;
jes jel J€7__ IDK.RED.H]

as(§>P|N[Q|R) [ M —ae(Pfc|Q" | R)

IndK, each active kell should be understood primarily as alocus of computation (alocation), possi-
bly under the control of a surrounding behavior (i.e. a set of triggerslocated immediately outside of
the active kell under consideration). In this calculus, we can no longer have conflict situations such
as the two last ones identified above, which do not have any reduction in dK. Certain conflicts still
exist indK, but they are harmless. As afirst instance, consider configuration C' below:

C=aez>0|ae(boxp>zx)]|boP
Configuration C' has the following two reductions:
C —boP C —aezx>0|aeP

These two reductions reflect non-determinism inherent in the situation, which can be readily in-
terpreted, for instance, as a choice between the receipt of a message on channel b and a failure of
location a. Such conflicts appear to us to be non problematic for (a) they reflect inherently non-
deterministic situations that should be captured in a distributed process calculus, such as a potential
occurrence of afailure, and (b) they involve pure messages and control behavior located at a higher
level in the hierarchy of kells, which is consistent with a view of locations being organized in a
hierarchy of control, and which can readily be implemented even in a ditributed setting (although at
more expense than a simple asynchronous message communication, but that is only to be expected).
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Another potential conflict situation in dK is exemplified by configuration D below:
D=qaez>0|aez>z|aeP
which has the following two reductions:
D—aexz>0|P D —aezp>zx

Here again, we do not see this situation as problematic for the conflict takes place between two
triggers placed at the same location. If the location is interpreted as a computing site, then the
conflict is purely local and can be readily implemented as amere scheduling decision. If the location
is to be interpreted as a network, then the a triggers correspond to the modelling of some inherent
non-determinism in the network behavior.

Interestingly, we do not use lose muchin expressive power when going fromthe full Kell calculus
to dK. All the encodings given in previous sections are actually encodings in dK. The subcal culus
dK thus appears as an interesting basis for an implementable distributed calculus.

Second, we can envisage relying on type systems to enforce required safety properties such as
the linearity of certain names to ensure the determinacy of routing as is done, in a similar higher-
order context, in the M-calculus [25]. We leave the study of such type systems for future research.
Third, and most importantly, note that the interaction behavior of a kell depends on the environ-
ment (i.e. surrounding kell) it is placed in. The Kell calculus, contrary to Mobile Ambients, allows
the coexistence of different forms of interactions between kells, as well as different communication
environments. In particular, one could think of a particular environment that would only allow the
exchange of passive kells, thus enforcing the constraint that characterizes the dK subcalculus, and
the creation and destruction of sites, i.e. kells corresponding to different spatial loci of computation.
All subkells of such sites would then be deemed local to the site. Furthermore, messages exchanged
between sites could be deemed to bear an address name, i.e. a name that would be unigue among
the sites and that would at any time be associated univocally with one site only, again a linearity
property that could be enforced by a type system. This interpretation, which is strikingly similar
to the distributed implementation of the DJoin calculus and of the M-calculus, allows a direct im-
plementation in a distributed setting. None of the conflict situations described above exist between
sites, and conflict situations involving non site kells can be resolved locally, within a site. Commu-
nication between sites can thus be mapped to standard point-to-point asynchronous communication,
with more complex communication protocol s needed only when there is kell mobility between sites.

4 Advanced patterns

We introducein this section amore sophisticated pattern languagefor Kell calculustriggers. Patterns
defined in this section provide more introspection capabilities than simple patterns. Such introspec-
tion capabilities can be leveraged for programming various forms of routing and control, by means
of wrappers, interceptors, and the like. We illustrate this through encodings of the Distributed Join
calculus and of the M-calculus.
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Figure 11: Syntax of advanced patterns

4.1 Syntax and semantics

The syntax of advanced patternsisgivenin Figure 11. Advanced patternsare built on simple patterns
extended with direction and with the ability to do some introspection on the content of the current
kell. Intuitively, apattern of theformp’ :: = matcheskellswhich match the pattern p, providedthat in
the current eval uation context they match the indicated direction and that the predicate 7 is satisfied
(note that the scope of variables appearing in pattern p extendsto predicate 7). We abbreviatea # b
the predicate —(a = b), a ¢ T the predicate —(a € T), a ¢ Dthe predicate —(a € D), and 7 V
the predicate (71 A m2). Theintuition behind the predicates givenin Figure 11 isasfollows:

e Predicate a = b istrue when namea is equal to nameb.

e Inagiven context C = ce(- | @), predicatea € Kis true when there is a subkell in kell ¢
that has name a, or when the predicate is true, recursively, of a subkell of c.

e Inagivencontext C = ce(- | ), predicatea € be T is true when thereis a subkell b of ¢
such that predicate a € T istrue of thiskell.

¢ In a given context C, a pattern of the form p :: —7 matches a kell which matches the p
pattern provided the predicate = does not hold in the context. Likewise, a pattern of the form
p = m A my matches a kell which matches the p pattern provided both predicates 7, and 7
hold in the context.

Theformal semantics of advanced patternsis defined as follows. Matching for advanced patterns
is defined as aconservative extension of that of simple patterns. More precisely, a context-dependent
substitution @ is a standard substitution mapping name markers to Kell calculus processes that is
extended to work in contexts C as defined below:

(pumbc=M = pd=M A ¢(M,p',C) A ¢(x0,M,p,C)
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l;/vherez/) and ¢ are predicates defined inductively on all contexts of theformC = N | ae(- | Q)
y:

Y(M,p,C) = true
b(M,p1,C) = C=N|M|as(- | Q)
$(M,p,,C) = C=N|as(- | be(M|Q)|F)
$(M,p,C) = C=Nlas(- | M|R)
obeK M,p,C) = C=N|ae(- |E[beR])
pbecie...cnoK,M,p,C) = C=N|ae(-|cie...(chneEbeR]|Qn)]|...| Q1)
¢p(beP,M,p,C) = C=N]|as(-|E>PR|Q) A befn(E)
pbecie...cno K, M,p,C) = C=N|ae(-|cie(...cne(§PR|Qn)]|...|Q1)]|Q)
Abefn(g)
ba=bM,p,C) = (a=b)
¢(—\7T,M,p,c) = ﬁqﬁ(WaMap,C)
o(mi A2, M,p,C) = (w1, M, p,C) A ¢(m2, M, p,C)

The structural congruence relation on advanced patterns is defined by the following rules: the
parallel operator, |, is associative and commutative; if two patterns £ and ¢ are equivalent (¢ = (),
thensoarea * £ and a * (; if the two predicates 7 and 7' are logically equivalent, then the patterns
p = mandp' :: «' are equivalent; if two patterns differ only by a-conversion (taking into account
bound identifiers), then they are equivalent. Simple patterns form the subset of advanced patterns
which are deemed to be of sort S. All other advanced patterns (patterns with direction, and patterns
with predicate) are deemed to be only of sort H.

4.2 Encoding the DJoin calculus and the M-calculus

Using advanced patterns alows straightforward encodings of the DJoin calculus and of the M-
calculus. An encoding of the DJoin can be derived via the composition of the encoding of the
Djoin in the M-calculus described in [25] and of the encoding of the M-calculus defined in this sec-
tion. However, amore direct encoding can be obtained as follows. For any DJoin definition D, we
note df (D) the set of names (channels and locations) it defines. The DJoin encoding is a function
of anamethat keepstrack of the current DJoin location. It is defined by induction as follows, where
we assumethat mmm | oc, col | ect ,t 0GC, make, va, ent er do not occur freein P, D:

[al, = a [o], =0
IIT]]b =0 IIP | Q]]b = IIP]]b | |[Q]]b
[90a; P], = va(a,[P].) [D,D'l, =[D], | [D'],

[a{ni,... ,n)ly = mMb,a,n1,... ,ng) [DinP], =vn.[D],|[Pl, n=df(D)

— —

[raimi | ... | ngiiy > P, = (b, ny, (m0)) | .. | m(b, g, (my)) o [P,
[a[D: P]], = as(DJ(a) | | oc o([D], | [P1.)) | DIENV
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together with the following auxiliary definitions:

Di(a) = wvt.t |IR|Go(a,t)]|Enter (a,t)
IR = m(a),z)" :a€K|locep oloce(p|ma,z))
| m(a), @), 5 a & K o mi{a, )
Go(a,t) = t |va((e),p)y icgKp
(loceg >
vk.toGC{a, k) | col | ect (a,k,enter{c,a,(q]|p))))
Enter(a,t) = t |enter(a,(b),z)" [locep o
vk.make(b,z,k) > (k(y)" >t |1 oce(p|y))
DIEnv = wt.(Ct C)|ER|CGC
C = Xt f.Factory(t)|t(f)
Factory(t) = t{f)|make(n,p k), ¢ k(va.(faf)| ER|CC|ne(DI(n) || ocep))
ER = mm(a), o )
GC = collect((a),(k),p) ¢ (ae(z|t0oCa,k)) > p)

Some comments are in order. Note that the encoding of a DJoin locality takes the same general
form asthat of aMobile Ambient: alocality a has a controlling process DJ (a), that implements the
basi c interaction protocol that governsa DJoin locality. Thelatter includes: routing messages on the
basis of the target locality, implementing locality migration, by means of the Go(a) and Ent er (a)
processes. Note that the encoding given above is faithful to the DJoin semantics, since migration is
only allowed if the target locality does not appear as a sublocality of the current locality. ®

We can likewise define an encoding of the M-calculus. For simplicity, we consider some slight
modifications on the syntax given in [25]. In particular, we consider that each resource name vari-
able, locality name variable and process variable are properly distinguished. Also, we consider a
call-by-name evaluation strategy for the A-calculus constructs of the calculus, instead of a call-by-
value one. As for Mobile Ambients and the DJoin calculus, we make use of the \-abstraction and
application constructs defined in Section 3.3. The encoding of the M-calculusin the Kell calculusis
defined by induction as follows, where we assume that the names m mm mmmnb, pm pass, ni |,
meke, col | ect,t oGCdonot occur freeinV, V;, P, @, and where we note («) for avariable that
can be a (Kell calculus) name marker or a process marker, depending on the sort (resource or name
variable, process variable) of the source variable in the tranglation.

[a] =a [0] =0
[z] == (O] =nil
[va.P] = va.[P] [vr.P] = vr[P]
[P1QI=0P]IQ] [Ax.P]=Az[P]
[PQI = [PIIQ] [r(Vi, ... Vo)l = m(r, [VAD, ..., [VaD)
5Thisis not the case of the encoding of the DJoin calculus in the M-calculus defined in [25], which does not test for the

presence of the target locality as a sublocality of the locality to be migrated. It is possible to faithfully encode the Djoin
calculus in the M-calculus but at the cost of a more complex translation than the one reported in [25].
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[a.r{Vi,... , V)] = ma,r, [Vi],... ,[V,])

Lo =b)P, Q1 = v1. K(b)) = a=b v [P | K(b)) :a #b > [QD ] 1)
[rizi|...|rqzq > Pl =mry, (z1)) | ... | Mrg, (zq)) © [P]
[a(P)[Q]] = ae(Ma) | nb e [P] | pme [Q]) | MENV

[pass V] = pmeg > pass([V], q)

together with the following auxiliary definitions:

Ma) = |R(a)|Pass(a)
Pass(a) = nbe(p|pass(z,q)) > (vk.collect(a,k, (zapq)) |t oCa,k))
MEnv = ER|CGC
ER = nmmm(z), o mmz)
GC = collect{(a),(k),p), o (ae(z]|t0oCCa,k)) > p)

Auxiliary process | R(a) provides a direct encoding of the M-calculus routing rules, as defined in

[25]:

IR(a) = mr((b),()()) :b=aVbenbeKVvbepmeK o mi,a,r T)
| nb e(z | M(a, (1), (2))) o mb e(z | m(r,Z))
| pme(z | M(a, (r), (2))) o pme(z | m(r,Z))
(2)

| (mbe(p | MM((b), (1), (z))) :b#aAbepmeKADbZnbeK
| pmeg ©

b ep | pme(q | mmib, r, 7))
| (mbe(p | M((D), (r), (z))) :b#aAbgpmeKADZnbeK o
nbep | mmp,r,z))

| (pme(g | M(b), (r), (2))) :: b # a Ab & pmeK
|[nbep o
pmeg | mbe(p | M0,b,7,7)))
| (nbo(p|rdr,®)) srgnbePArecpmeP
| pmeg ©
mbep | pme(q|mr, (2))))
| (pmo(q|n’(r,(:1:fv))) nrégpmePArenbeP
[nbep o
pmeg | nbe(p| mr, (2))))

)
)

An M-calculus programmable locality a(P)[Q)] takes the form of akell of the same name, with
a controller process Ma) that embodies the basic routing rules of the M-calculus and implements
the behavior of the pass operator. Controller process P and content process () appear as active
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subkells. Note that we use a different garbage collector, GC, that exploits a pattern of the form
ax* (z | £). Note also that to obtain en encoding of the M-calculusin the subcalculus dK introduced
in Section 3.7, it suffices to modify the handling of the pass construct thus:

[pass V] = pass([V1])
Pass(a) = mbe(p | pass(z)) | pmeq > (vk.col | ect {(a,k, (xapq)) | t 0G{a, k))

4.3 Encoding the distributed interpretation

Interestingly, the distributed interpretation we have sketched at the end of Section 3.7 can be defined
asadirect subcalculus of the Kell calculus. Its syntax is given below (top-level kellsare called sites):

C == DKEnv | S | C|S
S = ae(Router(a)|siteeP)

It semanticsis given by the following definitions, where we assume that namesm nm news, st op
do not occur freein P:

[
2
5
8
&
-,

Rout er (a)

DKEnv

2

The Rout er process just moves messages in and out of a given site. Messages m(a, P) between
sites bear an explicit target site a, together with apayload P. The environment DKEnv assistsin the
routing of messages, and providesfor the creation and destruction of sites. Creation and destruction
of sites are notified back to the originator of the newS and st op commands.

This interpretation requires that messages identify systematically the target site. Thisis very
similar to what takes placein D or inthelower Nomadic Pict calculus. If onewant to recover amore
location transparent communication between sites, we could instead expect the routing mechanism
to maintain the knowledge of an association between potential message targets and hosting sites.
This again is easy to capture in the Kell calculus, yielding a calulculus with location transparent
communication based on uniquely located channels. Thisisin turn very similar to what takes place
in the distributed implementation of the DJoin, or in the upper Nomadic Pict calculus. This new
interpretation can be obtained just by modifying the Rout er processthus:

Router(a) = m(b),z)" =becsiteeK o mb,z)
| M(b),z), :bgsiteeK o mmb,z)
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0| a | =z | a{ui,... ,un)>P | aeudP | va.P | (P|P) | axP
i a | a(Pi,...,P,) | aeP
w= a | a(Pr,...,P)
(a
[ ]

s 2N
Il

*
|

Figure 12: Syntax of the udK Calculus

To be clear, messages in this interpretation aways take the form m(a, x) where a designates the
target kell, a kell which is not a site. A target kell can be understood for instance as an object,
as illustrated in Section 3.4, or as an M-calculus location, as defined above. The routing scheme
defined above is determinate only if one can ensure the unicity of target kell names, e.g. either by
static scoping as in the DJoin, or by means of an appropriate type system as in the M-calculus.

5 Parting notes

We gather in this section various remarks and additional discussions concerning the Kell calculus
and some of its sub-calculi.

51 ThepdK calculus

In the previous section, we have introduced a relatively sophisticated pattern language, that allowed
some degree of introspection on the structure of akell. What happensif we go in the reverse direc-
tion, i.e. rather than complexify, if we simplify the simple pattern language introduced in Section
3?

One way to simplify it is to retain the possibility to match only one message at a time, and to
allow as messages the equivalent of messagesin the higher-order polyadic asynchronous-calculus,
i.e. messages of the form (P, ... , P,). The resulting sub-calculus we call the ;dK calculus for
we believe it merits to be investigated further. For future reference, we give here the syntax of the
1dK calculus as well as the reduction rules that result from the choices made. The full syntax of the
ndK calculusis givenin Figure 12.

The reduction semantics of the dK calculus is given by the same structural congruence as the
Kell calculus, without rule S.TRIG, which is not necessary (it is covered by S.a). The reduction
relation is given by the rulesin Figure 13. They correspond to the rules R.CONTEXT, R.EQUIV in
Figure 5, and to the rules IN, OuT, and BETA in Figure 6. The expression £§ = M means that: if
& =alug,...,u,), then M = a(P,... ,P,)and, foradl i € {1,... ,n},if u; = (a;), then P; is
anameb;, if u; = (z;), then P; is an arbitrary (udK calculus) process. The expression £ = N
meansthat: if £ = a{uq,... ,u,), then N must beas M above; if £ = a ¢(b), then N = a e ¢, where
cissomename; and if £ = a e(x), then N = a e P, where P isan arbitrary dK calculus process.
The substitution 6 is just the substitution {b;/a;, Pj/x;}.
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=M
ae((>bP | Q)| M —ae(PO|Q)

=M
E>bPlae(M|Q)— Ph|lae@

[IN] [OuT]

EoP|N—>Pf [BETA] B[P S EQ] [R.CONTEXT]
r=prP P-Q Q=Q [R.EQuIV]

P—=Q

Figure 13: Reduction relation of the ;,dK Calculus

It isinteresting to note that one can encode the Kell calculuswith simple patternsin this calculus:
it suffices to emulate the matching on multiple messages by multiple successive receptions and the
other features of the pattern matching in simple patterns by multiple embedded receptions. Thisin
turn meansthat this calculusis already expressive enough to provide a faithful encoding of different
notions of locations, including ambient-like notions. Also, this calculus is a subcalculus of the dK
calculus, introduced Section 3.7. This meansthat the pdK calculus can readily support a distributed
interpretation and, coupled with an appropriate type system to ensure the linearity of (certain) kell
names, would be amenable to an efficient distributed implementation.

5.2 Why two boxes ?

It would seem that the box operator o is redundant since a e a> P prevents the execution of P
and still make it available for further manipulation through the a handle. The following reductions
illustrate this:

ae(a>P)| (aez>z|a) »>avP|a— P

However, at a minimum, an explicit construction of the form a o P provides a natural distinction
between pure messages and active locations, a distinction which we have exploited in the dK sub-
calculus to avoid conflict situations arising with active kells. 1f we had only the e box operator, we
would lose that distinction. The only way to recover it would be through the means of an extended
pattern language which would allow matching on processes of the form a > P. But then we would
uncover awhole new set of potential conflict situations, since a> P, like a e P, would play a dua
role of message and receiver. Overall then, it seemsthat having the o operator actually simplifiesthe
calculus and provides the necessary basis for its distributed interpretation.

5.3 Why components ?

Thetitle of this paper announcesacal culusfor higher-order distributed components. So far, however,
we have not mentioned components. What gives ? A first element of answer can actually be found
in Section 3.4, where we showed that the Kell calculus (and in fact the dK subcalculus) provided
an easy intepretation of objects as active kells. Beyond objects, an active kell may have severa
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subkells, and can provide different forms of control over these subkells. As we saw in Section
3.5, akell caninterrupt a subkell and later resume it execution. The encoding of the M-calculusin
Section 4.2 illustrates the possibility for akell to act as interceptor for messages ultimately destined
to subkells. This suggests that kells with subkells ook very much like composite components with
subcomponents. Since communication between subkells of akell £ must be mediated by kell &, we
can implement different forms of communication paths or connectors [13] between subkells. One
can also control explicitly within kell k& the establishment and release of such connectors, providing
the basis for a dynamic component-based structure. For instance, a receiving port named a of a
component can readily be represented as areceiver of akell, ableto match messages of theform a(.).
Likewise, a sending port named a can be equated with the possibility for akell to emit messages of
theforma(.). Giventwo kellsk; and k-, the first onewith asending port a and the second one with
areceiving port b, asimple connector between portsa and b can be defined as C'(a, b) = a{x) o b{x).
If some control needs to be exercized on a connector, then it is possible to use some shared lock t
asinC(t,a,b) =t | a{z) ot | b(z). If thelock is consumed by the controller process, then
the connector ceases functioning. Alternatively, one could define the connector as akell C(a,b) =
ce(a(z)ob(x)), and usetrivia connectorsa(z) |t <o a(z) |t andb(z) |t o b(z) |t toensure
connectivity between ports and connectors. Deleting or suspending the connector ¢ can then be done
easily.

Asanother illustration of the possibility to use the Kell calculus as a basic composition language,
we can define a direct encoding of the 7£®, calculus, which serves as a basis for the Piccola com-
position language [19]. The 7£ calculus is an asynchronous 7-calculus, which handles forms F'
instead of names. Forms are records of fields/ = V', where V' is value, which can be either a name
a or afield selection z;, where z is aform variable.

[aly = k(a) [zl = 2 | lox>k(x))
[E1=0 [F{=V)]=[F]|lo[V]
[Fa] =[F] |z [o] =0

[A| Bl =10A1|[B] [va.A] = va.[A]

[V (2).-Al = vk.[V1 | ({(a)) > a(z) e [AD) [V (F).Al = vk.IVI | (k{(a)) > a([F1T))
['V(z).Al = vE.[VI | (k((a)) o a(z)>[A])

We can therefore develop, using the Kell calculus as a basis, the same type of constructs that have
been devel oped in Piccola, such as generic wrappers, complex and active forms, composition scripts,
etc. Infact, theaboveencoding of 7L calculusprovidesadirect way to extend Piccolato adistributed
setting by just adding the active kell construct of the Kell calculus.

6 Conclusion

We haveintroduced in this paper a new process calculus, called the Kell calculus, and demonstrated,
through various encodings, its expressive power. In particular, we have shown that it faithfully

6For simplicity, we make one slight alteration to the 7£ calculus defined in [19]: forms can have multiple fields with the
same label, asin the 7L calculus, but we do not guarantee that afield selection will return the rightmost one.
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captures the semantics of locations in several process calculi such as ambient calculi, the DJoin
calculus and the M-calculus. We have discussed how suitable restrictions of the calculus yield sub-
calculi which can be implemented efficiently in a distributed environment, lending some weight to
the belief that the Kell calculus could constitute a suitable basis for distributed computing. Further
work remains to confirm that belief, through. First, we would like to apply the same techniques
used in the M-calculus to derive a type system for the Kell calculus which can ensure the linearity
of chosen names. We have seen that thisis a crucia point for the distributed interpretation of the
calculus. Second, we need to investigate the bisimulation semantics of the calculus. Indeed, apart
from the context rules, the rules of reduction of the calculus are essentially local rules, i.e. rules
which involve only a single location. We believe this feature of the calculus can allow usto directly
leverage the results obtained in the past decade on the bisimulation semantics of process algebras
with localities[8]. Third, we believe a crucial feature for a distributed process calculusisto be able
to deal with overlapping locations, i.e. locations that may share processes. Thisis necessary to deal
properly with the physical and logical aspects of locations in a distributed setting. How overlapping
locations can be defined remains as a challenge, though.
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A Proofs

We gather in this section the proofs of theorems appearing in the main text, together with auxiliary lemmas.

LemmaA.1 (Substitution Lemma) For all 4, C, P, Q,if P = Q and §cnn bn(P | Q) = 0, then Poc =
Qbc.

Proof: A simpleinduction on the derivation of P = Q. m|
LemmaA2 If p Ki4, P', thenwe have f n(K) C fn(P) and bn(A) C bn(P).
Proof: A simpleinduction on the derivation of P K—A> r. a

We define recursively the operation {.} on actionsby: recursively: {e} =€, {7} =7, {a} = a, {8} =5,
{{A)} = {A}, {A | B} = {A} | {B}. Notethat if A # ¢, 7, then {[A]} isaKell calculus process. When
{A} =0 | I],es @i, B = (§,0c), wesay that 8 or 6 occursin A. By the following lemma, an action 3 can

occur only at most once in a given action A obtained in a derivation P K—A> P’. By convention, we set

Lo, Ai =eif J=0.

LemmaA3 IfP B4y prthenwehave (i) A =, or (i) {4} = [T, o or (i) {4} = 8| [, .

Furthermore, in case (i) and (ii) - does not occur in K, and in case (iii) - occurs exactly oncein K.
Proof: By induction on the derivation of P K—A> P’. Thekey induction stepisthe case when P K—A>

P’ is derived through the use of rule L.PAR. In this case, we have P = Ry | R», R; Kl—AH R,

A= A1]| A2, K =K, | K,, withthe constraint that - occurs at most oncein K, and if one of the 4; isequal
to 7, then the other must be e. Because of this constraint, and using the induction hypothesis for A; and As,
we then have five possible cases: (1) A: verifies (ii) and A verifies (ii), in which case A verifies (ii); (2) A:
verifies (i) and A, verifies (iii), in which case A verifies (iii); (3) A1 verifies (iii) and A, verifies (i), in which
case A verifies (iii); (4) A1 verifies (i) and A> = ¢, i.e. A, verifies (ii) with J = @, and A verifies (i). (5) A2
verifies (i) and A1 = ¢, i.e. A verifies (ii) with J = 0, and A verifies (i). Hence A verifies (i), (ii) or (iii), as
required. |

LemmaA.4 If P B4y prthenfn(A) C Fn(P) U fn(8) and fn(P') C fn(P) U bn(A) U fn(3) if

B occursin A; otherwise, f n(A) C fn(P)and fn(P') C fn(P) U bn(A).

Proof: By induction on the derivation of P K4, pr, By convention, we set f n(3) = 0 if 8 does not

occur in A.
e L.NULL. Inthiscase, wehave A = ¢,and P = K = P. Hencefn(4) = § C fn(P) and
fn(P") =f n(P), asrequired.

e L.AcTandL.Pass. Inthese cases, wehave A = P, K = P and P’ = 0. Hencef n(4) = f n(P) and
fn(P") =0 C fn(P),asrequired.
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L.TRIG. Inthiscase, wehave P = (bR, A = (£,0c) = B, K = -, P = Rlc, fn(P) =
fn(&)U(f n(R)\bn(¢)). Hencef n(A) = f n(B),andf n(P’) = f n(R)\bn(£)Uf n(fc.cosupp) C
fn(P)Ufn(a), asrequired.

AV
L.Loc. Inthiscase, wehave P = ae R, R —A> R, A={(A),K=aeK',P =aeR,

fn(P) = {a} Ufn(R), fn(P") = {a} Ufn(R). By induction hypothesis, we have f n(A") C
fn(R)Uf n(B). Hencef n(A) =fn(A4") C f n(P)Uf n(8), asrequired. Also by induction hypothesis,
we havef n(R') C fn(R) Ubn(A’) Ufn(B). Hencefn(P') C fn(R)U {a} Ubn(4A)Ufn(B) =
fn(P)uUbn(A) Ufn(B),asrequired.

Y
e L.NU.NF.Inthiscase, wehave P = va.R, R —A> R, A=A K =vaK' P =vaR,

fn(P)=fn(R)\ {a}, I n(P) =1 n(R),fn(P") =fn(R")\ {a}. By induction hypothesis, we have
fn(4d) Cfn(R)Ufn(B)andfn(R) Cfn(R)Ufn(B)Ubn(A’). Hencef n(4) C f n(P)Ufn(B3)
andfn(P") Cfn(P)uUfn(B)Ubn(A), asrequired.

e L.NU.F.Inthiscase, wehave P = va.R,R ——*+ R',A=7a.A', K =70aK', P =va.R,
F=r"U{a},fn(P)=1fn(R)\ {a},fn(4) =fn(A")\ {a}, bn(4) =bn(4A")U {a},fn(P") =
fn(R’) \ {a}. By induction hypothesis, we havef n(4’) C fn(R) Ufn(8) andf n(R') C f n(R) U
fn(B)ubn(A4’). Hencef n(4) C (f n(R)Ufn(B))\{a} Cfn(R)\{a}Ufn(B8) =fn(P)Ufn(B)
andfn(P') =fn(R')\ {a} CCfn(R)\ {a} Ubn(A)Ufn(B) C fn(()P) Ubn(4A) Ufn(g),as
required.

e L.PAR. Inthiscase, wehave P = Ri | Ra, R; M Ri, A=A | A, K = K; | Ky,
P’ =R | Ry, fn(P) =fn(R:)Uf n(R2),f n(4) =fn(A:)Uf n(Az),bn(A) = bn(4;)Ubn(A4,),
fn(P") = fn(R}) Ufn(R,). By induction hypothesis, we have f n(4;) C fn(R;) Ufn(B;) and
fn(R;) C fn(R;) UUbn(4; Ufn(B;). By LemmaA.3, thereis at most one 3 occurring in A. So at
least one of f n(B;) = 0. Let 3 be the potentially occurring one. Hence, we havef n(A4) C fn(R;) U
fn(R2)UfN(B) =fn(P)Ufn(B)andfn(P') Cfn(Ri)Ufn(R)Ubn(AUbn(A:)Ufn(B) =
fn(P)uUbn(A) Ufn(p),asrequired.

e L.RED.S. In this case, we have P M P'A=7,K =P, ¢=bnl) P =veP"
fn(P) =fn(P")\¢ A" = A | B] A2, B = (£,0k), 0k = [A1 | A2]. By induction hypothesis,
we have f n(4") C fn(P)Ufn(B) and fn(P") C fn(P)Ubn(A) Ufn(B). By LemmaA.3,
we know that no 3 action occurs in A;, hence we have, by induction hypothesis since A; must have
appeared in an earlier derivation step involving subterms of P, f n(4;) C f n(P) U ¢. By definition
fn(B) =fn()Ufn(fk.cosupp). Butéfx = [A1 | Az], hencef n(fx.cosupp) = fn(4; | Az)
andfn(8) C fn(P)uc. Asaresult, wehavefn(4) =0 C fn(P),andfn(P’) C (fn(P)Uucu
fn(B))\cCfn(P),asrequired.

L.ReD.H. Thiscaseishandled as the case L .RED.S above.

m|

Proof of Theorem 1: The proof proceeds by induction on the depth of the inference of P K—A> P’ and
by induction on the depth of the derivation of P = ) by means of the structural congruence rules.

We first consider the case when P = () has been obtained by the application of a single structural con-

gruence rule, and we consider the last rule that has been applied in the derivation of P K—A> P'. Inthe
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different cases below, several subcases can be dispatched immediately. Because we consider only derivations
of P = @ which only involve asingle inference step, rule S.CONTEXT is not applicable. Also, if P = @ has
been derived using rule S.a;, then by definition of the transition relation (which isdefined up to «-conversion), if

p K4, pandpP =, Q then@ KA, p' Finaly,if P = Q hasbeen obtained through S.PAR.NIL,

i.eeQ = P | 0, then by rule L.PAR.L we get Q K:4, p | 0, and we have found Q' = P' | 0 = P',

K' = K and B = A, asrequired. In the sequel, we do not consider these subcases any more.

Case: P K—A> P’ derived by L.NuLL. Inthiscasewehave K = P, A = ¢ and P’ = P. We have

by L.NuLL Q &) Q. Hencewehavefound Q' =Q=P=P' K =Q=P=K,andB = ¢ = A,

asrequired.

Case P K—A> P’ derived by L.ACT. Inthiscase, wehave P = ae R, P' = 0and K = A = P.

Since P = @, wehaveae R = . This could only have been derived by rule S.Nu.KELL (apart from the
three rules which have been considered above). Thus, wehave P = aevb.S and Q = vb.ae S, withb # a.
There are now two possibilities: either (i) b € f n(S) or (i) b € f n(S).

In case (i), we haveinfact b € f on(a e S); hence we can apply rule L.AcT followed by L.NU.F to get:

Q M 0. Sinceb # a,wehavevb.ae S = aevb.S: wehavefound B =Tb.ae S =aevb.S =
AK =Q=K=PadQ' =0= P, asrequired.
Q

In case (ii), we can apply rule L.AcT followed by L.NU.NF to get: @ L‘bﬁ vb.0. But we have
vb.0 =0and, sincea # b, wehave a evb.S = vb.aeS =Tb.aeS | e =aeS | Vb.e = ae S, hence we
havefound B=aeS=aevbS=A K =Q=P=KandQ' =vb.0 =0 = P’ asrequired.

Case: P K—A> P’ derived by L.Pass. Inthiscase, wehave P = aoR,P' =0and K = A = P.

Since P = Q, wehaveao R = Q. This could only have been derived by rules. (a) S.a, (b) S.CONTEXT, or
(c) S.PAR.NIL, which have al been considered above.
K: A

Case P ——*=s P’ derived by L.TRIG. Inthiscase, wehave P = (bR, K = -, A = (£,60¢c),
and P = Pfc. Butthen P = £ R = Q could only have obtained through S.TRiG. Thus, we have
- 0
Q@ = (> R. Butthen by L.TRIG, we have Q M RAc. Hence we have obtained Q' = Rc = P',
K' = =K,and B = ({,0c) = (¢,0c) = A, asrequired.

Case. P K—A> P’ derived by L.NU.NF. In this case we have P = va.R, R KI—A> R’ with

agfn(A), P =va.R,and K = va.K;. Since P = Q we have Q = va.R. Thiscould only have been
derived by rules: (a) S.NIL, (b) S.NU.KELL, (c) S.NU.ComMmM, (d) S.NU.PAR.

e Incase(a), wehave R = 0, P = va.0,and Q = 0. But then R K1—A> R’ could only have been

derived by L.NuLL,hence K; = 0,A=¢, R' = 0,and K =7a.0 = va.0 = P, P’ = va.0 = P.

By L.NuLL we have Q & Q, hencewehavefound ) = Q=P =P K =Q =P =K,

and B = e = A, asrequired.
e Incase(b), wehave R = be S, withb # a,and Q = beva.S. Now R K1—A> R’ could only have
been derived through rules (i) L.AcT, (ii) L.Loc, (iii) L.ReD.S, (iv) L.RED.H, (v) L.NuLL.

~Incase (i) wehavebe 5 22505, g Hence K, = beS, A = beS, and R = 0. By
rule L.ACT one gets: beva.S 22¥0-5 :beva.S, o gneeq ¢ fn(A), wehavea ¢ f n(S),
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hence we have: va.beS = beS. Hence we have found :Q' = R’ = 0 = va.R' = P/,
B =beva.S =vabeS =beS = A and K' = beva.Sequivhe S = va.be S = K, as
required.

beK,: (A 5 A
In case (i), we have be 5 —2 X2 A Lo viths K2t o 4 Ly K, =
beK>, and R' = beS'. Sincea ¢ fn(A), thena ¢ fn(A4’), and by rule L.NU.NF one

vaKs: A beva.Ksy: (A
gets va.s ZeKe iAo Applying rule L.Loc yields: beva.S bevaK,: {4)

beva.S'. Sinceb # a, wehave beva.S' = va.be S, andbeva.K» = va.be K. Hence we
havefound Q' =beva.S' =vabeS =va.R' =P ,B=(AY=A,andK' =beva.K, =
va.be K> = va.K; = K, asrequired.

In case (iii), we must have K; = R, A = 7 and B 52242, prwith [4,] = A1 | (€,6c) |

Al Butwehave R = be S, hence R KZ—Az> R" could only have been obtained viaL.Loc,

hence A, shold be such that A> = (As), acontradiction. Hence this caseis void.
Incase (iv)y wehave A = 7, K; = beS = R, R’ = vc.R", with R KZ—AZ> R' ¢ =
bn(4z), [42] = A | (A1 | (§,6c) | A2) | A%, C = [Ko], §6c = As | [A] | Ao] | A,

|45), | 44| = 0, [AL], |45 < 1. Now, R = be S 2242, R couid only have been obtained

through rule L.Loc (rule L.AcT does not apply because of the form of action A). Hence we

must have: A, = A} =€, S KS—A3> S Ks =beKsj, A» = (A3),and R” = be S'. We

now have two casesto consider: (1) a ¢ f n(As) and (2) a € f n(A4s).

Fa.Kg : A3
—_—

In case (1), we can apply L.NU.NFto get: va.S va.S". Now, by L.Loc, we get:

b.ﬂa.Kg : <A3> , - . .
beva.S ——— — bewva.S’. The conditions of premises of rule L.RED.H still apply,

in particular since (A3) = A»,andsince [K»] = [be K3]| = [beva.K3]. Hence, by L.RED.H
we get:

b .S
beva.S LST) vebeva.S

Now, since a is bound in P, and since the transition rules are defined up to a-conversion, it
is aways possible to choose a such that a ¢ ¢. Hence we have found @' = vébeva.S' =
va.vcbeS = vavé.R' = va.R = P, K = beva.S =vabeS = va K, = K, and
B =1 = A, asrequired.

In case (2) we can consider that af on(As) for if that were not the case, then by Lemma A .4, we
would have a ¢ f n(S), a contradiction with the fact that £6c = [A] | A5]. We can then apply
L.Nu.Fto get: va.S M S’. Now, applying rule L.Loc, we get:

beva.Ks : (ﬁa.Ag)

beva.S be S’

Since [(Ta.A3)] = [(A3)] = [A2], and [K2] = [beK3]| = [berva.K3], we can apply
L.RED.H to get:

b .S
beva.S LST> vavcheS

Hence we have found K' = beva.S = va.beS = va.Ki = K, Q' = vavcheS =
va.vc.R" =va.R' = P',and B = 7 = A, asrequired.
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— Incase(v),wehaveK; = R, A = ¢,and R’ = R. Now, by L.NULL,wehavebe va.S bevaS:e,

beva.S, hence we havefound Q' = Q = P = vabeS =va.R = P, K =Q =P =
va.beS =vabeS=7a.R=7va.K; =K,and B =€ = A, asrequired.
e Incase(c), wehave R = vb.S, Q = vb.va.S and b # a. Now, we could only have had R KI—A>
R’ through one of the following rules: (i) L.Nu.NF, (ii) L.Nu.F, (iii) L.ReD.S, (iv) L.RED.H, (v)
L.NuLL.

— Incase (i), wehavevb.S M vb.S',withR' =vb.S’, S KZ—A> S K1 =vbKa,
andb ¢ fn(A). Sincea ¢ fn(A), by rule L.NU.NF we get: va.S M) va.S', and

sinceb ¢ fn(A), applying again rule L.NUNF we get: vb.va.S M) vb.va.S'.
Sinceb # a we have vb.va.S" = va.vb.S’, and vb.va. K2 = va.vb.K,. Hence we have found
Q' = vbva.S' =vavbh.S =va.R = P ,B = A, addK' = vbvaKs = va.vbKs =
va.K; = K, asrequired.

— In case (ii), we have vb.g 20Kz :7bAL

R,, with K; = 7b. K, and A = 7b.Ay, with
befn(d)ads K24 B Sincea ¢ fn(4) anda # b, thena ¢ f n(A;) and by rule

L.NU.NFweget: va.S M va.R'. Applying rule L.NU.F we get:

Fb.ﬁa.Kz B Fb.Al N

vb.va.S va.R'

Hence we have found K' = vb.7a. K> = 7a.7b. Ky = 7a. K1 = K, B = 7b.A; = A and
Q' =va.R = P', asrequired.

— In case (iii), wehave R 75 R'withK, = R, A = 7, R' = vé.R", R Ko, R",
¢ =bn(4)), [Ai] = 4] | (£,0c) | Ab, C = [Kz], €0c = [4; | Ab). Since R = vb.S,

we could only have had R = vb.S Kz—Al> R" through either (1) rule L.NU.NF or (2) rule
L.Nu.F.

In case (1), we have K» = 7b.Ks, B = vb.S', b ¢ fn(Ay) and § £2241, o we

have [A1] = A} | (£,0c) | A3, and C = [K:] = [pb.K3] = ceilK3, hence we can apply
L.RED.Stoget: S 2°T5 4.5, Applying L.NU.NF twice we get: vb.va.§ Z0:2a-S:T,
vb.va.ve.S'. Hence we have found: K' = vb.7a.S =va.7b.S =va.R=K,B =17 = A, and
Q' =vbvawve.S' =vavewvb.S" =vave.R' =va.R = P', asrequired.

In case (2), we have K» = 7b.Ks, A = Db.As, b € fn(As), and § 2242, pr gince

b € bn(Ay), wehaveb € ¢. We have [4>] = [Pa.As] = [A1] = A} | (§,0c) | A, and
C = [K:] = [7b.K3] = ceilK3, hence we can apply L.RED.Swith ¢’ = bn(4;) = ¢\ {b},
to get: S ST, L7.R". Applying rule L.NU.NF twice we get: vb.va.S vbraS:T,
vbva.vc .R". Hence we have found: Q' = vb.va.vc.R" = vavc.R’ = va.R' = P',K' =
vbva.S =va.vb.S =va.R =K, B =1 = A, asrequired.

— Incase (iv), we reason exactly asin case (iii) above.
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Incase (v),wehave K; = R, A=¢, R = R,hence P’ =va.R = P,and K = va.R = P. By

L.NuLL,we have Q & Q, hencewehavefound Q' = Q=P =P K =Q =P =K,

and B = ¢ = A, asrequired.

KliA

e Incase (d), wehave P = va.R, R = S | T, R ——— R’ witha ¢ fn(4), P’ = va.R,

K;: A

K =7a.Ki,Q = (va.S) | T witha ¢ fn(T). Now, R ————= R’ could only have been derived
viaone of thefollowing rules: (i) L.PAR, (ii) L.RED.S, (iii) L.RED.H, (iv) L.NULL.

RR n° 4692

In case (i), we have § K242, ¢ p Keids, pp g Ky A= Ay | A,

R =5 | T, bn(A2) nbn(43) = 0, bn(A2) Nfn(T) = 0, bn(43) nfn(S) = 0, and the
conditions that if one of the A>, As is 7, then the other must bee. Sincea ¢ f n(A), we have

a & fn(Az) Ufn(As), hence by rule L.NU.NF: va.S M va.S'.Sincebn(A4s) N

fn(va.S) = 0,bn(Az2) Nbn(A4s) =0, bn(A4>) Nfn(T) =0, wecanapply L.PAR to get:

(Ua.Kz) | K3 : A2 | Ag

(va.S)| T (va.S") | T

Sincea ¢ fn(T),thena ¢ f n(K3) by LemmaA.2. Also, sincea ¢ fn(As) anda & f n(T),
then by Lemma A.4 we have that a ¢ f n(T") unlessa € bn(T). In the latter case, since the
transition rules are given up to a-conversion, it is possible to a-convert T so that a ¢ bn(T).
Hencewe havea ¢ fn(Ks) anda ¢ f n(T”). But then we have found Q' = (va.S’) | T' =
va.S' | T' = va.R' = P, K = (7aK,) | Ks = 7a.K:> | K3 = vaK; = K, and
B = A, | A; = A, asrequired.
K/ : A
In case (i), wehaveK; = R, A=7,R =vc.R'" R ———1
1o Al
5 C = [K!], €6c = [AS | A5]. Now, R KA prcoud only have been obtained by

rule L.PAR, hencewe have § 2342, o p Koids g g g | K3, A] = 4> |
As,R" =S | T',bn(A2) Nnbn(43) = 0, bn(A>) N fn(T) = P bn(A43) Nnfn(S) = 0, and
the constraint that if one A, As equals 7, then the other must be e. We now have to consider to

subcases: (1) a ¢ fn(Az) and (2) a € f n(A»).

R",[A1] = A3 | (€,6c) |

In case (1), we can apply rule L.NU.NF to get: va.S M va.S". Wehave bn(43) N

fn(va.A2) = 0,bn(A2)Nbn(As) = 0, bn(A2) Nf n(T) = 0, thuswe can apply L.PAR to get:

(ﬁa.Kz) | Ks: A, | Az

(va.S)|T (va.S') | T

Now, we have [A> | As] = [A]], C = [K]] = [K: | K3] = [(Za.K>2) | K3], hence by
L.RED.Swe get:

S)Y|T:
was) |7 LEITET o eS| T
Hence we have found @' = ve.(va.S") | T =vawve.S' |T' =va.R' =P ,B=7=A,and
K = (va.S)| T =va.S|T =va.R=va.K; = K, asrequired.
In case (2), we can consider that a € f on(A»), for otherwise by LemmaA.4 we would have a ¢
fn(S) and we would then have that a € fn(8) = fn(£,6c); but since £6c) = [A5 | Ab], we
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would havea € f n(T'), acontradiction. Sowecan apply L.Nu.Ftoget: va.S M)

S'. Wehavea ¢ fn(T) and a ¢ fn(As), hence we have: bn(a.A2) N bn(4s) = 0,
bn(va.A,) Nfn(T) =0, bn(As) Nfn(va.S) = 0, hence by rule L.PAR we get:

(ﬁa.Kz) | Ks: (ﬁa.Az) | As

(va.S)|T s |T
We have [UQ.AQ | A3-| = |—A2 | A3-| = |— ll-l, C = |— ll-l = |—Kz | K3-| = [ﬁa.Kz | K3-|,
hence by L.RED.S:

S| T :
(va.S)| T M vave.S' | T
Hence we have found Q' = va.ve.S' | T' = va.R' = P',B=7= A, addK' = (va.S) |
T =va.S| T =va.R =va.K, = K, asrequired.
In case (iii), we reason exactly asin case (ii) above.
temIncase(iv), wehaveK; = R,A=¢, R = R,hence P’ =va.R = P,andK = va.R = P.

By L.NuLL, we have Q & Q, hencewehavefound Q' =Q=P=P K =Q=P=

K,and B = ¢ = A, asrequired.

K:A K;:A

Casee P ——* P'derived by L.NU.F. Inthiscase, we have P = va.R, with R ————+ P’ and

a €fon(Ai), A=7va. A, K =7a.K;. Since P = @, we have Q = va.R, and this could only have been
derived viarules: (8)S.NiL, (b) S.NU.KELL, (c) S.Nu.ComM, (d) S.NU.PAR.

— In case (i), we have P’ = beS', § —2-22, ¢ K,

e Incase(d),wehave R = 0and @ = 0. Sincea € f on(A1), A1 # ¢, hencethiscaseisvoid since there
isno way to derive atransition for R except through rule L .NULL.

K12A1

e Incase (b), wehave R = be S withb # a and Q = beva.S. Butthen R ————— P’ could
only have been derived through (i) L.AcT, (ii) L.Loc, (iii) L.RED.H (rule L.RED.S cannot have been
applied for the same reason as in subcase (b) of case L.NU.NF).

— Incase(i),wehaveK; = be S, Ay =beS,and P’ = 0. But by L.ACT we have:

beva.S beva.S : bozja.S>

Hencewe havefound Q' = 0 = P, K’ = beva.S = va.beS = vaK; = K, and B =
beva.S =va.beS =va.A; = A, asrequired.

KQZA

be Ko, Ay
. a. Ko : Ta. Az ,
a ¢ fn(Ay), thena ¢ fn(As), hence by L.NU.F: va.§ ———————= §'. Then, by
beva Koy : (Va.As)

= (A4,). Since

N

L.Loc: beva.S » beS’. Hence we have found Q) = beS' = P’,
K =bevaK: =vabeK, =va.K; =K,and B = (Da.A2) = va.(A>) = Va.A; = A, as
required.

— Incase (iii), we have A; = 7, but then we have a contradiction for a € f on(A;1), hence this case

isvoid.

e In case (c), we have R = vb.S, withb # a, and Q = vb.va.S. Now, we could only have had

K;: A

R=vb.S —L 21, P’ through (i) L.NU.NF, (i) L.NU.F, (iii) L.RED.S, (iv) L.RED.H.
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~ Incase (i), wehave S K242, ¢ with K, = 75.Ks, A1 = As, P’ = vb.5', b ¢ f n(Ay).

Sincea € fon(A:), then by L.NU.F we get: va.S M

vb.va.Ks : va.As

S’. Now by L.NU.NF

we get: vb.va.S s vb.S’. Hence we have found Q' = vb.8' = P', K' =
vbva.Ks: =va.vb.Ks =va.K; = K,and B =va.A> = va.A; = A, asrequired.

~ Incase(ii), wehave S 2142, o With K, = pb.Ks, A, = 7b.As, P = S',b € f on(Ay).

Sincea € fon(A,), then by L.NU.F we get: va.s L2Kzivadz,

vb.va. K> : vb.va.As

S’. Now by L.Nu.F

we get: vb.va.S S’. Hencewe havefound Q' = §' = P/, K’ =
vb.va. Ky = va.vb Ky = va. K| = K, and B = ﬁbﬁa.Ag = Ua.ﬁb.Ag = Ua.Al = A, as
required.

— Incase (iii), weshould have K; = R = vb.S, A1 = 7, butsincea € f on(A:), thiscaseisvoid.
— Incase (iv), wereason asin case (iii) above.
e Incase(d),wehaveR =S |Tand Q = (va.S) | T,a ¢ fn(T). Now R KI—AI> P’ could only
have been derived through rules (i) L.PAR, (ii) L.RED.S, or (iii) L.RED.H.
— In case (i), we have S RICER N S, T Ks:ds, T, P =58 |T, K =K | K,
A = As | As, bn(Ag) n bn(Ag) = @, bn(Az) Nnf ﬂ(T) = @, bn(Ag) Nnf ﬂ(S) = @, and
the condition that if one of A, A3 equals 7, then the other must bee. Sincea ¢ f n(T), then by
LemmaA.2a ¢ fn(Ks). Now, sincea ¢ fn(T), by LemmaA.4, we have that a € f n(As)
only if a € f n(B3) where 3 occursin As. But then we cannot have af on(As), for f on(3) = 0§,
by definition. Hence we have a ¢ f on(As), which implies, sincea € fon(A:) = fon(As) U

fon(A4s), that a € fon(Az). We can thus apply L.NU.F to get va.S M S’
Now, if necessary by «-converting 7', we can always take a ¢ bn(T"), which means by Lemma
A.2that a & bn(As). Thus, we have bn(va.A>) Nbn(A4s) = 0. Alsobn(Za.A2) Nf n(T) for
a ¢ fn(T),andbn(As3) Nf n(7a.S). Hence we can apply L.PAR to get:

(l/a.Kg) | K3 H (I/a.AQ) | A3

(va.S)|T s |T

Now, since a ¢ f on(As), and since bn(va.A2) Nbn(A43) = 0, we have by the definition of

action equivalence (va.A> | A3 = Va.A> | As. Hencewe havefound Q' = S’ | T' = P/,
K = (va-K2) | K; =va.Ks> | K; =7a.K; =K,and B = (ﬁa.Ag) | A3z =va.As | Az =
va. A1 = A, asrequired.

— Incase (ii), we should have A; = 7, but sincea € f on(A41), we have a contradiction, hence this
caseisvoid.

— Incase (iii), we reason asin case (ii) above.
Case P K—A> P’ derived by L.Loc. Inthiscase, wehave P = ae R, R Kl—Al> R K =
aeKi, A= (A), P =aeR.Now, P =aeR = (@ could only have been derived through S.NU.KELL,

hence R = vb.S, Q = vb.ae S,and b # a. But then R Kl—Al> R’ could only have been derived via (i)

L.Nu.NF, (ii) L.Nu.F, (iii) L.ReD.S, (iv) L.RED.H, (v) L.NULL.

RR n° 4692
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e Incase (i), we have S Kz—Al> S Ki =vb.Ky, R =vb.S',b¢gfn(A;). ApplyingruleL.Loc
aeKy: (Ar) , . vh.ae Ky : (A1)
weget: aeS ———————» aeS’. ApplyingruleL.NU.NF,weget: vbae S ——

vb.ae S'. Hence we have found Q' = vb.aeS = aevb.S' = aeR = P K = vhaeK, =
aeTb. Ky =aeK; =K, B=(A;) = A, asrequired.

KQZAQ

e Incase(ii),wehave S ———=+ R',K; = vb.K», A1 = vb.A>,b € f n(4,). ApplyingruleL.Loc
0,0KQ : (Ag) f . Ub.ang B (71)142)
weget: ae S ———————— ae R'. ApplyingruleL.NU.F,weget: vb.ae S

aeR'. Hencewe havefound ) = aeR' = P',K' = vbh.aeKz = aevb.K> = aeK; = K,
B = (vb.As) = (A1) = A, asrequired.
e Incase (i), wehave K, = R, A1 = 7, R Ko:ds, pra= bn(A4:), R' = ve.R", [A2] = A} |

(6,C) | 4y, C = [Ka], €0 = [A] | A, |41] < 1 and | 45| < 1. Now B 22242, R couig

only have been derived through (1) L.NU.NF, or (2) L.NuU.F. Note that we can ensure¢ N {a} = 0 by

asuitable a-conversion of R.
~Incase (1), wehave § K245, o K, - DhKs, Ay = Ag, R” = vb.S', b & fn(As).
We have [43] = [A2] = A1 | (€,6c) | A5, C = [K:] = [7b.K3] = [K3], hence we can

apply L.RED.Stoget: § 2Ty 1S Nowby L.Loc: aeS 2*5:T, 4,25 Andby
L.NU.BF:
vb.aeS : T S
vb.aeS ——— vb.aevc.S
Note that in thiscase b ¢ f n(As), hence by LemmaA.2, it it possible to ensurethat b ¢ ¢ by a
suitable a-conversion of S. Hence we havefound Q' = vb.a e ve.S' = aevc.vb.S' =ae R =
P K=vbaeS=aevb.S=aevbS=aeR=aeK; =K,and B =1 = A, asrequired.
“Incase (2), wehave S K2 A3, ¢ K, — Th Ky, Ay = ThAs, B” = S, b € fon(As).
We have [Th.A3] = [A2] = Al | (€,0c) | 45, C = [K2] = [70.K3] = [Ks], hence we

can apply L.Rep.Stoget: § T4 1.8, with @ = b&'. Now by L.Loc: ae§ 225:T,

aevd.S'. Andby L.NU.BF:

vb.ae S :
vb.aeS W—T> vb.aeve .S
Hence we have found Q' = vb.aevd.S' = aevbvd.S' = aeve.R' =aeR =P, K =
vbaeS =aevb.S=aevb.S=aeR=aeK; =K,and B=r1 = A, asrequired.

e |ncase (iv), we reason exactly asin case (iii) above.

e Incase (v), wehave K; = R, A=¢, R = R,hence P’ =aeR = P,andK = ae R = P. By

L.NuLL, we have Q g Q, hencewehavefound @ =Q =P =P K =Q =P =K, ad

B = e = A, asrequired.
case P KA, p' derived by L.PAR. In this case, we have P = R, | Rs, Ri Ki:di, 1

Ry B2iA2 b b R R K = Ky | Koy A = Ai | As, bn(A1) N bn(As) = 0, bn(A;) N

fn(P:) = 0, bn(A4>) Nnfn(Pr) =0, and the condition that if one of A, A3 equals , then the other must be
e. Now P = @ could only have been derived through (a) S.PAR.ComM, (b) S.PAR.ASSOC, (€) S.NU.PAR.
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e Incase(a), wehave @ = R | R,. By rule L.PAR, we have:

Ky | Ki:4, | A
Ry | Ry 2| K4y | Y Ry | R,

Hence we havefound @ = R, | Rt = Ry | R, = P, K' =K, | K1 = K; | K» = K,
B=Ay| Ay = A, | Ay = A, asrequired.

e Incase (b), wehave P = (S1 | S2) | R2, Ri = S1 | Seand@ = S1 | (S2 | Re) (or asym-
metric case with R>). Now, we must have had R; KI—AI> R through rule L.PAR, hence we

have S; K3—AS> S1, S2 K4—:A4> Sy, Ry = 81| S5, Ki = Ks | Ky, Ay = Az | Ag,
bn(As) Nbn(A4) =0, bn(As) Nfn(Ps) =0, bn(As) Nfn(Ps) = 0. Wecan apply ruleL.PAR to
S» and R to get:

Ki | Ky: Ay | A
S, | R 4| Ko 4| A2

Applying L.PAR another time we get:

> Sy | Ry

Ks | (Ka|Ko): Az | (A4 | A2)

Si|(S2 | R2) S1 1 (S | Ry)

Hence we have found ¢ = ST | (S5 | Ry) = (S1| S3) | Ry =Ry | Ry = P, K' = K3 | (K4 |
Kz)E(K3|K4)|K2:K1|K2=K,B:A3|(A4|A2)E(A3|A4)|A2:A1 |A2=A,
as required.
e Incase (c), wehave R; = va.S1,a ¢ fn(R2), and Q = va.S: | Ro. Now, Ry Kid, R could
only have been derived through (i) L.NU.NF, (i) L.Nu.F (iii) L.ReD.S, (iv) L.RED.H, (v) hnameL .Par.
I Al

— In case (i), we have S; LA% S, Ki =vaKi, Ay = A}, a ¢ fn(4}), Rl = va.S].
We have bn(A}) Nnbn(Az) = 0, bn(A4}) Nnfn(Rz) = 0, bn(A42) Nfn(S1) = 0, for since
a ¢ fn(R») it is aways possible to a-convert R» to ensure a ¢ bn(Rz), which ensures by
LemmaA.2 that a ¢ bn(A,). Also, we can always a-convert R; to ensurea ¢ f n(A»). Hence

by L.PAR we get:

K,1|K22A1|A2

51| Re Si | R,

By L.NU.NF we get

ua.K'l | K2 H A1 | A2

va.S1 | Rz va.Sy | Ry

Sincea ¢ fn(R2), then by LemmaA.2, a ¢ f n(K.). Hence we have found @' = va.S] |
Ry=wa.S)) | Ry =R, |Ry=P K =vaK) | K: = (7aK}) | Ko =K, | Kz = K,
B =A,| Ay = A, asrequired.

K/ 'A’

— Incase (i), wehave S, ———— S|, K, =va.K}, A; =va.A},a € fon(4)), R, = 5.
Now, we have a ¢ f n(R:) and, as in the subcase (1) above, we can ensure that a does not occur
in Ry and have a ¢ f n(Az). Thuswe have bn(A}) Nbn(4,) = 0, bn(A}) Nfn(R2) = 0,
bn(4,) Nfn(S1) = 0. Hence by L.PAR we get:

K,1|K2A’1|A2

S1 | Rz R\ | R,

RR n° 4692
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Sincea € f on(A}) hence we can apply L.NuU.Fto get:

7a. K| | Ky :7a. A} | A
va.St1 | R2 vaX | Ky :va.d, | 2>R,1|R’2

Hencewehavefound @ = R} | R, = P/, K' =7a K} | K> = (7a.K}) | K: = K; | Kz =
K,B =va. A} | Ay = (Va.A}) | A> = A1 | A, = A, asrequired.

In case (iii), we have A; = 7, K1 = R;. By the conditionsin rule L.PAR, we then have 4> = €

KIIAII " I~ o~ ’ " _ !
———» RY, R} =vec.R{,¢ = bn(A}), [A]] = B |
. K| : A
(€,6¢) | B, C = [K\], 0c = [B] | B}]. Now, since Ry = va.S1, Ri ———%+ R/ could
only have been derived via (1) L.NU.NFor (2) L.NU.F.
oAl
In case (1), we have S, KA o witha ¢ fn(AY, R} = va.S;, AY = A}, K =
va.K7. Notethat [A]] = [A]] = B1 | (£,6c) | By. Hence, because of L.TRIG, we have
mno,oAN
S ﬁ) S7 with A7" identical to A’ except that the action (£, 6c) occurringin A7 (which
is unique by Lemma A.3) has been replaced by (¢,0c/) and C' = [KY | R»]. By the definition
of action equivalence, we have A7" = A}. Now, since A2 = ¢, we have bn(AY) Nbn(A42) = 0,
bn(4,)Nfn(S1) = 0. Also, it aways possible to a-convert Sy to ensurebn(A7)Nf n(Rz) = 0.
Hence we can apply rule L.PAR to get:

and R, = R,. Also, we have R,

KII K‘ :AIH
Sy | Rs K| Ka:di Sy | Rs
Now by L.NU.NF we get:

va. K/ | K, : A ,
va.S1 | R2 > va.Sy | R

Now, [7a.KY | R2] = [K{ | R:] = C' and, since for dl C, E, Og|c] = Oc, we have
0o = £6c. We can the apply L.RED.Sto get:

S1| Re:
va.Sy | Ry LS BT,

véva.Sy | Ro
Since we have ensured ¢ = bn(A}) issuch that €N f n(R>) = 0, then we have found @’
veva.S) | Ry = (vewa.S1) | R2 = We.RY) | R = Ry | R, = P',K' =va.51 | R2
(va.S1) | R = K,and B =1 = A, asrequired.
Kll, : A,ll ' : " " ’ ’ — " /

In case (2), we have S; ————— S7, witha € fon(AY, RY = S1, A} = va.AY, K| =
va.K7. Notethat [A]] = [A]] = Bi | (£,6c) | By. Hence, because of L.TRIG, we have

mno,oAN
Si ﬁ) S1 with A7" identical to A except that theaction (£, 6c) occurringin A7 (which
is unique by Lemma A.3) has been replaced by (¢,0c/) and C' = [KY | R»]. By the definition
of action equivalence, we have A7" = A}. Now, since 4> = ¢, we have bn(AY) Nbn(A4z) = 0,
bn(4,)Nfn(S1) = 0. Also, it aways possible to a-convert Sy to ensurebn(A7)Nf n(Rz) = 0.
Hence we can apply rule L.PAR to get:

K/ | Ko : A7
%

S1 | R Si|R2
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Now by L.Nu.Fwe get:

— n — "
va. K] | K : Ta. A}

va.S1 | R S1 | Rs
Now, [7a.KY | R:] = [KY | R:] = C' and, since for dl C, E, 0g|c] = 6c, we have
&fcr = £fc. We can the apply L.RED.Sto get:

S R'_ H
va.Sy | Ry XS B2 iT,

ve.S) | Ry

Since we have ensured ¢ = a¢ = bn(A}) issuch that ¢ N f n(Rz) = 0, then we have found
Q’ = 1/651 | R2 = (V’CVSD | R2 = (V’CVRY) | R2 = Rll | R2 = P,, K’ = l/a.Sl | R2 =
(va.S1) | R2 = K,and B =1 = A, asrequired.

— Incase(iv), wereason asin case (iii) above.
— Incase (v), wehaveK; = Ri, A1 = ¢, Rl = Ry, hence P = R: | Ry, and K = R; | Ko,

A = A,. By L.NULL,wehave S; M S1. Henceby L.PAR

S1|Ka: A
S1 | Rz M Si| Ry
Since a ¢ fn(()R2), it is aways possible to a-convert R; so that a ¢ f n(A») and thusa ¢
f n(R3), we can apply L.NU.NF to get:

va.S1 | K> : A>
—

va.S1 | R2 va.S1 | Ry

Hence we have found Q" = va.S1 | Ry = (va.S1) | Ry = P, K' =7a.51 | K2 = (7a.S1) |
K, = (I/a.Sl) | Ko =R, | K> = K, and B = A2 = A, asrequired.
!
Case P K—A> P’ derived by L.RED.S.Inthiscase, wehave A = 7, K = P, P M P" with
P =veP",c=bn(A"), [A"] = A1 ]| (§,0c) | A2, |A1] <1, |A2] £1,C = [Ki], €0c = [A1 | As].
Now, P = @ could only have been derived by one of the following rules (@) S.NiL, (b) S.NU.KELL, (c)
S.Nu.ComM, (d) S.NU.PAR.

e Incase(a), wehave P = va.0 and we have acontradiction for the only possibletransition for P involves
L.NuLL and we have A # e. Hence this caseisvoid.

e Incase (b), wehave P = beva.R,Q = va.be R, b # a (or the symmetric case with P = va.be R

. !
and Q = beva.R, which is handled similarly). But then P M P" could only have been

derived through (i) L.AcT or (ii) L.Loc. Case (i) is void for it would imply A’ = bewva.R, whichis
not consistent with the fact that [A'] = A | Ao | A2. Case (i) is similarly void for it would imply
A" = (A"), which is also not consistent with the fact that [A’] = A; | Ao | A2. Hence the whole case
isvoid.

!

e Incase (c), we have P = va.vb.R, Q = vb.va.R, b # a. Now, P M P" could only have
been derived using two successive applications of rules L.Nu.NF and L.Nu.F. We thus have four cases
to consider (i) L.NU.NF twice, (ii) L.NU.F twice, (iii) L.NU.NF followed by L.Nu.F, (iv) L.NU.F
followed by L.NU.NF. The four cases are handled similarly. We just consider the first two.
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LAl
— Incase (i), we have R M R, withK; = 7a.vb.K>, P" = va.vb.R'. We can apply

E i
L.NU.NF twice to get vhva.R 270K Ay 0 R Since [mh7a.Ks] = [Ka] =

[K:1] = C, wecan apply L.RED.Sto get:

bva.R:
vb.va.R % vewvb.va.R

Hence we have found ' = ve.vb.va.R' = vévavb.R = ve.P’' = P, K' = Q = P = K,
B =1 = A, asrequired.
. K2 : A” " . J— 7 g — "
— In case (i), we have R ————— P", with K, = 7a.7b.K>, A" = va.vb. A", . We can

. "
apply L.NU.F twice to get vb.va.R vbvaKs :vbra Al b \ye have [vbva. A" =

[va.vb.A"] =[A'], and [7b.va.K2] = [K2] = [K1] = C, hence by L.RED.Swe get:

bva.R :
vb.va.R % ve.P'

Hencewe havefound Q' = ve.P" =P, K' =Q =P =K, B =71 = A, asrequired.

e Incase(d),wehave P = (va.R) | S,Q =va.R | S,a ¢ f n(S) (or thesymmetriccase P = va.R | S,

Y
Q = (va.R) | S, which is handied similarly). Now, P LA, p couid only have been derived

using the following rules: (i) L.Nu.NF followed by L.PAR, (ii) L.NuU.F followed by L.PAR.
LAl Al
~incase () wehae R S22, g Ko ids o otn(a)), Ky = #aKs) | Ko,
A" = Ay | A5, P" = (va.R') | S',bn(A%) Nnbn(A5) = 0, bn(A3) Nnfn(S) =0, bn(A45) N
fn(va.R) = 0. Now, we can always a-convert va. R and S toensurea f n(A43)Ubn(S). Hence
we havebn(A43) Nf n(R) = 0, and we can apply L.PAR to get:

K2|K3:A’2|Aé\

R|S s R'| S

Now a & f n(A3), hencea ¢ f n(A5 | A4) and we can apply L.NU.NF to get:

Ua.Kz | K3 : AIZ | Alg

va.R| S va.R | S

Since A’ = A5 | A5, and [7a.K» | K3] = [(Fa.K2) | K3] = [K> | Ka], we can apply
Q -

L.RED.Stoget: va.R | S =T, Veva.R' | $". Hence we havefound Q' = véva.R' | S’ =
veP' =P K =Q=P=K,B=r1=A,asrequired.

. K, : AS K; : Al
— Incase (i), wehave R —— "2, R',§ —2"23, &' aefon(4}),K: = (vaK,) | K
(

3
A" = (va.Ab) | A5, P" = R' | S, bn(4%) nbn(43) = 0, bn(A45) Nnfn(S | A5) = 0,
bn(43) Nfn(R | A%) = 0. Asin the subcase (i) above, we can ensure a ¢ f n(As) U bn(S).
Hence, we can apply L.PAR to get:

K2|K3:A’2|Ag\

R|S R'|S
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Now, a & f n(A45) buta € f on(A45) and we can apply L.Nu.Fto get:

va.R | g va.Ks | K3 :ﬁa.A; | Ag) R | I

Since [va. Ay | A3] = [Ay | A5] = [A'] and [Ta. K | K3] = [K2 | K3] = [Ki], wecan

apply L.RED.Sto get: va.R | S g ve.R' | S'. Hencewe havefound Q' = ve.R' | ' =

ve.P' =P K =Q=P=K,B=r1=A,asrequired.
Case P K—A> P’ derived by L.RED.H. Thiscaseishandled similarly to the previous one (derivation
by L.RED.S).

We can now proceed to the final steps of the proof by considering derivations of P = @ involving rule
S.CONTEXT. We proceed by induction on the form of K contexts.

Case P = va.Rand Q = va.S, R = S. Inthiscase P K—A> P’ could only have been derived

through one of (i) L.NU.NF, (ii) L.Nu.F, (iii) L.ReD.S, (iv) L.ReED.H, (v) L.NuLL.
e In case (i), we have R KI—A> R, witha € fn(A), P’ = va.R', K = va.K,. By induction
AN
hypothesis, we then have S M S'withK] =K;,B=A,5=Rand S = R'. Applying

S
L.NU.NF we get: va.S m va.S'. Hence we have found Q' = va.S' = va.R' = P,
K' =va K| =va.K; = K, B = A, asrequired.

AT
e In case (i), we have R M P',witha € fon(4'), A = va.A', K = va.K;. By induction
/Y4
hypothesis, we then have S Ki:B o with K, =K, B =A4,andS =R, S = P.

— [ ’
Applying L.NU.F we get: va.S M S’. Hence we have found Q' = S' == P’,

K' =va K| =va. K, =K, B =va.B' =va.A" = A, asrequired.
o In case (iii), wehave K = P, A = 7, P K341, p pr — zp 7= bn(4,), [4)] = B, |

(&,0c) | B2, C = [Ki],&0c = [B:1 | B2]. Now, P KI—AI> Py could only have been derived

using one of (1) L.NU.NFor (2) L.NuU.F.
~ Incase (1), we have B K242, pr itha ¢ fn(4s), Ay = Ay, Py = va.R, Ky =
. . . K,: B .
7a.K,. By induction hypothesis, we then have § —2——— §' withK), = K, B' = Ay =
Ay, and 8 = R'. Since B' = Ay, we have [B'] = [A:1]. Applying L.NU.NF we get:

va. K, : B
—_—

va.S va.S'. Since [B'] = By | (€,6¢) | B2, then some (¢, f¢cr) must occur in

B',suchthat ¢ = ¢ and C' = C. Hence we can apply rule L.ReD.Sto get: va.§ 25T,

ve.va.S' Hence we have found Q' = véva.S’ = véva.R' = P',K' = va.S =va.R = PK,
B =1 = A, asrequired.
— In case (2), we have R KZ—Az> R',witha € fon(4y), Ay = va.A>, P, = R, K, =

[ >
va.K». By induction hypothesis, we then have S M S’ with K) = Ka, B’ = A,,
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r. ’
and S’ = R'. Applying L.NU.F we get: va.S va.K;:vaB S'. Since B' = A, we have

[va.B'] = [va.A2][A1], and some (, fc/) must occur in B, such that ¢ = ( and C’' = C.

Hence we can apply rule L.RED.St0 get: va.S £%5 T, 5" Hence we have found Q' =

ve.S' =veva.R =P, K =va.S =va.R=PK, B=r1=A,asrequired.

e Case (iv) ishandled similarly as case (iii) above.

Q

e Incase(v),wehave K = P, A =¢, P = P. By rule L.NULL, we have Q —€> Q, hence we have

foundQ' =Q=P=P ,K' =Q=P=K,and B == A, asrequired.
K:A

CaeP=R|TandQ@=S|T,R=S. Inthiscase P ——=s P’ could only have been derived

through one of (i) L.PAR, (i) L.RED.S, (iii) L.ReD.H, (iv) L.NuULL.

K;: A K>: A

e Incase(i),wehaveR — "1 R'\T =222, 7" P' =R |T',A= A, | A5, K=K, | K».

A
By induction hypothesis, we have S M S’ withS' = R, K| = K, and B; = A;. Wecan
,1 | K2 : Bl | A2 N

now apply rule L.PaARtoget: S| T > S' | T'. Hence we have found Q' = S’ |
T,ER,|T’:P’,K,: ,1|KQEK1|K2:K,andB:Bl|AQEA1|A2:A,EB
required.

In case (i), wehave K = P, A = 7, P 1141, propr_ yapr & — bn(A,), [A1] = B |
(€,60) | B2, C = [K1], €6c = [B1 | Ba]. Now, P SA1, b couid only have been obtained
through rule L.PAR, hence we must have: R Ky 4, R, T Ks: 43, T,P'"=R | T,
A, = A, | A3, K1 = K | K3, with additiona conditions from the premise of rule L.PAR. By

LAl
induction hypothesis, we must have S KZ—AZ> S with 8’ = R', K, = K, Ay = As. We
K’2|K3AIZ|A3 ’ ’ ‘e
can apply L.PARtoget: S| T S’ | T'". Now the conditions of rule L.RED.S
S|T:
are still valid and applying L.RED.Swe get: S| T # ve.S" | T'. Hence we have found

Q =veS |T"=veR |T'"=P K =S|T=Q=P=K,B=r7=A,asrequired.
Case (iii) ishandled similarly as case (ii) above.

Q

Incase (iv), wehave K = P, A = ¢, P' = P. By rule L.NULL, we have —€> @, hence we have
found@' =Q=P=P K =Q=P=K,and B =¢= A, asrequired.

K:A

CaseP =qgeRandQ =aeS, R=S. Inthiscase P =23 P’ could only have been derived

through one of (i) L.AcT, (ii) L.Loc, (iii) L.ReD.H, (iv) L.NuLL.

o Incase (i), wehae K = P = A = ae R, and P’ = 0. But, by L.ACT, we have @ -2-%*5, .
Hencewe havefound @ =0=P' ,K' =Q=P=K,andB =aeS =ae R = A, asrequired.

K;: A

e Incase (i), wehave R ———+ R, K = aeK;, P’ = aeR', A = (A;). By induction hy-

.
pothesis we must have: S M S with S’ = R', K} = K1, B = A;. By L.Loc we get:

K| : (B
aeS M aeS'. Hencewehavefound Q' = aeS =aeR = P, K =aeK)| =

aeK; =K, B=(B;) =(A1) = A, asrequired.
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e Incase (i), wehave K = P, A = 1, P Ki:dy, P",P' =ve.P", ¢ =bn(A4:), [Ai] = Bs |

(Bi | (€,60) | B>) | Bi, C = [Ki], €6 = Bs | [B1 | Bs] | Ba. Now, P 2141, pr

i
could only have been obtained through L.Loc, with A; = (A}), R —A> R, K| =aeKo,
i
P" = ae R'. By induction hypothesis, we must have S u> S, with 8" = R, K}, = Ko,
oK) : (B]
B} = A|. ByruleL.Loc weget: ae S M a e S'. Conditions of rule L.RED.H are
still valid since [(B1)] = [A1] = [A1] and [ae K5] = [aeK.] = [K]. Applying L.RED.H, we

get aes 2257, Lz4eS'. Hencewehavefound Q' = vé.aeS' = viaeR = va.P" = P,

=Q=P=K,and B =171 = A, asrequired.
Q:e

e Incase(iv),wehaveK = P, A = ¢, P = P. By ruleL.NULL,wehave Q —— @, hence we have
foundQ' =Q=P=P ,K' =Q=P=K,and B == A, asrequired.
CaseP =¢pRand@Q =&>S,R=S. Inthiscase P K—A> P’ could only have been derived through

- (&,0
L.TRiG. WethushaveK = -, A = (¢, 0k, ) and P’ = Rfk,. By L.TRIG, wehave Q & Sfk,

By LemmaA.1, up to a possible renaming of bound namesin R and S, R = S implies that we have Rk, =
SOk, , hencewehavefound @ = P, K' = - = K,and B = (£,0k,) = A, asrequired.
This concludes the proof of Proposition 2.1.

O

Let P | A mean P K—A> P’ for some K, P’'. We abbreviate Aa parallel composition of actions

[I,cr A and Q aparallel composition [, , Q: of KeII calculus processes. WeabbrallateQ 1 Athe propo-
sition /\,GL Q| A
LemmaA.5 Let A # ¢, 7. Then we have
1L IfPlAwth[A] =, thenP=0vc.Q | Rwith@ J aand R | e.
IfP | A with[A] =8, thenP =0vc.Q | Rwith@Q | Sand R | e.
If Pl Awith[A] =(a),thenP =vc.ae(Q | R) | Swith@ | o,R ] €, S |e.
IfP | Awith[A] =[];c; i, then P=ve.R | [[;c,; Qi With@; | ai, R | e.
IfP | Awith[A] = ([[;c; i), then P =vC.R | ao(R; | [];c; Qi) WithQ;i | i, R | €.
If P | Avith [A] = 8| [Tig; i | T, @) then P = vd.Q | S| Tie, @i | Ty a5 #(@; | By)
WithQ 18,516 Qilai,Q; La;, Ry Le.
7. 1P L Awith[A] =[] i | (B | [Liex @ | I1c (05)) then P = vd.S [TT,c; Qi lae(Q|T |
e, Qi | Tles a5 0@ | R)WIthS L e, T L e, QLB S e QilaiQLas, Qulox Ry e

o g b~ WD

Proof: Properties 1 to 3 are proved by a simple induction on the derivation P K—A> P’. Properties 4 and

5 are proved by a simple induction. Properties 6 and 7 are proved from properties 3, 4 and 5 by applying rule
L.PAR. |
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LemmaA6 If P KTy O then P — Q.

Proof: We proceed by induction on the depth of inference of P & Q. Thistransition could only have
been inferred through one of the following rules: L.Loc, L.NU.NF, L.PAR, L.RED.S, L.RED.H.

r.
e L.LoC. Inthiscasewehave P = aeR, Q = aeS, K = asK', R KT, g By induction

hypothesis, we have R — S, hence by R.CONTEXT, P — @, asrequired.

r.
e L.NU.NF.Inthiscase, wehave P = va.R, Q = va.S, R X7, S, K = va.K'. By induction
hypothesis, we have R — S, hence by R.CONTEXT, P — @, asrequired.

e L.PAR. Inthiscasewehave P = P, | P>, Q = Q1 | @2, with P; M Q1, P> & P,

or P M Q2, Py &) P;. Inthefirst case (the other isidentical), we have by induction

hypothesis P, — Q1, henceby R.CONTEXTwehave P = P, | P — Q1 | P> = @, asrequired.
Y
e L.RED.S.Inthiscasewehave P B 4% pr1a = A, | (#i,6¢) | A2, C = [K'], €6 = [A, |
A]. Then by LemmaA.5(6), wehavethat P = P = vd.Q | S | [T;c; Qi | [T, a; #(Q; | R;) with
Q=¢60Q, Q1 (§,0c), SleQilai,Q;jlaj,Rjle A= Hiel a;, Ay = Hje,] a;. But then
by L.RED.S, S.PAR.NIL and Theorem 1 we havethat P' = P’ = vd.Q'0c | S | [I;csaj®R;. Since
P — P’ by R.RED.S, we have by R.EQuIV that P — Q, asrequired.

L.RED.H. Inthis case, wereason asin the case L.RED.S above, using Lemma A.5(7) instead.

LemmaA.7 If R — S, thenthere exist ', K suchthat R £-75 &' and S’ = S.

Proof: We proceed by induction on the depth of inferenceof P — Q.

Case R.RED.S. In this case, it suffices to notice that rule L.RED.S appliesto R = £ P | N | @ with
P,N,Q asinrule R.ReD.S, andyields R LT3 R',with R’ = Péc | @', withfc, @ asinruleR.RED.S.
Hence we have found S’ = R’ = S, asrequired.

Case R.EQuIV. Inthiscase, wehave R = P, P — Q, and Q = S. By induction hypothesis we have
P KT, ' and Q' = Q. But by Theorem 1, since R = P, there must exist R’ such that R X7, R/
and R’ = Q. Hencewe havefound ' = R' = Q' = Q = S, asrequired.

Case R.CONTEXT. Inthiscase, weassume P — @, P = E[R], @ = E[S], with R — S, and we proceed
by induction on the form of evaluation contexts.

e Case P = aeRandQ = ae S, with R — . By induction hypothesis, we have R 75 § and
S’ = S. Butthenby L.Locweget: ae R K:7, aactifS’. Hencewe havefound Q' = ae S’ =
aeS = (Q,asrequired.

e Case P = va.Rand Q = va.S, with R — S. By induction hypothesis, we have R X7+ &' and

§' = S. Butthen by L.NU.NFweget va.R 2K T, ;' Hencewehavefound Q' = va.S' =
va.S = @, asrequired.
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e CaseP=R|T,andQ = S | T, with R — S. By induction hypothesis, we have R K:7, & and

r_ T:e K|T:7 '
S’ =S.ByL.NuLL,wehaveT —— T Butthenby L.PAR,wegetR|T —— S"|T.

Hencewehavefound @' = S’ | T =S | T = Q, asrequired.

O

Proof of Theorem 2: Theorem 1 results directy from the conjunction of LemmaA.6 and of LemmaA.7. O
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